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Evolution et equation differentielle de domaine

Résumé : Résume Nous considérons I’évolution faible de domaine via la convection d’une
partie mesurable par un champ V peu régulier. La variation transverse conduit aux dérivées
de fonctionnelles associées aux tubes d’évolution et nous proposons plusieurs formulations
variationnelles eulériennes pour des problémes classiques tels que le flot incompressible eu-
lérien, les courbes minimales...qui se trouvent alors etre gouvernés par un état adjoint géo-
métrique A qui est solution d’un probléme rétrograde en temps obtenu & partir du champs
transverse Z introduit dans [16]. On revisite également I’equation différentielle de domaine
introduite en 1976 ([2]) et on 1’étend au cadre des “level sets” dont ’approche par les vi-
tesses étaient contenue dans la modélisation des problémes & frontiéres libres proposée en
1980 dans ([6]).

Mots-clés : convection, champ transverse, gradient de forme, eqation différentielle de
domaine, “level set”
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1 Introduction

The weak convection of measurable sets ([23], [20]) has been introduced in relation with
the shape differential equation and related topics. We enlarge that approach to variational
problem related to the analysis and Tubes evolution . We focus on the compacity results
and we propose three "families" of "viscosity" constraints on the vector fields V' leading to
existence results connected to the "parabolic version" of the compactness of the inclusion
mapping from bounded variation functions in integrale functions . The last one is based on
the use of the "Density Perimeter" properties ([14], [13]).

The so-called "Speed Method" have been developed in relation with the shape opti-
mization governed by Partial Differential Equations ([4],[2],[3],[7])- In the strong version we
considered the flow mapping T;(V') of a smooth vector field V' € C°(]0, oo[, CF(RY,RN) N
L>®(RN,RY), (i.e. V is smoothly globally defined over RV at all times ).

For any set Q the set Q;(V) = T3(V)(Qp) is then defined at any time. The shape
differential equation (considered in [2],[7],... [19]) is studied for shape functional governed
by several classical boundary value problems (with use of the extractor estimate for the
shape gradient [17]), then in [20] for non linear viscous flow.

The characteristic function of the evolution domain, & = £q,(v), is converted as & =
&00T(V) ™! solves the convection problem

0
56+ VEV =0, €0) = éo,

That this problem have solution when the vector field V' € L2 with divV € L? and some
growth assumption on the positive part (divV)*. The incompressible situation was already

INRIA
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introduced in [17], [20]. We give several continuity and compacity results. Applications
are the existence results for variational principle related to the Euler incompressible flow
equation and metric on the family of subsets of a bounded domain D

2 Weak Convection of characteristic functions

2.1 Convection

When V is a smooth vector field we denote its flow mapping by 73(V') and for any measurable
set 0 we consider the "perturbated" set Q,(V) = T3(V)(€2). The characteristic functions
verifies

b, = EooTy(V) ™! 1)

and it is easily verified that £(¢,x) = &q,(x) verifies in weak sens the following convection
equation

15
SELVEV =0, £0)=6n (2)

Notice that V£.V = div(€V) — £divV makes sense as a distribution when & € L*°(]0, 7[x D)
and V € LY(]0,7[xD; RY), divV € L'(]0,7[xD).

When V is a smooth vector field, say V € L*(0,7, W% (D, RY)) where D is a bounded
universe (and the boundary condition < v,n >= 0 on the boundary 8D, or any such viability
condition for D in the case of non smooth boundary) the flow mapping is well defined for
any large time ¢ € [0, 7] with some slight extra conditions on V, see the section devoted

to smooth tubes and vector field, then (2) and (1) are equivalent. Many questions arise
concerning (2) when the vector field is non smooth. Nethertheless we do think that it is
the correct approach for many shape problem such as shape evolution, shape identification
(or optimization), free boundary problems , coupling fluid structure problems, image anal-
ysis....problemes in which the topology of the set Q; may be evolutive. The problem (2) is
equivalent to the following one:

Vo € C*([0,7] x D), ¢(r,.) =0,

/T/ £(§¢+ <V,V¢ > +¢ divV )dzdt + / #(0,z)dx =0 (3)
o Jp Ot 9

For non smooth vector fields we shall distinguish three nonsmoothness levels. The first
level at which we are able to speak of solutions for (2) , (3) and for the more general
"evolution" problem (4) ( when right hand side is non zero and initial data non necessary
characeristic function) with non smooth initial data is:

Level one: V € L'(0,7,LY(D; RY)) and the positive part (divV)t € L1(0,7, L>(D)).
Also for the "dual evolution" problems (7) we assume the negative part

(divV)~ € L' (0,7, L>=(D)).

RR n° 4649



6 J.-P. Zolésio

In those cases, using Galerkine approximation and energy estimate, we derive existence of
solution for both problems with initial data given in H~/2(D). Today we have no uniquiness
result at that level but only an estimate (5) for such "variational weak solutions", see section
bellow. When V is smoother, mainely with respect to ¢, using the double scale hyperbolic
theory by Kato we derive existence and uniquiness of smooth solution to the evolution
problem (4) with smooth initial data ¢ € H}(Q):

Level two: for V.e WH>(0, 1, L3(D)) ( divV = 0) and initial data in H} (D) we get the
existence and uniquiness of a solution in

C°([0,7), Hy(D)) n C([0,7], L*/*(D))

Level three: for V.€ WH(0,7, L>(D)) (and divV = 0) that solution u also verifies

u € C1([0,7], L*(D))

At Level two we derive, by transposition technic, the uniquiness of weak solution to (2)
and (4) when the initial data is in L>(D).

From that uniquiness property we derive the following monotonicity in the weak convec-
tion problem (2) : let two initial conditions verify 0 < & < ¢2 < M the the two solutions
verify 0 < ¢! < €2

At Level three, V and 1% being bounded, we derive the uniquiness of a characterisic
solution & = &2 to (2) when the initial data is itself a characteristic function. The idea is to
prove that , £ being the solution of (2). associated with characteristic initial data, then £2
is also a solution (then from uniquiness the conclusion derives). For doing this we regularise
the initial condition by an increasing sequence of positive elements ¢,, in Hg (D).

In order to manage variational problems we need to escape to the previous Levels 2 and 3,
that is to avoid such regularity on the vector field V' (while at those levels the flow mapping
is still not defined). When the field and its divergence are simply L! functions the notion
of weak solutions to the convection problems (2), (3) is not defined then the modeling tool
for shape evolution is to introduce the product space of elements (¢ = £2,V) equipped with
a "parabolic" BV like topology for which the "constraint" (2), (3) defines a closed subset
Ta which contains the "weak closure" ( that is made precise bellow) of smooth elements

{&oT'(V), V) | V € C>([0,7] x D) }.

That approach consists in handling characteristic functions £ = ¢2 which belongs to
LY(0,7, BV (D)) togather with fields V € L'(0,7, L*(D, RY)) verifying (2), (3). For a given
element (£,V) € Tq, ( we say that £ is a tube (a measurable non cylindrical subset in
(0,7) x D, defined up to a zero measure set) with bottom ), we consider the set of fields
W such that ({,W) € 7. It is a closed convex set Ve. We can define the unigue minimal
norm energy element V¢ in the convex set V¢. For a given tube &, the element V¢ is the
unique (minimal norm) vector field associated to £ via the equation (2). Finally we shall

INRIA
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generalised the classicla shape differential equation (which is recalled bellow) in the following
a Hamilton Jacobi equation for the characteristic function x € L'(0,7, BV(D)):

o _
X(0) = X, Z;x+ < Vx., A L(G(x)Vx) >=0

Where A is a had hoc duality operator. We shall also discuss that equation on the level
set setting, introducting operator A, “without step” in relation with the tomography inverse
problem in electromagnetic TM (transverse magnetic ) mode.

2.2 The Galerkin Approximation

We consider the evolution problem

0
P +Vu.V = f, u(0)=ug (4)

Proposition 2.1 Let V € LY(0,7,L%(D, R?)) with divV € L'(0,7,L?(D,R?)) werifying
the following uniform integrability condition :

a+Top
There exist Ty >0, p <1, s.t. Ya >0, / V(|22 (p,rsydt < p <1

(That property is verified when V € LP(0,7,L?(D, R?)) with p > 1). Moreover we assume
that the positive part of the divergence divV = (divV)t — (divV)™, wverifies (divV)t €
LY(0,7,L°°(D, R®)), that is :

[|(diwV ()|~ (p,rs) € L'(0, 7).

Then if < V(t,.),n >=0 (as an element of L'(0,7, H 2(dD)) ), f € L*(0,7,L2(D)) and
initial condition ug € L?(D), there exists solutions u to the problem (4) verifying

we L®(0,7,L2(D)) n WP (0,7, W=13(D)) c C°([0, 7], W23 (D)),
where % + p% = 1. Moreover there exists a constant M such that :

VT, ullzeo,r,22(p,8N)) < M{ |9ll2(D) + 1| fllz2r(0,7,22(D)) } (5)
{ 1+/0 (1(divV () * ||z, rs) + | £ (5)||2(D, R3))

[ U@V @) lamo ) + 1o,y )do)ds

In order to derive a uniquiness result we shall consider the dual problem for which we
need smoother solutions. At that point we need more regular vector fileds V' and also free
divergence ones in order to apply the so-called double scale Kato theory. Possibily the free
divergence assumption in what follows could be avoid.

RR n° 4649
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2.3 Time Smooth Speed Field
2.3.1 Bounded Speed Field

Let W be a given element in L*(D, RY) with divW = 0. We consider the unbounded
operator Ay in the Hilbert space H = L?(D),with dense domain Dy = H}(D) and
defined by

Aw.0 =W.Vo (6)
It can easily be verifyed that the adjoint unbounded operator verifies
Ay = —Aw

Proposition 2.2 The unbounded operator Ay is the infinitesimal generator of a semi group
of contraction in H = L*(D).

Proof. As H}(D) C L5(D), with N = 3, and as 3 + £ + > = 1, let W, be a sequence in
Wb (D, RN) with div W, — 0in L3 (D)
and converging to W in L (D, RN). We get:

/D Aw.¢ ¢pdz = /D W.N¢ ¢ do

- lim{/DWn.quqﬁ do } = —lim{/D(dian @2 +(WaVé) 6)dz }

from which in the limit we deduce firstly that [, (W.V¢) ¢ dz = 0 and then that the
operator Ay is dissipative: [, (Aw.¢) ¢ doz = 0.

We consider now the evolution hyperbolic problem associated to any element
vV e whe(0,7,L>=(D,R"))

with div V' (¢,.) = 0 a.e.t.We consider the unbounded operator A(t) in the Hilbert space H =
L?(D) defined by A(t).¢ = V(t).V¢ with dense domain D = H}(D) which is independant
on t. The Triplet{ A(.),H, D } is then a CD-system in the sense of [8] (page 9)as we shall
verify the following stability condition: for any times ¢; < .... <ty ,

| B(ti, A)---R(t2, 2)-R(t, N) || < M(A =)~

where the resolvant R(t,\) = (X Iy + A(t))~! exists for any ¢t > 3. That stability condition
is obviously verified from the previous contraction property of each operator A(ty). we obtain
the following result ([8], thm1.2 page 11)

Proposition 2.3 Let V. € W4>(0,7,L>(D,R")), f € Lip(0,7,L?(D)), and ¢ € H}(D),
there exists a unique solution

u € C([0,7], Hy (D)) N C*([0, 7], L*(D))
to the evolution problem (4).

INRIA
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2.3.2 Unbounded Speed Field

We directely applied the theory in the Hilbert space L?(D) and we derived that V(¢t,.) €
L>(D) was enough to describe the semigroup . From Sobolev embeding inequalities we
have H'(D) C LP(D) for any p < 2. Let V be a given element in L(D,R") with
q>2+ 287 and divV = 0.

Let us observe that in dimension 3 the following inclusion holds : H!(D) C L%(D) then

as soon as V(t,.) € L3(D) we get V ¢ € HY(D), ¢V (t,.).V¢ € L*(D).
The semi group is also disspative as well as his adjoint taking the Banach space H =
L3(D) while the dense domain is D = H} (D). Then we get the

Proposition 2.4 Let V € W4>([0,7], L3(D,R"Y)) with divV (t,.) = 0. Let initial data
¢ € H}(D) and f € Wl’“([O,T],L%(D)), then dynamical system (2) has a unigque solution
u verifying

u(0) = ¢, ue C°([0,7), By (D)) n C" ({0, 7], L¥(D)).

By transposition technic the previous existence result furnishes an uniquiness results for

weak solutions as follows.
Let V € L?(0,7,L*(D,RY)) and, for i = 1,2, & € L*([0,7] x D) C L?(0,7,L?(D)) be
two solutions to the problem , given g € L?(0, 1, L?(D)),

e vdivle, V) =g
(so & € L*(0,7,L*(D)) n HY(0,7, H-Y(D)) C C°([0, 7], H~'/?(D))) with initail condition
&(0) =uo € H'/*(D)
We set w = & — £ which verifies the homogeneous version of the previous equation.We get

vu € C°([0,7], Hy(D)) N C'([0,7], L3 (D)), u(r) = 0,

T 0
/ / w(——u— < Vu, V>)dedt =0
o Jp ot
then, if the vector field V is smoother in time, V'€ W1°°(0, 7, L3(D)), from the the previous

well posedeness w is orthogonal in L?(0,7, L?(D)) to any element f € W>(0,7, L%/%(D)),
wchich is a dense subspace. Then w = 0 and we claim the uniquiness of the solution.

Proposition 2.5 Let V. € WbH>(0,7,L3(D)) with divV = 0, g € L?(0,7,L?(D)) and
ug € H=Y/2(D) there is a unique solution (if it exists) £ € L>(0, 7, L>°(D)) to the problem

15
aﬁ +div(EV)=g, £(0)=uo

RR n° 4649
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2.4 Uniquiness with nonsmooth initial data

We consider the dual evolution problem

%u + div(uV) = g, u(0) =wuo (7)

By transposition technic the previous existence result furnishes an uniquiness results for
weak solutions as follows.

Proposition 2.6 Let V € W1°°(0,7, L3(D)) with divV =0, f(resp.g) € L?(0,r, L3(D))
andug € H=Y/2(D). Then the problem (4) (resp.(7)) has a unique solution in L>=(0, 7, L=°(D)).

Let V € L?(0,7,L*(D,RY)) and, for i = 1,2, & € L*([0,7] x D) C L?(0,7,L?*(D)) be
two solutions to the problem , given g € L?(0, 7, L?(D)),

26+ din(e V) =g
(so & € L*(0,7,L*(D)) N H'(0,7, H- (D)) C C°([0,7], H~'/2(D))) with initail condition
&(0) =uo € H '/*(D)
We set w = & — £ which verifies the homogeneous version of the previous equation.We get

Yu € C°([0,7], H (D)) n Cl([O,T],Lg(D))7 u(r) = 0,

//w(—gu—<VU,V>)d:vdt=O
o Jp ot

then, if the vector field V is smoother in time, V € W1:>°(0, 7, L3(D)), from the the previous
well posedeness w is orthogonal in L?(0, 7, L?(D)) to any element f € W1 (0, r, L%/%(D)),
wchich is a dense subspace. Then w = 0 and we claim the uniquiness of the solution.

3 Compacity results

3.1 Vector fields in L!
Lemma 3.1 Let V € L'(0,7, LY(D,R")) and £ € L>=(0,1, L=(D)) solution to

%5—# div(€V) =0
Then we have

0
||§€||L1(0,T,W1-°°(D)') < Iz (0,71 x )1V || £1(0,7,L1 (D)) (8)

INRIA
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Proof. Yé € L>®(0,7, W, >(D)) we have

T 9 r
/o < 557 ¢ Z Wl (D) x WL (D) dt =/0 /D§ V.V¢ dxdt

Then

T 0
|/0 < Eé’ ¢ Z Wi (D) x W™ (D) dt| < |[EV|z1(rxp) ||¢||L1(I,Wg’°°(D))

3.2 Boundedness of the Perimeter
We deal with elements f, which are continuous in H~2(D)

Proposition 3.1 Let f, be a bounded sequence in L* (0,7, BV(D)) such that 2 f. is bounded
in LY(0,7, H=%(D)). Such elements belong to C°([0,7], H=%(D)), assume that f.(0) = fo
is a given element in BV (D). Then there exists a subsequence strongly convergent in
LY(0,7, L} (D)).

We adapt to the present situation the proof of [1] theorem 5.1 page 58 (in the Roger Temam’s

version given in foot notes).

Lemma 3.2
Vn > 0, there ezists a constant ¢, with Y¢ € BV (D),
I¢llz1 0y < nllllBv (D) + enlldlla->(p)

Proof of the lemma: assume that it is wrong. Then, Vn > 0, there exists ¢, € BV (D) and
¢, — 00 such that
[énllz1(D) = 0llénllBV (D) + Cnllénlla-2(D)

We introduce ¥, = ¢n/||dn||Bv (D), and we derive:

¥nlli(py 2 0+ call¥nlla-2(p) 2 1

But also |[¢n||z1(py £ ¢l||¥nllBv (D) = ¢, for some constant c. Then : ||¢n||g-2(py — 0.
But as ||t || pv(p) = 1, there exists a subsequence strongly convergent in L' (D) C H~*(D),
which turns to be strongly convergent to zero. This is a contradiction with |1, ||£1(p)) > 9.

Proof of the proposition: From the lemma, ¥Yn > 0, there exists a constant d,, such that

Vf e LY(0,7, BV(D)),

[1£1lz10,r,21(DY) < 2l fllL1(0,-,BV(D)) + dullf||L1 (0,7, H-2(D))

We consider now the terms f, ., = fn — fm, for m > n. With the initial condition
Jn,m(0) =0 Given € > 0, as || fn,m|| 21 (0,7, BV (D)) £ M, if we chose n such that n M < 1/2¢,
we shall get ;

||fn,m||L1(O,T,L1(D)) < 1/2 €+ dn ||fn,m||L1(0,‘r,H_2(D))

RR n° 4649



12 J.-P. Zolésio

. At that point the conclusion will derive if we etablish strong convergence to zero of f, , in
LY(0,7, H=*(D)). Now, as L'(D) ¢ H=*(D) (for N < 3), we get fn,m € WH1(0,7, H=2(D)) C
Cc°([0, 7], H %(D)), and

Vt >0, [|fam(Ol|lg-2p) < M

so that by use of Lebesgue dominated convergence theorem it will be sufficient to prove the
pointwise convergence of f,, .. (t) strongly to zero in H~2(D). We shall prove it for t = 0.
We have f,, m(0) = an + b, , with

a4, =1/s /0 om()dt, by = —1/s /0 (s — 00 (t)dt

If € > 0 is given we chose s such that

a0 < [ 1 fnn(®lla-scoy
Finally we observe that a,, — 0 weakly in BV (D), then strongly in H~2(D).

3.3 Tube evolution

We derived the existence of tube associated to a vector field V' while the flow mapping T:(V)
does not exist. Netherveless we need a regularity such as V€ W (0,7, L3(D, R")) which
makes problem for many variational applications where the field should be no more regular
than L2(0,7, L?(D,R")) ( and also its divergence). For that reason we develop a setting
in which none extra regularity is required on the vector field ( and its divergence) but we
shall impose a reguarity on the tube boundary. That regularity will be related to the tube
through its boundary perimeter . At that point there are several possible approaches of that
concept. One possibility is to consider the time-space perimeter of the lateral boundary ¥
of the tube, an other one is to consider the time integral of the spatial perimeter of the
moving domain which built the tube. The first approach would furnish immediat acces
to the variational properties of the Bounded Variation framework ans specifiquely to the
good compacity properties of the family of tubes with bounded perimeters in RN+, That
approach was considered in ([20]) . It led to very havy variational analysis. We consider
here the second approach and we adapt the results of ([23]) to the case of vectors fields in
L1((0,7) x D). We handle existence results for solutions of the convection equation, but no
uniquiness result, the tool in that approach is to consider the set of pairs (¢, V) solving the
convection from given initial set Q in D :

Given a measurable subset 2 C D, we consider the following sets equipped with respec-
tive weak topologies :

A={¢ € L>0,7,L°°(D)) with ¢ =¢, Ve e LN 0,7, M (D, RV))} (9)

The set A is equipped with the following weak topology :
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&, — & if and only if the two following conditions hold :

Yo € L*([0,7] x D),/0 /D(gn — &)dxdt — 0
¥ € L' (0,7, C (D). | [ (V6w = VE)g duds — 0,
0 D

B={V e L0,r,L}(D; RY)),with divV € L'(0,7,L}(D))}
equipped wit the weak o (L', L°) topology:

Vap € L*([0, 7] xD;RN),/T/ < (Vo =V), % > dadt — 0
0 D

and
Vi € L*=([0, 7] x D),/ / (divVy, — divV)dzdt — 0
0 JD

Let us consider the following set:
0
To ={(6,V) € Ax B, with 2.6+ VEV =0, £(0) = ¢a }
Theorem 3.1 The set Tq is closed in A x B.

Proof:

Let (&, Vn) — (&, V). If the converging sequence is in 7o from the Banach Steinhauss

theorem we get the boundedness of the following L'(0,7, BV (D)) norm:

/ |€nlla(pydt < M
0

from the previous results we get the strong L' convergence of the sequence &,, then the
limiting element verifies £2 = ¢ and with the weak convergences of both V,, and divV,, we
get in the limit in the weak formulation (3) of the convective equation for the pair (£, V)

which turns to be an element of 7 :

Vo € C*([0,7] x D), ¢(r,.) =0,

/T/ 5n(2¢+ < Vo,Voé > —¢ divV, )dxdt + / ¢(0,z)dz =0

RR n° 4649
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3.4 Boundedness of the Density Perimeter
3.4.1 Density Perimeter

Following [14] ,[13] , we consider for any closed set A in D the density perimeter associated
to any v > 0 by the following.

meas(A°)
2€

P’Y(A) = SUPce(0,y) [ ] (12)

Where A€ is the dilation A€ = U,c4B(z,€). We recall some main properties:
The mapping Q@ — P, (01) is lower-semi continuous in the H°-topology

The property P,(0f) < oo implies that meas(9§2) = 0and 2 — 0N is open in D.
If P,(09,) <m and (, converges in the H® — topology to some open subset
Q C D, then the convergence holds in the L?(D)topology of the characteristic functions

3.4.2 Clean Open tube

A Clean open tube is a set @ in ]0,7[xD such that for a.e.t, Q; = {x € D | (t,z) € Q} is
an open set in D verifying for almost every ¢ in (0,7) the following cleaness property:

meas(9§y) =0, Q, = interior of cl(£). (13)

Notice that as the previous openess condition holds at almost every time ¢ , the set @ is not
necessarelly itself an open subset in |0, 7[xD. Nethertheless when the field V' is smooth the
tube J,_,__{t} x T:(V)(§20) is open (resp. open and clean open) when the initial set { is
open (resp. clean open) in D.

We say that two tubes Q and Q' are equivalent if the characteristic functions are equal
as elements in L%(0,7,L%(D)) (i.e. &g = &g ), that is to say that at almost every time ¢
the two sets {z € D | (t,z) € Q} and {x € D | (t,z) € Q'} are the same up to a mesurable
subset E of D verifying meas(E) = 0.

Lemma 3.3 Let QQ be a mesurable set in |0, 7[x D, if there exists a clean open tube Q such
that £, = 5@7 then that clean tube is unique.(There exists at most one equivalent clean open

tube)

Proof: assume two such clean tubes Q and Q'. Then at a.e. ¢ we have (1, = QQ up to a

mesurable set E; verifying meas(E;) = 0. As those two open set verify (13) they are equals.
When Qp is a clean open in D and @ is a clean open tube in ]0,7[xD, with &g €

C°([0, 7], H~'/2(D)) and such that there exists a divergence free field V in E such that :

O HVEV =0, £,(0) =4, (1)
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we say that V builts the tube and we note @ = Qy. Now such field when it exists is not
unique. The set of fields that built the clean open tube @ is closed and convex:

Vo={VEE |Qv =0} (15)

Lemma 3.4 If the set Vg is non empty, then it is closed and convez in E so it contains a
unique element Vg which minimizes the L*(0,7,L*(D)) norm in that class.

When the tube @ is built by a smooth field V' € L(0,, WOI’OO(D,RN)), that is Q = Qv
(ie. 4y ={x €D | (t,z) € Q} = T(V)(Q)), obviously the convex set Vg, is non empty
as V € Vg, . But in general Vg, , the minimum L?-norm element in Vg, , is different from
V.

We describe now a construction of clean open tubes for which the set Vg is non empty.

3.4.3 The "parabolic" situation

We turn to the situation of dynamical domain. One could think to use the time-space
perimeter as it was considered in (??). For any smooth free divergence vector field, V' €
Co([0,7], Wy (D, RN)), we consider,

0:(V.0) = Min { [ (G dt|uwe M,(V.5) } (16)
Where
MV, 90) = { € HY(0,7), Py(0u(V)) < u(t) acet, (0) < (1+7)P,(99%) }

Where are many examples in which that set is non empty. When that set is empty we put
0,(V,Qy) = +00. Notice that even when the mapping p = (¢t — P, (Q:(V)) ) is an element
of H'(0,7) (then p € M, (V,Q0) }), we may have: ©(V,0) < [[p'||72(g,,) as the minimizer
will escape to possible variation of the function p.

Proposition 3.2 For any smooth free divergence field V € C°([0,7], Wy ®(D, RY)), we
have:
P, (09,(V)) < 2P,(0%) + v/7 O(V,Q)"/2 (17)

proof. As
Ta
P, (092(V)) < pu(t) < 2P, (0) +/ a,u(t)dt
0

Then

P,(09(V,)) < (t) < 2P,(89%) + \/F(/OT(%u(t))l/zdt

as u is chosen beeing the minimizer element associated with V, the estimation is proved.
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Proposition 3.3 Let V,, € C°([0,7], WOI’OO(D,RN))7 with the following convergence:

V,, — V in L*((0,7) x D, RY)

and the uniform boundedness :
IM >0, O(V,,0) <M

Then
®(Vv QU) S hmznf Q(VnaﬂO)

Proof. With the boundedness assumption :
P,(99:(V,,)) < C = 2P, (8%) + /7 M2

Let p, be the unique minimizer in H'(0,7) associated with ©(V,,€Qq). There exists a
subsequence, still denoted p.,, , which weakly converges to an element p € H'(0,7). That
convergence holds strongly in L?(0,7), then almost every where. By definition we have

P,(0%(V)) £ pn ace.
Then in the limit:
P,(0Q(V)) < liminfP,(0%(V,)) < w(t), ae.t

Also the square of the norm being weakly lower semi continuous we have

/T(gt (t)%dt < lzmmf/ Bt'u" (t))2dt

that leads to " 8
O(V.) < [ (5u)dt < liminf (Vs %)
0

Proposition 3.4 LetV, € C°([0,7], Wy (D, R")), with the following convergence:
V, — Vin L*((0,7) x D,R")
and the uniform boundedness :
aIM >0, O(V,,Q) <M
. We assume that Qg is an open subset in D wverifying

Qo = interior of Qq

INRIA
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Then there exists a clean open tube Q = Uocter 1t} ¥ Q; such that:

at a.et € (0,7), & ., — & in L*(D), Q(V;,) — Q, inH® topology.

Q

a.et € (0,7), the set QO is an open set verifying cleanness property (13). Moreover &, 18
the single a.e.t open set verifying those conditions (18) and whose characteristic function
solves the convection problem:

7]
afﬁt +VE, V() =0, & =¢&,

That is : Q is the unique open family in D verifying the previous cleanness property and
such that fﬁt =&q, v, a-€-t.

Proof We have £q,, — g, in L*(I x D). Then for almost every ¢ we have £q,(v,) — &o,(v)
in L2(D). At each t there exist a subsequence (depending on t) which converges in H®-
toplogy to an open set :Q:(V,,) — w;. Now for a.e.t we know that Q;(V,,) — Q(V) in

measure (i.e. for the L?(D)-norm of the characteristic functions), then at a.e.t, £, =&, .

From the boundedness of P, (£;(V},)) we derive that for almost every ¢ , wy(V') is an open
set in D and meas(dw;(V')) = 0. Then we set Q; = cl(w:) — Owy.
We consider now for any smooth field

Definition 3.1 .
P (V,90) =/ Po(Qu(V))dt + 70, (V, %)
0

Theorem 3.2 Let V,, € CO([0,7], Wy (D, RN)) which weakly converges in E to V with
the boundedness condition :
Py (Viry ) < M. (18)

Then there ezists a clean open tube Q built by V with the following convergence
aet € (0,7), & (t) =&, (1), Q(Vn) — Q in He topology
and py(V) < liminf py (V).

4 Transverse field

Let (£,V) € Tq and a vector field W such that for all s, |s| < s; there exits £5 = (£°)? with

(&°,V + sW) € T. We consider heuristically the term (if it exits)
. o s
£ = 5.6l

as a measure over (0,7) x D. That measure should solves the evolution problem (4) with a
measure as right hand side:

DEvEv=—vOW,  {0)=0 (19)
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4.1 Transverse derivative

We give an existence result for that derivative. Indeed we furnish a functional framework in
which a; = % does converges in the space of Measures to the element £ . From(3) we
get

// (as(%qﬁ-l- V.V > +6 divV) + & < Vo, W > )dadt =0 (20)
0 D

Lemma 4.1 As s — 0 we have £&¥ — £ in L?((0,7) x D))

We set 5
f= &¢+ <V,V¢ >

We assume the field V € W ([0, 7], L3(D)), then for any f € W' ([0, 7], L5/5(D)), there
exist a ¢ with ¢(7) = 0 solving the previous equation. We conclude :

Proposition 4.1 Let V € Wb ([0, 7], L3(D)), the sequence =5 converges in

wte ([0, 7], L*(D))’

to an element {

4.2 Derivative of “volume” functional

We consider a speed functional in the form
in=[ [ Fw@d+ [ aa@dsider [ g@mnds @)
0 J.(v) Ty(V) Q.
In the case where fr = 0,g = 0 ( the functional is a "distributed one") we would get
J(V,W) = / / (£ Fa,vy + EF' )dtdz (22)
o Jp
We introduce the following "superficial" non cylindrical adjoint state A :
—%A —divAV) =F(Q(V)), A7)=0 (23)
To simplify assume that F' = 0 we get
y T : 0 .
JV, W) = —{(=A+ div(\V))dtdx
o Jp ot

that is
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j’(V,W):/OT/D )\(%§'+V§'.V)dtdx:—/0T/D \ VEW dzdt

JV,W) = / / Ediv(A\W) dzdt = / / A< Wyn, > dsdt (24)
0 JD 0 JIy(V)

In several previous works we introduced the transverse field Z such that

Iy
_ F(x) dxdt)s=
(55 0 Jau(visw) @) Ja=0

- / ’ / F(z) < Z(t,2),ny(z) > dsi(x)dt
0 Jaa,(v)

We deduce that as a measure on ]0,7[x D the element ¢ verifies

/ / £ F dzdt :/ / F < Z(t),n; > ds;dt (25)
0 Jd 0 /o9, (V)

- / < Z(t),n: > 1+ (< V(t),ny >)2)—1/2 a5
by

So that if vx € £(C°(]0,7[xD),C°(T)) is the trace operator on the lateral boundary ¥
of the ( non cylindrical ) tube @ = Up<i<r{t} x Qu(V), 75 € LIM(Z), M(]0,7[xD)) its
adjoint operator, we get :

< Z(t),ns >
VI +(<V(t),ne >)?)

By comparison of (24) and (25), we derive:

£ =(F

(26)

Proposition 4.2 Let V € WH°(0,7, L8/5(D, R®?)), for any F € , X being the unique solu-
tion of the backward problem (?7?), we have :

/ / F < Z(t)n > dstdtz/ / N <WE)ne > dsidt (27
0o Jr,(v) o Jr.v)

4.3 Functional with end term

We consider the same situation but now the end term ¢(Q2) in the functional definition is
not zero but is the restriction to the final domain Q, of a given (smooth enough) function
g, that is

9(Q) =gla,, 9=g(z), x€D
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Then we get:

JV, W) = / ' /D (€ Py + €F' )dtde + /D o, (2)g(z) da (28)

J(V W) = /0 ’ /D {(%X + div(AV) )dtda + /D fo. (2)N()(@) dz
Where ) is now solution of
) 9. )
A(r) =g, — g A= div(AV) = FQ(V)) = Fla,w) (29)

Again we assume here that F' is the restriction to the moving domain of a function F(¢,x)
smoothly defined over RV*1. By “integration by part” we obtain

TV, W) :/ /I‘t(V) X < W(t),n, > dTdt
0
Using the transverse field Z we would get :

TV, W) :/ / F < Z(t),me > dI‘t(V)dt+/ g < Z(r)n, > T, (V)
0 Jryv) r.(V)

In the specific case where F' = 0 we just deal with the end term g, then A is solution for the
homogeneous equation with end value A(7) = g and we get

/ g < Z(F)ns > dT(V) :/T/Ft(V) A<W(t),n > dlydt (30)
T (V) 0

5 Equations for the term z =< Z(¢),n; >, tangential
Calculus on X

To begin with let us recall the results of ([18]) ( see also ([21])): the normal transverse speed
z is given by

Vz € T, z(t, Ty(V)(z)) =/0 W(o, T (V)(2))-ne (T (V)(2) (31)

exp(/ < DV (o, (T (V)(x))n-((T-(V)(2)), n:((T(V)()) > dr ) do
When the vectore field V is in the canonical form

J(V,W) =V(t,) =V(t )op(.)
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we get DV.ny = 0 on T’y so that the previous relation simplifies for:
t
(t,z) € X, i.e.x € Ty, 2(t, Te(V)(x)) = / W(o, Ty (V)(2))ne(T,(x)) do (32)
0

We consider the time space operators

< Grad\,V >= %/\ + VAV

The vector field V = (1,V) is tangent on the lateral surface ¥ as the outgoing (to @) normal

field is 1
v= (= < V(t),ns >, 1)
1+ (< V, ¢ >)2

/F < Z(t),ns > 05
b 1+(<V,nt>)2

< W(t),ns >

=/ A
s 1+ (< Ving >)?

< Z(t),ny >
14+ (< V,ng >)?
__ [ <W(t),n; >

r V1I+(<Vine>)?

As the product A < Z,n >= 0 on 0¥ = 99Q, the by part integration on the manifold ¥
following the tangential differential operator leads to the following identity :

Thus we have :

s (33)

That is
dx

/(< Ggrad\,V > + AdivV(t))
=

/ iV () —SZBn>
) 1+ (< V,ng >)?
—/()\ Divg( =20 > e
p) 1+ (< V,ne >)?
_ \ < Wi(t),n; > IS

s V14 (< V,ng >)?

and we get the

Proposition 5.1

—divV(t) < Z(t),n: >+ /14 (< V,ns >)2 Divs( < Z(t)n: > V) (34)
1+ (< V,me>)?

=< W(t),n: >
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But now we have
DivsE = DivE — < Dy Ev,v >

Where of course the right hand side is independant on the values of the vector field E
outside of the lateral manifold ¥. So that, considering any extension of the concerned
quantites outside of 3, we have:

Z(t
Divg( —~2 1> )
14+ (< V,ns >)?
Z Z
= Div( < Z{t),n: > V)— < Dy < Z{t),n: > V).v,v >
1+ (< V,my >)? 1+ (< V,ny >)?
Finally we get the following identity:
D’L"UE( < Z(t),nt > ‘ v )
1+ (< V, T >)2
6 < Z(t),n; > div( < Z(t),n; > V)
at V1t (< Vyng >)? V14 (< Vyng >)?

_ <V()yne> 9 < Z(t),n; >
L+ (<Ving >)? " 0ne /14 (< V,n, >)2
a <Z()nt>
V(t
at\/m
(<V() 1) 8( < Z(t),m > )
(<Vnt> ot \/1+4+ <Vnt>
D < Z(t),ns >
+ (< V(t),ns >)? 14+ (< Vyng >)?

7 nt>)

+ 1 V(t) ).TLt7 ng >
We get the
Proposition 5.2 z =< Z(t),n; > solves the following equation :

divV (t)

< Z(t),ns >
1+(<V,nt>)2
8 < Z(t),n > < Z(t),n: > V)
8t V1+ (< V,n; >)2 \/1+ (< Ving >)?
<V( ),nt> <Z( )77Lt>

9
d

1+ (< Ving >)? 1+ (< Ving >)?

INRIA



Weak set evolution 23

B <g( < Z(t),ns >
ot \/1+ (< V,n; >)?

(<V(t),n): 0, <Z@t),n >

V(t) ), ne>)

1+ (< Vyng >)? 5(\/1+(< V,ny >)2
< Z(t),me >
+ D V(t))ne, ne >
T+ (< V@O >p =2 1+ (< V,n >)2 ()-me, me
1
= <W(t),n; >

14 (< Vyne >)?

6 Tube derivative

In that section we consider a tube () with lateral boundary ¥ and an “horizontal perturba-
tion” leading to the perturbated tube @Q* in the following form.

An horizontal field Z = (0, Z(t,z)) is an autonomeous vector field on RN*+! = R, x RY.
We consider its flow mapping TS(Z ) over RN+1:

T(2): (tx) ———> (t, To(Z)(x))

We designate by Zs, the tangential componant of the vector field Z to the lateral surface ¥.
From the expression of the normal field v we easily derive

= (4 z

Ze=(-2_ 7~
¥ (1+112’Z 1+v2nt) (35)

Where
v=<V(t),n; >, z=<Z(t),ns >

The pertube tube is the given as Q° = 7;(Q). We consider
Here v is understood as any extension of the normal field to a neiboorhoud of the lateral
boundary of the tube. For example we can choose n; = Vbg, (the oriented distance to the

section of the tube, at time t) and v can be understood as vop; where p; is the RY projection
on Ft = aQt

6.1 Mean curvature of the lateral time-space boundary

The term v can be chosen as v =< V(t), Vbg,(v) > and

2( v — 1 21,
At V1+v2  (VI+2)3 Ot

But

0 0 0
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Now we have 5
abgt(v) =—< V(t),nt > opy¢ (36)

Where p; is the projection onto the boundary I';(V) = 9Q:(V). And
o}
ame(V) = —(Vr, <V (t),n: >)op;

then we get :

5} 0
—=v =< =V(t),n: > — < (Vr, < V(t),ns >)ops, Vo, >

ot ot
0 v 1 0
a(\/l%——vQ) = (\/1+—v2)3(< Ev(t)’”t > — < Vr,op:, V1, >
On the other hand we have :
dz’v(én) =— <V ! n >+ ! divn
(Vi+?) (V1+ 02 (V1+v2)3

so that we get

1 ) 1 <e(V) .- H,
—n) = ————=— < €(V).ngyn —_—
V1402 (VI+02)3 o V14?2

Where €(V) =1/2(DV + DV*) is the deformation tensor .
We condider the situation in which the field V' verifies the following property:

div(

V(t) = V(t)op; in a neighbourhood of T (37)
Where p; is theR" projection mapping onto I'; (“horizontal” projection). Then we get :
pe = Ig — ba,(v) Vba,(v)

and 5 5 5
5Pt = g0 Vbauv) - th(V)V(ath(V))

The restriction to the boundary I'; leads to the distance bg,(yv) = 0 so the expressions
simplify as follows (also we shall now denote by b; that distance function) :

0
aptlrt =< V(t)7nt > ng
and on the boundary T';(V) we get

DV(t)n,g = 0, ,
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Proposition 6.1 Assume that the field V verifies for each t:
V(t) = V(t)op,

Then on the boundary T+(V') we have :

1 0
Divy pv = ———————(< =V, — < Vr, (< V(t), , V(t)r,
Vg oV (\/1+—v2)3(<8t ng > — < Vr, (< V(t),n: >), V(t)r, >)
+ ! H
V1+ 02 !
The time-space mean curvature of the lateral boundary ¥ is given by:
H= ! (< aVn > — <V, (< V(t),n: >), V(t)r, >) (38)
T (Vi3 oot T T h P
+ ! H
V1402 !
The normal componant of the horizontal field is given by :
<Z,v> L < Zn>
K v = 7n
V1402 !

If f(¥) is the restriction to the lateral boundary X of a function F(t,z) defined over RN+
we get the (lateral) shape boundary derivative fg, .,(Z) in the direction of the horizontal

field Z as follows : 5

! 7 e f—
fE(Z) - 81/F
In a general setting we recall that
- d - -
15(2) = (- (F(E)0T(2))emo < Vsf(E), 25 >

Notice that the operator Vy, as a tangential differential operator of the space time surface
3 is itself a time-space manifold and we get

vz O

f’z(2>=f(272)—1_'_—v2§f— <Z—%ntavf>

14+

6.2 Lateral Boundary Derivative

Consider a given function F' € C1([0,7] x D) In a first step we assume that F' is zero in
the neighbourhood of t = 7 so that the following derivative of the lateral boundary integral
could be considered as derivative of integral on the total boundary of the tube (as it will

RR n° 4649



J.-P. Zolésio

26

generate no term on the top ¢ = 7 of the tube). Then the usual derivative expressions apply

we consider the derivative of the lateral integral.
={(t,Ty(V+sW)(x)) | v € }

0 0

— F d¥°) = —F+ HsF) < Z,v> dx

ass:o( 5e ) /E(al/ + HoF) v>pre)
Where Hy, is the mean curvature of the lateral boundary of the tube.

At each point (t,z) € ¥ we have :

< Z(t,z),v(t,r) >pn+1= Jir< ;(t),’nt = < Z(t),ns >
Moreover P 1 P 5
EF = NiFICILORT >)2(— <V(t),n: > EF + 8_ntF>
Then 5 ) 5 3
(/SF dse) = /E = (v 5P + 5 F) (39)

%s:()
0
Ving> — < Vr,v, V(t)r, >)

1
- < R
( (~/1+v2)3( ot
1 1
+ H)F| ——= < Z,n >py dX
V1+0? J ]\/1+v2 R
Proposition 6.2 Assume the vector field V in the canonical formV(t) = V(t)op: in a
neigbourhood of the lateral boundary ¥ and let v =< V (t),n; > on Ty then we have :
0 T 1 0 0
— F d¥°) = —v—F + —F 40
[T = [ [ o gr i) (40)
1 0
(< =Viny > — < Vo, V(t)r, >)

ot

TP
W wrie

1
Ht)] <Z,n>RN drtdt

+
V1 + 02

In the specific case where F' = 1 all the derivatives of F' cancell and we have the derivative

of the lateral surface of the tube :
(41)

0 1 0
= Sy — - (e Z _
85520(/5 d ) /E [ (1+1)2)2(< atvvnt > <VF¢7)7 V(t)rt >)
5 Ht)] <Z,n >RN dx

+1+v
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The optimality condition for a minimal surface tube is easily obtained via the adjoint problem
solution \ as

08s=0"Jx: .
Where A solves : )
A(r) =0, =5 A —div(AV) (43)
1 ) 1
= —m(< aV,ﬂt > — < Vr,v, V(t)pi >) + 1—}_—02 s

The optimality condition for a tube with minimal lateral surface would be

L« > < Vi, V(D) >)+ H, =0 (4)

T+ ot " L0, VA, t=

7 Optimal trajectory

This kind of optimality analysis applies in trajectories problems. Let D be a compact domain
in R with a smooth boundary. Let a € D and for any point 2 € D we consider the family
of C! curves which joint these two point in D. Let

Cow = {C’1 curves Co, C D, with extremities aand z }
. For any such curve C, , there exists an injective C' mapping
7 €CY([0,1],D), Cop =~([0,1]),7(0) =a, v(1) ==

For any C,, in C, . let go be an element of L*(C, ). The objective is to minimize with
respect to the curves C, , the integrals fc ~gc dC'.

Let V(¢,7) be a vector field in L1([0,1],C*(D, RY)) with < V,n >= 0 on the boundary
dD. Then CY, = T1(V)(C?,) € Ca,x and the claim is that from any element CJ , in Cq .
the elements C’X . furnishes all the curves when V' described the linear space:

Cao={Cy, | Ve€L(0,1,C"(D,R")), <V,n>=0 ondD }

The problem under consideration is then

MIN{J(V):/ gev, dey, |V € L'0,1,CY(D,RY)), <V,n>=0}
v L, T El

a,z

We consider the derivative J'(V, W) = (£ J(V + sW) )s= in the direction of any admissible
field W in the same space as V. To begin with we consider the simple case in which the
“density” function g¢ is the restriction of a given function G € C1(D), that is go = G|c.
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In that case the parameter s of “perturbations” takes place only in the measure element on
the curve. Let v be a parametrization of the reference curve C? _, we have:

a,z’

J(V +sW) = /0 Go(Ty(V + sW)oy(a) |[(DTL(V + sW)oy.~')(o)]|| do

We introduce p
Si(Vi;W) = (5-T(V + sW))s=o

ds
. We have d
75 DTV + sW)(1(0))7' ()1 ) s=0
=2 < DS1(V;W)(7(0)) ' (0), DT (V) (7(0)) ' (o) >
So that

d%( IDTL(V + sW)(7(0))-7(0)]])s=0 =< DSL(V; W)(7(0)) ' (0),7(0)) >

= (< DSU(V; W).7,110T1(V) > )(v(o)) [Vl

Where 77 is the unitary tangential vector on the curve CX, . While 7 is the unitary tangential
vector to the reference curve Cf . For 0 < t < 1, S is the solution of the following dynamical
system

0

S(0) =0, =5 = DV (H)oT,(V).5: = W(t)oTi(V') (45)
we get )
TV, W) = / (< VG(Ti(V)), S > ((0)
+G(T(V)(0)) < DSy ((0))7(1(0)) 1 (Ty(x(0))) >) (0] do
Txc hat is

J(V,W) = /C (< VG(TL(V), S1 > +G(Ty(V))) < DSy.1,m0T (V) >)dC  (46)

0
a,z

Obviously J'(V, W) depends linearly on W through the term S;, the final time term of the
previous dynamical system. The jacobian matrix is itself solution of the following dynamical
system ( for which we assume V € C°([0,1],C?(D, R"))

DS(0) = 0,

%Dst — (D*VoTy(V).DTy(V) ).S; — DVoTy(V).DS; = D(WoTy(V)) (47)
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The couple (S, DS;) is solution of the dynamical system (45), (47), system to which we shall
now introduce the backward adjoint dynamical system whose solution (6, A) will permit to
explicit the linear contribution of the field W in the expression of J'(V, W).The vector # and
the matrix A are defined on [0,1] x C? _ in the variables (t,z = (o) where the parameter

a,z

o also lies in some interval. Of course o could be here the arc length of the reference curve
C? . so that we would have |[7"(¢)|| = 1 in all what follows.

0(1,7(0)) = VG(T1(V)(7(0))

d : _
— 5,0~ DV () oT(V).6 =0 (48)

The matrix A verifies :

A(L,7(0)) = G(T(V))(v(9)) 7(7(0))- 7 (T (V)(7(0)))

—%A — (D2VoT,(V).DT,(V))*.S; — DVoT,(V)*.A=0 (49)

The derivative takes the following form :

TV, W) = / (< 6(1), S > +A(1).DS; Yor(0) |1 (o) ||do

:/ ( < 0(1), $; >+ A(1)..DS, ) dC
co

a,z

- /0 dt( /0 (O()W (t)oTy (V') + DO..D(WoT(V)) Yoy (0)do

Then we get a backward calculus for the optimal field V' along the reference trajectory
Cg,z parametrized by 7y (o being here the parameter), as we shall verify the following eulerian
approach, which is here developped for planar curves lead to a more explicit expression for
the functional derivative.

7.1 Eulerian approach

We consider now a calculus which shall never refer to the reference curve C7 , but only the
“moving curves” Cy, and CY W,
Let
T =TV + sW)oTy(V) ! (50)

That mapping send the curve Cy , onto C* = CYF*" Then

s

T(V + sW) = / g dC*
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Here s is understood as the “shape” perturbation parameter in the “classical” setting so that
we consider the Speed vector associated

0
Zt — _Tt Tt —1
(5,2) = = Tto(T!)
So that the moving curve C? is obtain from the fixed one through the flow mapping of that
field ( flow with respect to the parameter s for fixed ¢, here ¢ = 1). We introduced the

terminolgy transverse flow.
C° =T (2°)(Cy,)

And from usual differentiation of boundary integral (in fact we assume here that the dimen-
sion is NV = 2 so that the curves can be considered as a part of the boundary of a moving
set) we obtain :

7y = [ (g + H < 20).0>)dck,

Where we set
Z(t,x) = Z'(0,z), then Z(1)= 2%(0,.)

and where H stands for the curvature of CY .

The term gy, , is the so-called boundary shape derivative of the function g(C') on Cy, in
the direction of the vector field Z(1,.). We recall here the very definition:

d
glc;z = (EQC-*OTSI )s=0— < VTQCX_I7Z(1> > (51)
Here V.g = VG — a%Gn on the curve C, is independant on the choice of the (smooth
enough) extension G of g¢ outside of the curve, it is the tangential derivative of gc along
the curve.

7.2 g is the restriction to the curve of G defined over D

In the very simple case where the function g¢ is the restriction to the curve C of a smooth
(enough) function :g¢ = G|, we get

90,2 = %G < Z(1),n > on the curve C),.
So that we get
T (V. W) :/ (aic; +H) <Z(1).n> dc¥, (52)
cy, on

We recall that the transverse field Z solves the following dynamical system

Z(0) =0
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%Z + [Z,V] = W, Lie bracket being: [Z,V]=DZV — DV.Z (53)

We introduce the adjoint state

A =g, (3G + H)n)

Is a measure supported by the curve C’(‘l/’ . Where Yoy, is the trace operator ( Yoy, €
L(C*(D),Cy,))-

—%A —DV.A=D*AV +divV A(??) =0 (54)
and we derive

J'(V,W) =< A1), Z(1) >mpyxco(p)

By chose of A being solution of the adjoint we have the identity:

0

1
/ <A, §Z+ [Z,V] > pm)xcop) dt (55)
0

ot
+ < A1), Z(1) >pmpyxcopy — < A0), Z(0) >rm(pyxco(p)
As Z(0) = 0 we obtain

1
0
= / <—— < A=—DV.A—D*AV +divV A, Z > m(Dyxco(D) dt
0

1

0

FVW) = [ <A 52+ 12V >mmpmon) i (56)
0

1
= / < AW > M(D)xCO(D) dt
0

It can be verified that the measure A is in the form

We can also observe that directely from (52), using (30)that we also have :
J(V, W) :/ / A < W(t),n; > dTy(V)dt (57)
0 Jru(v)
Where X\ solves the backward problem :

X7) =3, %X +div(AV) =0 (58)
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Where g is any extension of the function g = a%G + H. to the domain D. If divV = 0, then
the equation for A turns to be a (backward) convection of the ending term:
With divV =0 let A\(t) = A(7 — t) and V (t) = =V (7 — t) then we get

o - o - -
S A TVAV =0, A0)=yg

If V is smooth enough so that a flow mapping exists we get
A(t) = goT,(V)™!
that is

At) = 5\(7‘ —t) = goT._4(V)
Then we get :

TV, W) = / /F 1y DTiV) W, > ar(v)d (59)

7.3 g is a function of the curvature H

Assume now that the function g effectively depends on the curve, a first example is g =
g(H(z),z) where H(x) is the curvature at the point X. Then we get

0
9esz0) = g IH (2),2) Hoz01)(@)+ < Veg(H(2),7),n(z) > < Z(1),n >

As H(z) = Ab we get
He 70y = —Ac(< Z(1),n >)
So that
U - —_——
rvm= [ D G(H(@),2) Ao (< Z(1),n )

+(g9(H(z),z) H + < V.g(H(z),z),n(z) >) < Z(1),n > ]dC
from classical tangential “by parts integration” we obtain:

7wy = [ =Ac(gpaHE.e)

+9(H(z),2) H + < V. g(H(z )36) n(z )>]<Z(1)7n> dc
0,60

+5- (5 9(H(2),2)) < Z(1)(z),n(z) > ~ (aHg( (a),a)) < Z(1)(a),n(a) >
— o A(H (@), 2) 5 (< Z(1)(&),n(z) >) + %g(mw,a)a%« 2(1)(a),n(a) >)
The extremities x and a of the curve being fixed we take
Via)=V(z)=W(a)=W(z)=0

which implies that Z%(s,z) = Z%(s,a) = 0 at any ¢ and s so that Z(1)(.) = Z2'(0,.) verifies
Z(1)(a) = Z(1)(x) = 0 and the previous derivative simplifies.
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8 Shape Differential Equation, General Setting

In that section we recall the concept of shape differential equation developed in ([4]) and
([2]). We present here a simplified version and at the end we give application in dimension
2 which enables us to reach the time asymptotic result.We assume given a shape functional
J wich is shape differentiable in O with respect to V. We denote VJ(Q) its gradient,
considered as a distribution in Aj. For any Qo in Ok and V in Vj, the absolute continuity
of J is written, for all s > 0

TQUV) = 3(00) = [ (IO L VD ae (60)

This classical situation of gradient-method in optimization allows to control the variations
of J with respect to the domain. Considering the problem ming J(Q2), we want to give a
constructive way to decrease the functional “following the gradient”. This may be done by
solving the non-linear equation for large evolution of the domain

VE>0, VIu(V))+ AV () =0 (61)

where A is an ad hoc duality operator.
From the structure theorem for shape gradient, we have (under some regularity assump-
tions which are fullfiled for a large class of problems):

VI(Q) = 1-(97)

Where g, the shape density gradient is a distribution on the boundary I'. Usually it is a
function on T so that we consider any extension G of g to the domain D (or at least at
a neighborhooud of the boundary T'). So that the shape diferential equation turns into a
Hamilton Jacobi equation for the characteristic function y:

0 _
X(0) = Xxa,, Zx+<Vx, 4 LG V) >=0 (62)
We shall see bellow that this equation, in level set formulation will be weakened in the
following one(see(79),

2(0) = B0, 0B < V&A™ (G0 (2)Vxe(®)) >=0 (63)

Where x:(®) ={z € D | ®(¢t,z) >0 }. We are going to recall the constructive proof of

the existence of a V satisfying (61) and investigate the asymptotic behaviour of the method.

The existence of a solution for this so-called shape differential equation has been in [4]in a

larger setting . It holds for shape differentiable functional whose gradient is continuous and

bounded on m Oy, endowed with the Courant’s metric topology, ranging in a Sobolev space
of Distributions .
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8.1 Classical Shape Differential Equation setting

We recall here the material introduce in 1976 when solving the so-called shape differential
equation. We denote 7, the subset of C¥(D,R") whose elements are C*-diffeomorphism of
D. Tt is endowed with the Courant metric 94, (for which we refer to the book ([24])) which

is defined on the family of images of a given domain:
For any now fixed Qp in Oy

Oun) = {0 €0y | 3T e, 9=T(0)}

Endowed with 9, O(Qp) is a complete metric space.
For bounded universe D the following compacity results holds (see(??)):

Proposition 8.1
The inclusion (Ok+1(Q0),0k+1) — (Or(Q),0x) is compact.

Also for bounded universe D, from (?7),(??) we quote :

Theorem 8.1 The mapping

Vi — C°I,0:())
V o [t Q(V) = Ti(V)()]

s continuous and maps bounded subsets on equicontinuous parts.

Lemma 8.1 The mappings

Vi) — CUILCYD,RY)) . W(I) — CNI,CXD,RY))
Vo [t To(V)] Voo [t TNV

are continuous.

Although 7 is not a vector-space, we will write, for shortness
I T)={Tec 0. T) | T'ec®U.T)}
This space is endowed with the canonical norm
ITller 1,7y = Sup IT(s)ll, + sup 177(s)ll 7,

For (7y,dy), we have a result similar to theorem 8.1.

Theorem 8.2 i) The mapping

V(I) — CYI,Tq)
Vo= [t Ty(V)]

18 surjective, continuous and maps bounded subsets on equicontinuous parts.
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We have the following characterization of the shape continuity.

Corollary 8.1 Let G be a shape functional defined on O with values in a fized Banach
space B. The followings are equivalent.

i) G is shape continuous with respect to Vi(I): for any initial domain Qo, for all
V eVi(I), s — G(Q(V)) belongs to C°(I,B).

i) for any initial domain Qo, for any T in CY(I,Tz), s — G(T(s)()) belongs to
C°(1,B).

It is important to notice how easy it is to characterize the shape continuity via the space
Tr. A characterization involving Oy would be more elegant, since the “real objects” are the
domains, not the diffeomorphism. It is known (see [4] for instance) that a shape functional
G defined on Oy with values in a fixed Banach space B is shape continuous (in the usual
sense) as soon as [s — G(Q(s))] € C°(I,B) is continuous for any [s — Q(s)] € C*(I,Oy).
This condition being necessary is, as far as we know, an open problem.

8.2 Deformation of the Domain
This section aims at proving the following theorem, using a solution of equation (61).

Theorem 8.3 Let J be a shape functional wich is differentiable in Oy with respect to V.
Assume both J and VJ are uniformly bounded on Oyy1 (respectively in R and A ) and
VJ is shape-continuous on Ogy1, in A}, with respect to Vit1.

Then there exists V € Viy1 NL2(RY, A1) such that, for any s > 0,

E(Q.(V)) — B@Qy(V)) = - / Vil dt = —c / VIV dt

Provided the duality operator A of equation (61) exists, a solution of this equation is con-
venient for the theorem. We are going to use a Sobolev space embeded in Ay to ensure
the existence (and “good properties”) of this operator, and give a constructive proof of the
existence of a solution of (61).

We fix k > 1 such that

H:{VEH“(D,IRN) (V' n)gn =0 on aD}

satisfies
H—Ap 1A (64)

We denote A the (linear and continuous) duality operator from H to its dual H'. The
domain g being fixed in Oy 1, we consider an arbitrary interval I of Rt which contains 0.
Let G be the mapping defined by

H

G = o Tiwae,my)

! (65)
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for V€ C°(I,H) C Viy1. Since we assumed the shape continuity of V.J, G;(V) € C°(I, H).
We are going to prove that G has a fixed point : i.e. there exists a solution for (61).

Lemma 8.2 There exists m > 0 such that
Bim = { V € Vit ‘ sup ||V(3)||Ak } D Gr(B,m)
s€l

Proof:
Due to the boundedness of VJ, there exists m; (which may depends on Q) such that
for any Q in Ok (o), ||VJ(Q)||A;, < m;. It follows that

IGT(V)($)ll3; < mall Al pigpr 3y = ™
The choice m = m; is convenient.

Lemma 8.3 The mapping G is continuous. Provided I is compact, G is compact.

Proof:
Since G can be splitted in G3 o G5 o G with:
C(LH) B (LT  CUT) B A
V = [s—Ts(V)] T — VJ(T(

Gs: CO(ILA,) — C'(I,H') — C°(I,H)
g — g Y

Theorem 8.2 provides the continuity of G;. By the corollary 8.1, the continuity of Gs
is equivalent to the shape continuity of the VJ. Since the continuity of Gj is clear, G is
continuous.

We suppose I is compact. By theorem 8.2, a bounded subset B C C°(1, Ax41) is mapped
by G1 on a equicontinuous part of C°(I,7;41(£2)). By Ascoli’s theorem and the compacity
of the inclusion of 7y y1(Q0) in 7x(2o) (theorem 8.1), the image of B is para-compact in
C°(I,T;). Accordingly, G, is a compact mapping, and so is G7.

Applying Leray-Shauder’s fixed point theorem, we can conclude that for any initial do-
main Qg there exists V in C°([0,1], H) with G} (V) = V.

An infinite evolution of the domain Qy may be deduced. It will follow the gradient of
the shape functional J and provide a optmization method. Let us define V € CO(R*,H)
and (Qn)neN C Ok+1(ﬂo) by

G[n,n+1](‘/v|[n’n+1]) = ‘/|[n,n+1] on D
VneN, (Vo) = in
Qn+1(Vn) = Q”+
Qo (Vo) = o
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The continuity at integer points comes from equation (61). We have, for any s > 0, and any
n?

n+1 5 n+1 2
T = J(Qn) = _/ IV ()17, dt = —/ IV I (V)i dt (66)

This so-built field V' satisfies theorem 8.3.
Since we assumed J is bounded, s — J(Q2™) is bounded decreasing, hence has a limit

and so does / ||V(t)||${ dt, wich proves V € L2(R*, Agy1).
0

8.3 Asymptotic Behaviour

If V is given by theorem 8.3, there exists a non-decreasing sequence (s,)n>o such that
V(sn) — 0. We denote Q™ = Q; (V) C Ogy41(Qp). The sequence (2") may not be bounded
in Or(Q) or Or41(Q), since the L2 convergence of the speed given by this method is
not sufficient in general (a L! convergence would be). Nevertheless, we can use a weaker
topology on the space of domains. We denote O,p, the family of all open subsets of D. In
[24] it is proved to be a compact metric space for the Hausdorff metric

d(Q,Qs) = max sup inf |zy — x|, sup inf |z; — z9] (67)
z1€D\Q; z2eD\Qs z2€D\Qy z1€D\Qy

Lemma 8.4 Assume the shape functional J verifies the assumptions of theorem 8.3 and J
is defined and continuous in Oop and VJ is continuous for Hausorff-complementary topology
on Or(Q).

Then (Q™) has cluster points in Oop. If O* is one then

Q" — Q" in O and VJ(Q") — 0 and J(Q") — J(QF)

Proof:

We use the notations of the introduction. The sequence (Q™) may be regarded as a
sequence in the compact space Oop,. Hence passing to a subsequence, it converges towards
an open subset Q* of D. The gradient VJ(Q*) is not a priori defined, since the limit set
has not enough regularity. Nevertheless since V satisfies (61), ||V (n)|,, = [|VJ(€22")|| hence
vJ(Q™) — 0.

9 Shape differential equation for Laplace Equation

9.1 Laplace Equation

We first introduce some notations used in the following. We fix a smooth bounded hold-all D
in RV and and non-negative integer k. We denote by O, the set of all open C*-submanifold
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of D, and Oy, the set of Lipschitz open subset of D. We are going to use the following
spaces

Av={V eCHD,RY) | (V, v)pw =0} Will) =V €I, Ax) (68)

where I is a interval of Rt which contains 0. For I = Rt we simply denote Vi, = Vi (R").
In this section, we are given a family g = (g9a)aco,;, such that for any Q € Oyp, ga €
H-1(©2). We consider the Dirichlet problem

—Ay = go on
P(@,9) { y = 0 onl'=90

which has a unique solution y(f2,g) in H}(©2) which is endowed with the norm ||z||?2 =

/ V2|2
0

9.1.1 A Priori Estimates

An a priori estimate for solution y(, g) of P(£2, g) is derived from the variational formulation
of the problem: y({2, g) is the unique minimum of the functional Eq_ , defined on H}(2) by

1
Baol:) = = (g0 » Du-scapsanyey + | 31748 (69)

where |.| denotes the euclidean norm in RV . Accordingly, Eq ,(y(Q,g)) < 0. Thus we come
to %Hy(ﬂ,g)”?2 < llgallg,. [ly(2, 9)llg where |||l . denotes the norm of in the dual space
H~1(2). This yields:

ly( Do < 2llgallq,. (70)
A mere consequence of this estimate is the following uniform boundedness result.

Lemma 9.1 Let O be a subset of Orp such that {||gallq .| € O} is bounded.
Then {||y(Q, 9)||o|Q € O} is bounded.

In the sequel, we shall use the family (fio)oco,, with f € L?(D). Since
Walg. <fliapy, 5w <er@)fla,
’ 2€HJ(Q)
l|2]] <1

where cp(2) is the Poincaré’s constant for the domain Q. It may be defined via Rayleigh-
quotient:
Vz
cp(Q)"t = inf 7” leeay
zezH;:)éQ) ||z||L2(Q)

Accordingly, the uniform boundedness property of the solutions of P (2, f)! will arise from
the following uniform boundedness of Poincaré’s constant.

1The accurate notation for this is P(2, (f a)ocoy,)-
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Lemma 9.2 There exist a constant cp > 0 such that
VQl e O]ip , CP(Q) <cp

Proof.

It is classical that for any Q € Oy, there exists 2q in H(Q) with cp(Q)~! = 1V2allp2 ) -
Extending zo by O provides a Zp in HG(D) such that cp(D)~" < [[VZa|l2(q)v- Thus
cp(D) 2 cp(2) so cp = cp(D) is convenient.

Eventually, we have proved the uniform boundedness of the solutions of P((Q, f) with
respect to the domain.

9.1.2 Strong Shape Continuity

Let Qo be a fixed initial domain in Oyp. We assume the following :
We now suppose that the family g is shape continuous: for any V in Vi, the mapping
s+ ga,(v) * Ts where gg_(y) * T is the element of H='(£)g) given by, for any z in Hj(Qy),

_ -1 -1
(90,00 *Tss 2)r-s gy xamyrang) = (99,0 > 1720 T Do, vy ey, v))
is continuous from Rt to H~1(Q). We also assume that, for any V in Vj,
[S = ||ng(V)||H—1(Qs)] € Looloc(]R+)
Theorem 9.1 Under assumption ??, if k > 2,
i) the transported solution of P(Qy,g) is shape continuous:

VVEVk, y(Qs(V)vg)oTs_)y(ng) in H(l)(QO) as s — 0

i) the “energy functional”
E(0,9) = Eqy,¢(y(Q0,9))
18 continuous
iii) the extended solution of P(Qo,g) is shape continuous:

YV eV, §(Q2:(V),g) — §(0,9) in Hy(D) as s — 0

Moreover, those points hold for k = 1 provided for any  in Oyp, ga € L%(0).

For simplicity, we denote y, = y(2:(V), g) and y* = y, o Ts. We have yo = y°. Due to
the local boundedness property of assumption ?7?, there exists € such that (||ys|lg_)o<s<e is
uniformly bounded. Since

ly* 16, < I7(8) DT ) Hllgoe iy s

Qs
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the family (y*)o<s<c is uniformly bounded in H{(£). Up to passing to a subsequence, a
sequence (y*»),>o where 0 < s,, < € and s,, — 0, converges towards a y*, weakly in H}(Qp).
We denote E++9 the functional defined on H}(Q) by

E%9(2) = Bo, 4(20T7")

L
= — <ng *TS N 'Y(S)Z)H_l(QO)XH(l)(QO) + /Q §|DTS .V2|27(S)
0

and we have
min EQs’g = EQs’g(ys) = EQS,g(ys) = min Eﬂs,g (71)

Since k > 2 the jacobians (s, ) converges towards v(0) = 1 in C*(D,R"). This is sufficent
for

Sn 0
<ngn *TS" ’ 'Y(SH)y >H_1(QO)XH6(QO) - <ng > Y >H—1(QO)XH(1)(QO) (72)

The convergence of (s, )(DT%, )~ towards the identity in C°(D, RY) yields the weak conver-
gence of (y(s,)DT; *).Vy*» towards Vy* in L?(Q)". Due to the weak-lower semi-continuity
of the L2-norm, we have

1 . 1
/ ~|Vy*? < lim inf Z|IDT . Vy*r [*v(sn)
Qo 2 n—oo Q0 2

Thus we have proved the weak-lower semi-continuity of (s, z) — E%9(z) on R* x H}(Q0)
at (0, z) for any z. This proves for any z

E®09(y*) < liminf E%9(y®) < lim inf E%n9(7)
But s — E%9(z) is continuous for any z. Hence y* = y° = 1o, which proves a weak
shape-continuity for the transported solutions of P(f2, g).
The strong continuity will arise from a continuity of the norms, via the so-called com-
pliance equality, and a compactness argument for the y,. For any Q in Oy;p, the necessary
(and sufficient) condition of optimality for Eq , is written

Vi BYQ), [ (Tu(09), Tdaw = (90 2Ducs @iy
Setting z = y(Q, g) we come to
1 ) 1
Ea,q(y(2.9)) = =5lly(2 9)lla = =5 (92 ¥( 9)u-1(0)xmy() (73)
which leads together with equation (72) and the weak continuity of s — y°, that s —
Eq,,¢(y(Qs, g)) is continuous.

Since the sequence (||ys,|lq) = (||¥s.1lp), where T denote the extension to D with 0,
there exists a y,. in H}(D) such that y;, —y. in H{(D). Since the sequence (05, ) converges
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towards Qg for the Hausdorff complementary topology, v has support in Qg and may be
written gy with vy € H{(), due to 9 has non-zero capacity. Using arguments similar to
the ones which established (72), we have

—~—

ys, o Tt = ys, o T, =g in HY(D)
Accordingly, y* —y; in Hj(0) and y; = yo. This eventually proves that
Yz, —%o in Hy(D)

But due to the continuity of s — Eq_ 4(y(Qs,9)) and equation (73),

195 1o = 1Ysulle,, — lI90llp = llvollg,

and this is sufficient for

Yys. — %o (strongly) in Hy(D)
and

y*m — y° (strongly) in H(Q)

In this proof, the assumption k& > 2 is needed to prove the convergence (72). In the case
where g lays in L?(2) for any Q € Oy;p, this assumption is not needed anymore.

The following differentiability result is well-known when the right-handside is fixed and
in H'(D). It may easily be extended to a domain-dependant right-handside. The be found
in [25] for instance.

Theorem 9.2 Assume that for any Qo in Ok, go, is in L2(Qo) and for any V inVy the
mapping s — ga,v)oTs is strongly differentiable at s = 0 in H1(Qo) with derivative ga,.v -

Then the solution y(Q) of problem P(Q, f) has a material derivative §(Q;V) in Hi(Q)
for any speed-field V € Vi.. Moreover, for any ¢ € H}(Q),

[ i), vor -
1. . .
[~ (v vOra - «(v)950), V6) + londiv (V0) + gy 1o
Q RN

9.2 Shape Gradient for Cost Functionals

We want to control the shape functional:
7@ = [ (@)= vy’

where Y € Hi(D) is given.
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9.2.1 Shape Gradient

Proposition 9.1 For any domain Q in Oy, and any field V in Vi (k < 1), the functional
J has an eulerian derivative dJ(Q; V)

/Q (y — V)[div V(0)(y — Y) = DY.V(0)] + 2 (A'Vy , Vp) — 2 (div (fV) , p)

where p s the solution of the (adjoint) problem P(Q,y(Q) —Y).

If T is the flow-mapping of V', a change of variable yields
@)= [ -V = [ 1) - Y oLy’
Q. Q
Since s — T} is of class C', we get
8,J(%) = / Y (8)(y° =Y 0 T)? = 24(s)(y° = Y 0 T)(ay* — Dy 0 T, T.)
Q
Accordingly,
dJ(Q;V) = / div V(0)(y — Y)? — 2(y — Y)(y — DY.V(0))
Q

We consider the adjoint state

—Ap = y—Y on

Pas@-v) {7 2 9T el (74)

Since (theorem 9.2) the strong material derivative of y(2) satisfies
Vo eH®) . [ (Vi Ve)= - [(A(WV).Vy, Ve) +(div (V0] 9)
Q Q
with
A'(V(0)) = div V(0) Id — 2¢(V(0))

we have
4 V) = /Q div V(0)(y — Y)? + 2(Ap)(§ — DY.V(0))

- / div V(0)(y — Y)? — DY.V(0)) — 2VpVi
Q

- /Q(y —Y)[div V(0)(y — Y) — DY.V(0)]

+2(A'(V(0))Vy , Vp) —2(div (fV) , p)
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When the domain  is fixed, the mapping V +— dJ(Q; V) is linear and continuous. We
consider the element VJ(Q) of A}, given for all V € A; by

(VJ(Q), V)A;chk = (75)

/Q (W(Q) = V)[div V(y(2) = Y) = DY.V] + 2 (4/(V)Vy(R) , Vp)
2 /Q (div (FV) . p(2))

9.2.2 TUniform boundedness

Proposition 9.2 There exists a constant M > 0 such that
VQ € Op, ||VJ(Q)||_A;c <M

Proof.
VIl 4, = sup (VI(Q), V)41 a,
VeA

< [|div Vg lly = Yiigz + IDY (g = V)Ll VIl
+2[A V)l (VY > VO A IVRlllL VIl

so there exists a constant m > 0 such that

VI 4, < mllyllallpllIVI]La,

and the uniform boundedness of ||y||,, and ||p||, yields the result.
9.2.3 Shape Continuity of the Gradient
Theorem 9.3 The gradient distribution VJ is continuous in Aj,.

Proof.
The gradient V.J(f) is a continuous function G(&a,7(R2), p(2)) which is continuous from
L%(D) x H}(D) x H} to A}, with

(G(ﬁ,%p) ) V)A;ngk =

/D £y —V)[div V(y — ¥) — DY-V] + 26 (A'(V)Vy , Vp) — 26 (div (V) , p)

Theorem 9.1 provides that the mapping s — §(25(V)), s — 5(Qs(V)) are continuous for
any V in Vj. Consequently, so is s — VJ(Qs(V)) is continuous.
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9.3 Shape Control - Asymptotic Result for 2D case
We can apply theorem 8.3 for our problem.

Proposition 9.3 For any Qo in Ok41 there exists a V in Viy1 and an open subset Q. od
D c R? such that

9 1@V = 70) = [ VP i
i) for any sequence ($p)n>0 With s, — 00, Q,, (V) — Q. for Hausdorff complementary
topology, J(Qs, (V) — J(Q) and VJ(Q,, (V) — 0.

The general asymptotic behaviour of section 8.3 may be developed in the N = 2 case.
Indeed, the continuity of Q — §(Q) for Hausdorff-complementary topology does not holds
in general. Nevertheless, this continuity holds under capacity constraints( [15], [12]). In
the 2-dimensional case, Sverak proved in [11] ,[10] the convergence of §(§Y,) towards §(€2),
provided (0€2,,),, converges to CQ for Hausdorff topology, with §02,, uniformly bounded.

10 Level Set Formulation for the Shape Differential Equa-
tion
In ([6],([25]), ([24]), we considered the domains family parametrized as follows:
Q=0%2P)={reD |®tz)>0}, Ty ={zreD |®tz)=0} (76)

Where ®(t, .) is a function defined on D verifying a negative condition at the boundary of
D, say & = —1 on the boundary dD. The singular points are those in D at which the gradient
of ®(¢,.) vanishes. We assume that no such points lies onI'; so that in a neighbourhood of
the lateral boundary X of the tube we have the speed vector field defined by

Vi) = —Qats) —Yobi)

—_— 7
ARz T 0
The result is that if V' is smooth enough we get
Qt = Tt(V)(QO)
The shape differential equation turns then to be
Vo(t
AL VIV = 2, 2) th2) _, (78)

ot IVe(t,z)|?

Which would implies, with the notation :(®) = Q.(V') (V previously defined), the following
Hamilton Jacobi equation for the function ®:

%@(m)— <VO(tz), A (VI(Qu(®) > =0 (79)
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Notice that the Hamilton-Jacobi versions (78) and (??)are not equivalents. They are booth
vector equations and would be merely equivalent if A=1.(V.J(Q;(®)) was proportional to
V&(t,z). In order to bypass that point we consider the “scalar shape differential equation”.
From the general strucure theorem for shape gradient :

G =VJ(Q) =1r.(9 ) = G(2) Vxa

Where n is the normal field to the boundary T’ while g is a scalar distribution on the
boundary. In almost classical regular problems g turns to be a function defined on the
boundary with g € L?(T"). We chose “ normal” scalar shape differential equation :

v=<VI(t.),n >= —Ar’tl.g(I‘t) on T (80)

which in term of level set modeling , with n, = % on T'; leads to the following
“normal-level” shape differential equation :

0P _
—22 /198 = - Arlg(T) (81)
Which implies the following “normal Hamilton-Jacobi” level set equation in the whole domain
D:
o
5 ArlG Vel =0 (82)

Assuming that ® would be a solution to that Hamilton Jacobi equation, in order to derive
a solution to the previous normal scalar shape differential equation we need to divide by
[[V®||. For that reason we do now an emphasis on a class of functions ® without step so
that ||V®|| is different of zero almost every where in D :

10.1 Solutions without step

we are intersted in function ®(¢,.) without steps. We say that a function f defined on a set
D as a step t if
meas({z €D | f(z)=t })>0

A construction of function without step derived from a technic we introduced in modeling of
free boundary value problem which arosed in plasmas physic (in the so-called Harold Grad
Adiabatic equation of plasmas at equilibrium in the Tokomak (|5]),([6])), Consider, for any
€ >0, g € H (D), the variational problem

2= argmin{ [ (172 |VulP+(eDl=g)w)z—¢/2 [ [ (w@)=uw)* dody |ue HY(D) )
D DJD
from which we get solutions to the problem

—Az=€B(z)+ g in D, f(z)(z) =meas({y € D | 2(y) < 2(x) }) (83)
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verifying the extra “no step” condition :

Vte R, meas({x €D |z(z)=t})=0 (84)

That technic can be limited to “zero step” functions : We can consider the simplier
problem

z= m“gmin{/ (1/2||Vu|* = gu)dx — e/ (u(z))* dx, we Hy(D)}
D D
from which we get solutions to the problem

—Az=¢€Po(2)+ g in D, Bo(2)(%) = X{zeD| 2(z)>0 } (85)

verifying the extra “no zero step” condition :
meas({x € D | z2(z)=0})=0 (86)

10.2 Iterative Scheme

Obvioulsy the function x must verifies Y2 = x while the “level set” function Phs need not.
Then, immediately from the previous study, we understand that in the second Hamilton
Jacobi equation the speed vector V = A~1.(VJ(Q;(®)) needs only to be in L2(0,7, L?(D)3)
with its divergence too. In order to perform a fixed point in an iterative approximation
scheme in the following form :

%(I)”(t,x)— < VO (), A-L(VI(Q@ ) > =0

With

Vil = AT (VI(Q(977)
We need only V™ € L*(0,7, L*(D)?) and div V™ € L?(0,7, L°°(D)). The idea is to chose the
( non necesseraly linear) operator A “powerfull enough” so that A~! would map compactely
and continuously the gradient space in that speed Sobolev space. We already have recall that
in almost all “smooth problems” (following general assumptions of the structure derivative
theorem) that gradient takes the following form:

G =VIJ(2:(2)) = G(x:(®)) Vx:(®)

So that G is a distribution(supported by the boundary I" and with zero transverse order) in
some negative Sobolev space over D while G € W1(D) (is non uniquely determined, only
its trace g on the boundary T, if smooth enough, is intrinsiquely dermined, ¢ is called the
density gradient, it is a scalar distribution on the “manifold” T, when I' is smooth in order
to make sense).
We consider
(A)7Y(f) = { #z solutions to (83),84)

}
(AD~1(f) = { # solutions to (85),86) }
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Lemma 10.1 Let f, — f in H~Y(D) and 2z, € (A)~(fn) (resp. 2, € (AD)71(fn)).
Then there exists a subsequence and a limiting element z such that:

Zn, — 2 weakly in H (D)
Moreover any such element z verifies z € (A)7L(f) (resp. z € (A%)~L(f).

The most important result concerning such elements without zero step is in the following

Lemma 10.2 Let ®,, ® € L?(D). Assume that ®, — ® strongly in L*(D) and ® is
without zero step :
meas({r €D | ®(xz)=0})=0

Thenlet Qp={z €D | ®,(z) >0}, Q={x €D | &(z) >0 }. We denote by x» and x
the respective characteristic functions of those subsets. Then x, — X stongly in L?(D).
The proof is immediate: obviously we have

Xn ¢, = (Qn)-l—

there exists a subsequence and an element (, 0 < { < 1 such that x, weakly converges to
C in LA(D). In the limit, as |(®,)*(2) — (8)*(2)| < [®a(2) — B(x)| we get :

(e = (o)t

Sothat( = 1 a.ein Q, =0 a.e. in D —Q, as ® has no zero step we conclude that { = ¥,
s0 that the sequence converges strongly in L*(D).

At that point, it is obvious that with some continuity assumption on the gradient G(x)
(those hypothesis will be fullfield in the following example) , with respect to the character-
istic function, the previous iterative construction V™ will converges and we will derive the
existence of solutions to the Hamilton -Jacobi equation for the Level set function associated
to the multivalued operators A, and A?.

10.2.1 A Transverse Magnetic like Inverse Problem

As an illustration of the construction of solution to the Hamilton Jacobi Equation we consider
a simplified version of the celebrate transverse magnetic inverse problem. It is simplified
mainely in the fact that we consider a bounded universe D. Let y(x) = y € H} (D) be the
solution to the problem :

Ay + kxy =f

Where k is the contrast parameter while f is given in L2(D). We introduce the observability
functional :

00 = 172 [ w=Yi da
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Then the shape gradient is given by
G(Q2) =1 (yp )

so that the density gradient is g(I") = (yp)|r (restriction, or trace on I' of the element yp).
We consider the non unique extension G of g to D :

G(x)= yp € W»(D)
Where p is the solution to the adjoint equation :
p€Hy(D), —Ap+ kxp=xr(y—Ya)
We verify very easily the continuity of the mapping
X € L*(D) — G(x) € W»!(D)

At that point it is very interesting on that example to understand that the shape derivative
of that functional J(Q) can be relaxed to a Set Derivative Setting which coincide in smooth
situation with the classical shape derivative and shape gradient analysis . We introduce the
usual Lagrangian

L(2,0,9) =/D(V¢~V¢+ kxe ¢¥ — fo +xp1/2(6 — Ya)? )da (87)

Then
J(Q) = MINyecw2 (D) MAX¢€H2(D)£(Q,¢,1/J)

with unique saddle point (y,p). The Lagrangian £ beeing partially concave-convex, weakly
lower semicontinous and upper weakly semicontinuous , considering any evolutive charac-
teristic function x(t) we get (see([9]) :

19} o
- J(X)|gi=0y = EL(X(t)a Y0,D0))| {t=0}

ot
Where yg, po are the solution at ¢ = 0 That derivative makes sens as soon as the right hand
side derivative dces.
Assume for example that Q; is a vanishing sequence, as t — 0 of measurable subsets in
D C RY verifying:
2, — {xzo} in Hausdorf topology

(meas(Q) /tY) — 0 as t — 0
Then, assuming N = 2 so that y,p € H%(D) C C°(D), we get :

0

517 (XW)ge=0y = & (yp)(@o)
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That set derivative works through the simple fact that @ — 8, (Dirac measure at the

point o), as t — 0. Then we understand that the important concept in that situation is
the derivative, in Measure space of the mapping ¢ — x(¢) at ¢t = 0. In that direction we
shall consider, when it exists, the following element, :

X(t) = limge_ 0y (x(t + €) — x(t))/ €, in M(D) topology
If the saddle point (y,p:) verifies the following continuity :
t — (y4, p¢) continuous in H(D) c C°(D)
We get the notion of Set Derivative For the Set Functional J(Q):

9T =< X0, G6(t) > (58)

In that situation we had G(x) = yp.
Such an example is considered in ([22]) for a “transverse magnetic “inverse shape problem”
in burried obstacle reconstruction.

10.3 Shape functional with Dirichlet boundary conditions are not
”hole-differentiable”

Let @ = {# € R? |||z|| < 1} and consider the “perforated” subdomain . = {z €
Q st ||z|]| > € } and the solution y. to the problem :

Aye =01in Qe, ye(z) =0, |lz]l =€, ye(z) =1, |lz|| =1

Obvioulsly we get

€>O,T:||$||, yE(x):_E+17 yo(x):]‘

. _ 2 2
j0= [ (o ds

Consider the functional

We get
. . 1
J(e) —j(0) = QWW — 0, e=0
And we see that for any positive number r > 0 we get
(e) — (0
i 1€ =30) _

67‘
Now the derivative when € goes to zero has no finite limit :

A7

j'(e) :—W — 400, e—0
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11 Proof of the proposition 2.1

Let us consider V € L%(0,7, H}(D)) and a dense family e, ...em, ... in H}(D) with each
e; € C2 (D, R?). Consider the approximated solution

comp
u™(t,x) = Biz1,.m ui(t)ei(z)

with U™ = (u]*, ...,u™) solution of the following linear ordinary differential system:

Vt, /D (%um(t)—k <V(#),Vu™(t) >)ej(x)dx = /Df(t,:c)ej(x) dz, j=1,...m

That is 5
EUm(t) + M~LA®).U™(t) = F(t) (89)

where
Moy = [ ela)es(a)da
Q
A i(t) = / <V(t),Vei(x) > ej(x)de
D

That is an ordinary linear differential systems possessing a global solution when V €
LP(0,7, L*(D,RY)) for some p, p > 1. By classical energy estimate

/ < V(1), V™) > u™(t) do = —% / <um(8),um(8) > divV () dr (90
D D
we get :

vr, 7 < T, |[u™(DF2py < [[™(0)][72(0

+ / / < u™(t,2),u™(t3) > (divV (t,2)* dtda
0 D
+2/ / f(t, z)u(t, z)dtdx
0 D
Setting
P(t) = |[(divV (t, )t || (D, r3)

When f =0,

1 1
= / u™(t,xz)%dx < = / u™(0,z)%dx
2 /b 2

D

+3 [ w0 [ ol

by use of the Gronwall’s lemma we get :

/Dum(t,x)2da:§ /DUM(o,x)de 1+ /Otw(s)exp{ /:w(a)da}ds )
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By the choice of the initial conditions in the ordinary differential system we get

M >0,5t.¥7, <T, |[u™(7)||z2(py

< M |6z (14 /0 b(s)exp / W(o)do }ds )
When 9 = 0, we get

vr, 7 < T, [u™(1)|[12py < [[u™(0)][72(q)

+2/()T/Df(t,x)u(t,x)dtdx

In the general case, we use
™) < 1+ [Ju™[

and we derive the following estimate :

vr, 7 < T, [[w™(0)|[22py < [[W™O)|72(p,ge)

+/ / <u™(t,z),u™(t,z) > (divV (t,z))" dtdz

o Jp

+2/ / ft, 2)u(t, z)dtdx
o Jp
< Ol + [ 1O,
+/ x <u™(t,z),u™(t,x) > (Y(t) + || f({)||z2(D,rs) ) dtdx

0

< M (||uolZ2(p,rsy + I fllL1(0,7,L2(D, R3) )

t
+ [ WO+ IO ol oy
From Gronwall’s inequality we derive:

™ (D)l1Z2(p) < MlluollZz(p,rs) + 1fllz2(0,7,L2(D,R2) )

{1+/0 [ (¥(s)+ ||f(8)||L2(D,R3))/ (¥(o) + ||f(0)||r2(p,r2))do |ds }

In all cases n u™ remains bounded in L>(0,7,L?(D, R")) and there exists an element u
in that space and a subsequence still denoted 4™ which weakly-* converges to w. In the

RR n° 4649



52 J.-P. Zolésio

limit u itself verifies the previous estimate . It can be verified that u solves the problem in
distribution sense . That is

V¢ € Hy(0,7,L*(D, R*)) n L*(0,7, H)(D, R?)), ¢(7) =0,

// 9 -+ div( §V) Ydadt = [ w0 uoda:+// < f.6> dudt

When V(t) € LQ(D,R3) the duality brackets < Zu, ¢ > are defined. If V¢ belongs to
L*°(D, R?), this is verified, for example, when ¢ € H(D) so that u; is identified to
an element of the dual space H=3(D). When V(t) € 1(D R3) we get a.e.t, u(t,.) €
L2(D), V(t,.) € L5(D), then V¢(t) should be in L3(D, R?),that is ¢(t ) € W,*(D) and
then, for a.e.t, the element u, is in the dual space W12 (D) while u, € L?" (0,7, W12 (D))
and u € WLP" (0,7, W=13(D)). Then we have u € L*(0, 7, L2(D))n

AW (0,7 W13(D)) € L2(0,7, W3 (D)) n W' (0,7, W3 (D))

c C°([0,7], W53 (D))

Notice that the energy estimate (90) can also be written in the following form
1
/ din(V(t) w™ (1)) w™ (1) do =+ / < u™(t),um™(t) > divV(t) da (91)
D D

so that when (divV)* is turned in (divV)~ the previous existence results applies for the
following evolution problem

u(0) = ug, %u(t) + div(u(®) V() = ¢ (92)

References

[1] Jacques-Louis Lions. Quelques méthodes de résolution des problémes aux limites non
linéaire. Etudes mathématiques. Paris: Dunod, XX(5):554, 1969.

[2] Jean-Paul Zolésio. Un résultat d’existence de vitesse convergente dans des problémes
d’identification de domaine. C. R. Acad. Sci. Paris Sér. A-B, 283(11):Aiii, A855—A858,
1976.

[3] Jean-Paul Zolésio. An optimal design procedure for optimal control support. In Con-
vex analysis and its applications (Proc. Conf., Muret-le-Quaire, 1976), pages 207-219.
Lecture Notes in Econom. and Math. Systems, Vol. 144. Springer, Berlin, 1977.

[4] Jean-Paul and Jean-Paul Zolésio. Identification de domaine par deformation. In Doc-
torat d’état en mathématiques, Université de Nice, pages 1-450. Dekker, New York,
1979.

INRIA



Weak set evolution 53

[5] Jean-Paul Zolésio. Solution variationnelle d’un probléme de valeur propre non linéaire et
frontiére libre en physique des plasmas. C. R. Acad. Sci. Paris Sér. A-B, 288(19):A911-
A913, 1979.

[6] Jean-Paul Zolésio. Domain variational formulation for free boundary problems. In
Optimization of distributed parameter structures, Vol. II (Iowa City, Iowa, 1980), vol-
ume 50 of NATO Adv. Study Inst. Ser. E: Appl. Sci., pages 1152-1194. Nijhoff, The
Hague, 1981.

[7] Jean-Paul Zolésio. The material derivative (or speed) method for shape optimization.
In Optimization of distributed parameter structures, Vol. II (Iowa City, ITowa, 1980),
volume 50 of NATO Adv. Study Inst. Ser. E: Appl. Sci., pages 1089-1151. Nijhoff, The
Hague, 1981.

[8] Tosio Kato. Abstract differential equations and nonlinear mixed problems. Lezioni
Fermiane, PISA(5), 1985.

[9] M. Cuer and J.-P. Zolésio. Control of singular problem via differentiation of a min-max.
Systems Control Lett., 11(2):151-158, 1988.

[10] Vladimir Sverdk. On optimal shape design. C. R. Acad. Sci. Paris Sér. I Math.,
315(5):545-549, 1992.

[11] Vladimir. Sverdk. On optimal shape design. .J. Math. Pures Appl. (9), 72(6):537-551,
1993.

[12] Dorin Bucur and Jean-Paul Zolésio. N-dimensional shape optimization under capaci-
tary constraint. J. Differential Equations, 123(2):504-522, 1995.

[13] Dorin Bucur and Jean-Paul Zolésio. Boundary optimization under pseudo curvature
constraint. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(4):681-699 (1997), 1996.

[14] Dorin Bucur and Jean-Paul Zolésio. Free boundary problems and density perimeter. J.
Differential Equations, 126(2):224-243, 1996.

[15] Dorin Bucur and Jean-Paul Zolesio. Wiener’s criterion and shape continuity for the
Dirichlet problem. Boll. Un. Mat. Ital. B (7), 11(4):757-771, 1997.

[16] Jean-Paul Zolésio. Shape differential equation with a non-smooth field. In Compu-
tational methods for optimal design and control (Arlington, VA, 1997), volume 24 of
Progr. Systems Control Theory, pages 427-460. Birkhauser Boston, Boston, MA, 1998.

[17] John Cagnol and Jean-Paul Zolésio. Shape derivative in the wave equation with Dirich-
let boundary conditions. J. Differential Equations, 158(2):175-210, 1999.

[18] Raja Dziri and Jean-Paul Zolésio. Dynamical shape control in non-cylindrical Navier-
Stokes equations. J. Convez Anal., 6(2):293-318, 1999.

RR n° 4649



54

J.-P. Zolésio

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Nicolas Gomez and Jean-Paul Zolésio. Shape sensitivity and large deformation of the
domain for Norton-Hoff flows. In Optimal control of partial differential equations (Chem-
nitz, 1998), volume 133 of Internat. Ser. Numer. Math., pages 167-176. Birkhauser,
Basel, 1999.

Jean-Paul Zolésio. Variational formulation for incompressible Euler equation by weak
shape evolution. In Optimal control of partial differential equations (Chemnitz, 1998),
volume 133 of Internat. Ser. Numer. Math., pages 309-323. Birkhduser, Basel, 1999.

Raja Drziri and Jean-Paul Zolésio. Eulerian derivative for non-cylindrical functionals.
In Shape optimization and optimal design (Cambridge, 1999), volume 216 of Lecture
Notes in Pure and Appl. Math., pages 87-107. Dekker, New York, 2001.

C. Ramananjaona, M. Lambert, D. Lesselier, and J.-P. Zolésio. Shape reconstruction
of buried obstacles by controlled evolution of a level set: from a min-max formulation
to numerical experimentation. Inverse Problems, 17(4):1087-1111, 2001. Special issue
to celebrate Pierre Sabatier’s 65th birthday (Montpellier, 2000).

Jean-Paul Zolésio. Weak set evolution and variational applications. In Shape optimiza-
tion and optimal design (Cambridge, 1999), volume 216 of Lecture Notes in Pure and
Appl. Math., pages 415-439. Dekker, New York, 2001.

M. C. Delfour and J.-P. Zolésio. Shapes and geometries. Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2001. Analysis, differential calculus, and optimization.

Jan Sokotowski and Jean-Paul Zolésio. Introduction to shape optimization, volume 16 of
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape
sensitivity analysis.

INRIA



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



