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Abstract: The vibration-based structural health monitoring problem is addressed
as the double task of detecting damages modeled as changes in the eigenstructure
of a linear dynamic system, and localizing the detected damages within (a FEM of)
the monitored structure. The proposed damage detection algorithm is based on a
residual generated from a stochastic subspace-based covariance-driven identification
method and on the statistical local approach to the design of detection algorithms.
This algorithm basically computes a global test, which performs a sensitivity analysis
of the residuals to the damages, relative to uncertainties and noises. How this residual
relates to some residuals for damage localization and model updating is discussed.
Damage localization is stated as a detection problem. This problem is addressed
by plugging aggregated sensitivities of the modes and mode-shapes w.r.t. FEM
structural parameters in the above setting. This results in directional tests, which
perform the same type of damage-to-noise sensitivity analysis of the residual as
for damage detection. How the sensitivity aggregation mechanism relates to sub-
structuring is outlined. Numerical results obtained on one example are reported.
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Approche statistique paramétrique pour la détection et
la localisation d’endommagements: résidus de type
sous-espace et sensibilités relatives.

Résumé : Le probléme de la surveillance de l'intégrité de structures en vibrations
est décomposé en deux taches de détection et de localisation d’endommagements.
La premiére est traitée comme un probléme de détection de changements dans la
structure propre d’un systéme dynamique, et la deuxiéme repose sur l'utilisation
d’un modéle éléments finis.

L’algorithme de détection d’endommagements proposé comporte le calcul d’un
résidu généré a partir de la méthode d’identification par sous-espace & base de
covariances, et évalué au moyen de I’approche statistique locale de la conception
d’algorithmes de détection. Cet algorithme calcule essentiellement un test global,
qui effectue une analyse des sensibilités du résidu aux endommagements, relative-
ment aux incertitudes et aux bruits présents sur le systéme. Le lien entre ce résidu et
d’autres résidus introduits dans la littérature pour la localisation d’endommagements
et le recalage de modéles est discuté.

Le probléme de la localisation d’endommagements est posé comme un probléme
de détection, et non comme un probléme (inverse) d’estimation. Il est abordé a I’aide
des sensibilités des modes et déformées modales vis-a-vis des paramétres structuraux
du modéle éléments finis. Parce que tous les endommagements élémentaires envis-
ageables ne peuvent pas étre discriminés lors d’une surveillance avec un petit nombre
de capteurs et un petit nombre de modes propres de référence, ces sensibilités sont
aggrégées a l'aide d’une métrique cohérente avec la métrique du test global. Les sen-
sibilités ainsi aggrégées sont ensuite injectées dans le formalisme de test précédent.

Mots-clé : Détection d’endommagements, localisation d’endommagements, anal-
yse des vibrations, algorithmes de type sous-espace, approche asymptotique locale,
sensibilités.



Statistical model-based damage detection and localization 3

1 Introduction

Detecting and localizing damages for monitoring the integrity of structural and me-
chanical systems is a topic of growing interest, due to the aging of many engineer-
ing constructions and machines and to increased safety norms. Automatic global
vibration-based monitoring techniques turn out to be useful alternatives to visual
inspections or local non destructive (e.g. ultrasonic) evaluations performed manu-
ally.

Health monitoring techniques based on processing vibration measurements basi-
cally handle two types of characteristics: the structural parameters (mass, stiffness,
flexibility, damping) and the modal parameters (modal frequencies, and associated
damping values and mode-shapes); see [1, 2, 3| and references therein. A central
question for monitoring is to compute changes in those characteristics and to assess
their significance. For the frequencies, crucial issues are then: how to compute the
changes, to assess that the changes are significant, to handle correlations among
individual changes. A related issue is how to compare the changes in the frequen-
cies obtained from experimental data with the sensitivity of modal parameters ob-
tained from an analytical model. Furthermore, it has been widely acknowledged that,
whereas changes in frequencies bear useful information for damage detection, infor-
mation on changes in (the curvature of) mode-shapes is mandatory for performing
damage localization. Then, similar issues arise for the computation and the signif-
icance of the changes. In particular, assessing the significance of (usually small)
changes in the mode-shapes, and handling the (usually high) correlations among
individual mode-shape changes are still considered as opened questions [1, 2, 3, 4].

Controlling the computational complexity of the processing of the collected data
is another standard monitoring requirement, which includes a limited use of an ana-
lytical model of the structure. Moreover, the reduction from the analytical model to
the experimental model (truncated modal space) is known to play a key role in the
success of model-based damage detection and localization [1, 5.

The purpose of the present paper is to describe the foundations and analyze the
properties of a damage detection and localization method. This method is based on
an approach which aims at addressing the issues and overcoming (some of) the lim-
itations above. It is assumed that a signature of the structure in its nominal (safe)
state is available, typically a moderate number of modes and a moderate number
of components of associated mode-shapes. This signature is usually identified using
reference data, possibly recorded under an unknown non-stationary excitation. The
proposed algorithm processes new data by first generating a residual, and computing
its sensitivity w.r.t. damages. The residual is shown to be asymptotically Gaussian
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4 Michéle Basseuville, Laurent Mevel, Maurice Goursat

under both no damage and small damage assumptions. This results in a global test,
which performs a sensitivity analysis of the residual to the damages, relative to un-
certainties in the modal estimates and noises on the available data. Modal diagnosis
is stated as a detection problem: decide which components of the modal parameter
vector f have changed. This problem is solved by designing similar x?-tests focussed
onto the modal subspaces of interest. Damage localization is stated as a detection
problem, and not an (usually ill-posed) inverse estimation problem. This problem is
addressed by plugging aggregated sensitivities of the modes and mode-shapes w.r.t.
FEM structural parameters in the above setting. This results in directional tests,
which perform the same type of damage-to-noise sensitivity analysis of the residual
as for damage detection. The computation, the analytical-to-experimental match-
ing and the aggregation of the sensitivities are performed off-line at a design stage,
whereas the directional tests may be computed on-board.

The paper is organized as follows. In section 2, we introduce the modeling and
discuss some key parameterizations and sensor types issues. Section 3 is devoted
to the proposed damage detection method, based on a general statistical local ap-
proach to the detection of small deviations in the parameters of dynamic systems,
and on a stochastic subspace-based covariance-driven modal identification method.
The off-line computation and the on-board analysis stage are distinguished, and the
effect of a truncated modal space is briefly discussed. In section 4, we describe
the modal diagnosis method, which handles residual sensitivities to damages and
residuals uncertainties. Damage localization is addressed in section 5, where the
off-line computation and the on-board analysis stage are distinguished again. How
the proposed method relates to other works is addressed in section 6, where resid-
ual design and structural aggregation are discussed. Numerical results obtained on
two application examples are reported in section 7. Some conclusions are drawn in
section 8.

2 Modeling and parameterizations

We first recall the main equations and parameters of the models we use. Identifiable
and non identifiable models are distinguished, and a useful invariance property of
the modal parameters is outlined. Then the effect of changing the sensor types
is discussed. Finally, the damage detection and localization problems investigated
throughout are stated.

INRIA



Statistical model-based damage detection and localization 5

2.1 Dynamical model and structural parameters

We assume that the behavior of the mechanical system can be described by a sta-
tionary linear dynamical system, and that, in the frequency range of interest, the
input forces can be modeled as a non-stationary white noise. This results in:

MZ(t)+CZ(t) + KZ(t) = v(t), Y() = LZ(t) (1)

where ¢ denotes continuous time, M, C, K are the mass, damping and stiffness ma-
trices respectively, (high dimensional) vector Z collects the displacements of the
degrees of freedom of the structure; the external (non measured) force v is modeled
as a non-stationary white noise with time-varying covariance matrix @, (t), measure-
ments are collected in the (often, low dimensional) vector Y, and matrix L indicates
which components of the state vector are actually measured (where the sensors are
located).

The modes or eigenfrequencies denoted generically by p, the eigenvectors ¢, and
the mode-shapes denoted generically by 1, are solutions of:

det (> M+pC+K)=0, (W M+pC+K)d,=0, bp=L¢, (2)

The frequency and damping coefficient are recovered from a continuous eigenvalue p
through:

Frequency f = %, Damping d = — \/%W’ where: a = R(u), b=S(u) (3)

A local damage in the structure reduces the stiffness and increases the damp-
ing. Thus many damage detection techniques have been proposed which monitor
the stiffness matrix K. However, monitoring its inverse K~!, namely the flexibility
matrix, has proven more tractable and computationally feasible [1, 4, 5]. In some
cases, other structural parameterizations such as volumic mass and Young elasticity
modulus may be preferable [6, 1]. Several methods in the literature are based on
a transmissibility matrix [3, 7], which involves the processing of input-output data.
However, in the case of non measured input excitation, processing output-only data
is mandatory [8, 9]. On the other hand, a reduced stiffness and an increased damping
result in decreased natural frequencies and modified mode-shapes geometry. Moni-
toring the modal parameters is thus relevant, at least for damage detection. Damage
localization, however, requires (at least partial) knowledge of structural parameters
and geometry.

The proposed damage detection method handles the modal parameters, which
enjoy a useful invariance property, as explained next. Moreover, the proposed method

RR n° 4645



6 Michéle Basseuville, Laurent Mevel, Maurice Goursat

does not make use of any modal parameters extracted from an analytical model,
but uses identified modal parameters instead. The proposed damage localization
method handles both modal and structural parameters, using an original structural
aggregation mechanism.

2.2 State-space model and canonical parameterization

Sampling model (1) at rate 1/7 yields the discrete time model in state space form
[10, 11];

Xky1 = F Xp+ Vi @)
Y. = H Xi
where the state and the output are:
_ [ 2(k7) _

the state transition and observation matrices are:

e o 0 I
F=e ’£_<—M_1K ~M-1C

and
H:(L 0) (6)

In (4), the unmeasured state noise V11 is assumed to be Gaussian, zero-mean, white,
with covariance matrix:

(k+1)7

Qk+1 < E(Vi+1 V]g;.l) = / e“s Q(s) £ 5 ds

kT

where E(.) denotes the expectation operator and

~ 0 0
Q(S) = ( 0 M—IQU(S)M—T )

The whiteness assumption on the state noise and the absence of measurement noise
in (4) are discussed in [12]. It is stressed that sinusoidal or colored noise excitation
can be encompassed as well. State X and observed output Y have dimensions 2m
and r respectively, with r (often much) smaller than 2m in practice.

INRIA



Statistical model-based damage detection and localization 7

Let (A, ¢)) be the eigenstructure of the state transition matrix F', namely:
det (F—AI)=0, (F—XI)¢y=0 (7)
The modal parameters (p,,) in (2) can be deduced from the (X, ¢»)’s in (7) using:
=X Yu=exZ H ¢y (8)

The frequency and damping coefficient are recovered from a discrete eigenvalue A
through:

Freq. = —, Damping = —°L_ where: a = |arct %(A)‘ b=Tn|A| (9)
eq. = 35—, Damping = \/m,were.a—arcanm()\), =1In

Eigenvectors are real if C = aM + K, the simplest form of proportional damping.
Because of the structure of the state in (5), the A’s and )’s are pairwise complex
conjugate.

It turns out that the collection of modes (A, py), which form a very natural pa-
rameterization for structural analysis, also enjoy a nice invariance property. Actually,
it can easily be shown to be invariant w.r.t. changes in the state basis of system (4).
In other words, the (A, py)’s form a canonical parameterization of the eigenstructure
(or equivalently the pole part) of that system. Let the (A, ¢y)’s be stacked into a

(r + 1)m-dimensional vector 6:
def A
0= ( vec ® ) (10)

where A is the vector whose elements are the eigenvalues A, ® is the matrix whose
columns are the mode-shapes ¢)’s, and vec is the column stacking operator. From
now on, vector @ is considered as the system parameter.

We stress that we do not need to favor a particular normalization of the
mode-shapes ¢,’s and thus of the ¢)’s, as opposite to the mass normalized
modes: (]5;1; M ¢, = I used in e.g. [5]. As explained below, the proposed damage-
to-noise sensitivity ratios are invariant w.r.t. such normalizations. However, some
care should be taken for damage localization, while matching identified mode-shapes
with analytical ones as discussed in 5.2.3.

2.3 Different sensor types

The measurement equation in (4) with H as in (6) implicitly assumes that the avail-
able sensors measure the (relative) displacements of the degrees of freedom them-
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8 Michéle Basseuville, Laurent Mevel, Maurice Goursat

selves, namely are constraint gauges. If constraint gauges, velocity sensors and ac-
celerometers are available, the measurement equation in (1) should write :

LZ(t)
Y(t)=| NZ()
PZ(t)

with L, N, P made of 0’s and 1’s, and system (5) should be understood with :

L 0
H = 0 N
-PM~'K —-PM~'C

Consequently, state space model (4) can always be enforced, whatever the sensors
are. The nature of the sensors used only influences the observation matrix H.

2.4 The damage detection and localization problems

In this paper, damage detection is stated as the problem of detecting changes in the
canonical parameter vector § defined in (10). It is assumed that a reference value gy
is available. Generally, such a reference parameter is identified using data recorded
on the undamaged system. Of course, when the monitored system is subject to non-
stationary input excitation, the reference value 6y should be identified on long data
samples containing as many of these nuisance changes as possible. However, it is
important to note that, with the proposed method, the detection problem may be
solved on the basis of data samples of much smaller size.

Given, on one hand, a reference value 8y of the model parameter and, on the other
hand, a new data sample, the detection problem is to decide whether the new data
are still well described by this parameter value or not. The modal diagnosis problem
is to decide which components of the modal parameter vector 8 have changed. The
damage localization problem is to decide which parts of the structure have been dam-
aged, or equivalently to decide which elements of the structural parameter matrices
have changed.

Because structural identification is a complex (and generally not fully automatic)
process, and because it is intended to design a damage detection algorithm which can
be run on-board, our approach does not perform a new parameter estimation using
the new data sample. Instead, the damage detection and modal diagnosis problems
are solved through the on-board computation and analysis of a residual. Similarly,

INRIA



Statistical model-based damage detection and localization 9

because structural model updating is a computationally involved procedure, the dam-
age localization problem is not addressed as an (usually ill-posed inverse) estimation
problem, but as an evaluation of the correlations of this residual with specific struc-
tural parameter subspaces. This is explained in the next three sections.

3 Damage detection

The design of the proposed damage detection algorithm is based on a general sta-
tistical approach, which aims at transforming a large class of detection problems
concerning a parameterized stochastic process into the universal problem of monitor-
ing the mean of a Gaussian random wvector [14]. This approach basically addresses
the early warning of small deviations of the system parameter. The key idea is to
define a convenient residual, tightly associated with a relevant parameter estimation
method, and to compute the sensitivity of the residual w.r.t. damages (viewed as
changes in the parameter vector) and the uncertainty in the residual due to process
noise and estimation errors. Moreover, the residual can be shown to be asymp-
totically Gaussian. Hence the analysis of the residuals sensitivity to the damages
relative to uncertainties and noises is easy: a sound decision rule can be designed for
assessing whether the residual has significantly deviated from zero or not.

For structural vibration monitoring and damage detection, the main issue is thus
the definition of a parameter estimating function associated with a modal identifi-
cation algorithm. The use of an output-only and covariance-driven subspace-based
stochastic identification has been advocated [9, 12]. The residual corresponding to
this method is introduced in 3.1. The handling of the residual sensitivities and un-
certainty is addressed in 3.2, and their off-line computation described in 3.3. The
residual analysis and the resulting on-board damage detection algorithm are given
in 3.4.

3.1 Residual associated with stochastic subspace identification

The key steps of the subspace structural identification method are briefly recalled. A
characterization of the modal parameter in (10) is exhibited, from which the proposed
residual can be defined. Finally, the effect of a truncated modal space is discussed.

RR n° 4645



10 Michéle Basseuville, Laurent Mevel, Maurice Goursat

3.1.1 Output-only covariance-driven subspace identification

Covariance-driven subspace identification of the eigenstructure (A, ¢y)’s is based on

the following steps. Let R; def (Y;c Y,g:i) and

Ry Ri ' Ry
def | R1 Ry : R, def

7'[p+1,q -

Ry Rpi1 @ Rpyg

be the output covariance and Hankel matrices, respectively. Introducing the cross-
covariance between the state and the observed outputs: G ef g (XkYkT), direct

computations of the R;’s from the equations (4) lead to: R; = HF'G, and to the
well known [15] factorization

Hpt1,4 = p+1(Ha F) Cq(Fa G) (12)

where

H

HF

Ops1(H,F) < and C(F,6)¥ (G FG --- F©'G)  (13)

HF?

are the observability and controllability matrices, respectively. The observation ma-
trix H is then found in the first block-row of the observability matrix 0. The state-
transition matrix F' is obtained from the shift invariance property of O, namely:

HF
I 0 def HF?
O}(H,F) = Op(H,F) F, where O}(H,F)< |
HF?
Assuming rank(Op) = dim F, and thus that the number of block-rows in Hp414 is

large enough, is mandatory for recovering F. The eigenstructure (A, ¢») then results
from (7).

INRIA



Statistical model-based damage detection and localization 11

The actual implementation of this subspace algorithm, known under the name
of balanced realization (BR) [16, 17], processes the empirical covariance and Hankel

matrices

R 1/m v v, Hpi1q ' Hank (ﬁ,) (14
k=1

and exploits the well known subspace interpretation of the singular value decompo-
sition (SVD) [18]: the SVD of ’}:Zpﬂ,q — possibly pre- and post-weighted [19] — and
its truncation at the desired model order yield, in the left factor, an estimate O for
the observability matrix O:

WL AW = UDVT=U<1())1 £0>VT

~

O = wiluDpl? C¢=D*VvTw;T

where W and W, are invertible weighting matrices (design parameters). From O,
estimates (H,F) and (X, ¢y) are recovered as sketched above. How to select the
number of lags (p + ¢) and thus the size of ?:\lp_}_l,q is discussed in [9, 12].

The key feature in this algorithm is the factorization (12), where the left factor O
only depends on the pair (H, F), and thus on the modal parameters (A, p)).

3.1.2 Exploiting a canonical parameter characterization

Factorization (12) is the key for a characterization of the canonical parameter vector ¢
in (10), and for deriving the parameter estimating function implicitly used in the
above subspace identification algorithm.

Assume that the eigenvectors of matrix F' are chosen as a basis for the state space
of model (4). In this basis, the observability matrix in (13) writes [20]:

0]

DA
Opa(6) = | (15)

DAP
where diagonal matrix A is defined as A = diag(A), and A and ® are as in (10).

Then the following property results from the factorization (12). Whether a nomi-
nal parameter y is in agreement with a given output covariance sequence (R;); is

RR n -~ 4645



12 Michéle Basseuville, Laurent Mevel, Maurice Goursat

characterized by [21, 22|
Op+1(00) and Hp11 4 have the same left kernel spacel. (16)

This property can be checked as follows. From the nominal modal parameter vec-
tor 6y, compute Opy1(6p) using (15), and perform e.g. a SVD of W10p41(6p) for
defining its left kernel space, namely extracting an orthonormal matrix S such that
ST § =1, and:

ST W1 Opy1(60) =0 (17)

Matrix S depends implicitly on parameter 6y. It is not unique — two such matrices are
related through a post-multiplication with an orthonormal matrix U. Nevertheless,
for reasons which are made clear below, S can be treated as a function of 6y, denoted
by S(6g). Then the characteristic property (16) writes:

UT ST (00) W1 Hpy1,4 Wy =0 (18)

where W and Wy are invertible weighting matrices as before.

Assume now that a reference parameter 6y and a new data sample Y7,...,Y,
are available. For checking whether the data are well described by 6y, the idea is
to compute the empirical covariance sequence and fill in the empirical block-Hankel
matrix #,y1,4 using (14), and to define the residual vector?:

(n(00) & v vec (UT ST(8y) W1 Hpi1,4 WzT) (19)

Let 0 be the actual value of the parameter for the system which generated the new
data sample, and Ey be the expectation when the actual parameter is 6. It results
from (18) that:

Ey ((n(60)) =0 iff 0 =6 (20)

In other words, vector (,(6) in (19) has zero mean in the absence of change in
0, and nonzero mean in the presence of a change (damage). Consequently it plays
the role of a residual. The question is then how to decide that the residual (, is
significantly different from zero. In particular, the sensitivity of the residual w.r.t.
deviations in the modal parameter should be compared with the fluctuations of the
residual around its zero mean.

!The left kernel space of matrix M is the kernel space of matrix M”.
?Technical arguments for the \/n factor can be found in [14].

INRIA
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3.1.3 On the effect of a truncated modal space

Some issues in dealing with a truncated modal space are now addressed.

Monitoring with a few modes. Many practical situations correspond to the
case where actual data are generated by a system of high order. Controlling the
computational complexity of the processing of the collected data is a standard mon-
itoring requirement, which includes the reduction from the analytical model to the
experimental model. In the same spirit as a truncated modal space is handled when
estimating a flexibility matrix from a few of the lower frequencies |1, 5], the actual
computation of the residual (19) is achieved using a reference parameter vector gy
containing only a moderate number of modes and a moderate number of components
of associated mode-shapes.

Model reduction. The model reduction issue can be investigated further along
the following lines. When the actual data are generated by a system of higher order
than that of the nominal model 6y, or equivalently when the nominal model has
reduced order, a new question arises : what does it mean, for a nominal model 6y,
to match a given data sample when model reduction is enforced 7 Of course, system
theoretic characterization (16), or (18), is no longer valid, and the same is true for
the definition of the residual in (19). Other definitions are needed [22], as sketched
now.

Since rankHp,y1,4 > rankOpq(6o) def m, condition (16) for perfect matching
cannot be satisfied. What can be required, instead, is that the left kernel space of
Op+1(6p) is orthogonal to the m-th order principal subspace® of H,41,4. Therefore,
let

Wi Hypirq WY = (P Pr) D VT (21)

where Py, collects the first m left singular vectors of Wi Hpy1,4 Wy . Then, (18) is

replaced by
ul sT@) P, DV =0,

and the residual is computed as
Ca(60) < v/ vec (U™ ST (60) P D VT) (22)

with obvious notations, namely: W, ﬁp-‘,—l,q Wi = (]3m ﬁ) DVT.

3The m-th order principal subspace of a matrix is the subspace spanned by the left singular
vectors associated with its m largest singular values.

RR n~° 4645



14 Michéle Basseuville, Laurent Mevel, Maurice Goursat

It turns out that, because of our practical implementation of the residual (19),
and especially how we select the integer index p for H,;14, the use of the residual
(22) above does not seem to lead to any significant performance improvement.

3.2 Residual sensitivities and residual uncertainty

A natural approach to analyze the effect of deviations is to compute sensitivities in
terms of gradients. This has been advocated for vibration monitoring as well [2].
Since our approach deals with small deviations, computing gradients is especially
relevant. Because the approach is statistical, it is natural to consider the mean value
(expectation) of those gradients.

On the other hand, the sensitivity matrix of the residual w.r.t. damages should
be examined in the light of the variance of (or the uncertainty in) the components
of the residual vector. Within a statistical approach, it is also natural to take into
account the possible correlations among those components.

This is done now. The off-line and on-board computation stages of the proposed
method are distinguished, in 3.3 and 3.4 respectively.

3.3 Off-line computations

The sensitivity of the residual w.r.t. modal changes is computed, and shown to enjoy
a useful invariance property w.r.t. the normalization of the mode-shapes. Then the
computation of the residual covariance matrix is discussed.

3.3.1 Computing the residual sensitivities to modal changes
The mean sensitivity of residual ¢, w.r.t. 8 is defined as:

J(0) € —1/y/n 8/96 By, Ca(6) lyy, (23)
= +1/vn 800 Eg (a(60)]4_y, (24)

where the last equality holds true because of (20). From (24) and using (12), it can
be shown that [22]:

J(60) = (W @ UT S7(60) W1) (Hpirq OFF1(00) @ Tipiaye) Opin(B0)  (25)

INRIA
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where (9; +1(00) is the pseudo-inverse of Op11(60), and where:

def

O;)+1 (90) = 8/89 vec Op+1 (90)
AP ® o 0 AV @1, 0 (26)
0 AP ®om| 0 AP &1,

with, for 1 <7 < m:

APT e N a2 L)
AT g 9y L pa D)

7
A consistent estimate 7 , based on a data sample, results from substituting H
for H in (25):

T(00) = (Wa @ U ST (00) Wi) (Hfi14 OFf1(60) ® Ippiaye) Opia(00)  (27)
We stress that all the terms in (27) should be computed when the reference
parameter 6y is identified, and using the same reference data. Note also that ma-
trix Oy (o) is full rank (r 4 1)m, as can be checked from (26).
Finally, because the modes and mode-shapes are pairwise complex conjugate, the
actual implementation of the computation above should take advantage of the real
and imaginary parts, as made explicit in the Appendix.

3.3.2 The sensitivity is invariant w.r.t. mode-shapes normalization

The sensitivity matrix J(6p) and its estimate T (6y) enjoy a practically useful in-
variance property: they do not depend on the particular normalization of the eigen-
vectors ) stacked in 6y defined in (10). Actually, multiplying the ¢)’s by constant
complex numbers amounts to post-multiply observability matrix Op11(6o) in (15) by
an invertible diagonal matrix D, to post-multiply matrix O;Il (6p) by D71, and to
pre-multiply matrix O ,(6o) by (D ® I(p41),). And all the terms in D cancel out
in (27).

It should be noted that this invariance property only holds true for damage
detection. For damage localization, some care should be taken of mode-shapes nor-
malization, as explained in section 5.2.
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3.3.3 Computing the residual uncertainty

The residual covariance matrix is:
def ;. T
%(60) € lim By, (¢ ¢T)

where it is assumed that the limit exists. Matrix ¥ captures the uncertainty in (,
due to estimation errors. Actually, the covariance matrix of the error in estimating
0y can be shown to be this X(6p) as well [23].

The estimation of covariance matrix ¥ is somewhat tricky [24]. The following
estimate is used in the experiments below. Assuming the whole sample size is N =
K/, we partition the data sample in K segments with size £, and compute

N 1 XK
L= kglckc;f (28)

where (i is the residual (19) computed on segment k, using the data sam-
ple Yik—1)e415-- -, Yie-

It should be noted that this estimate contains the excitation, and thus is affected
by changes in the excitation. Therefore, and this is confirmed in the asymptotic
Gaussianity theorem below, it is preferable to estimate it after collecting a new data
sample. However, for the sake of reducing the computational complexity, it is often
estimated prior to testing, using data on the safe system. The drawback of the latter
approach over the former is that the x?-test below may detect changes due to the
excitation and not to the structural properties.

3.4 On-board residual analysis

Testing if & = 6y holds true requires the knowledge of the probability distribution
of (,(6y). Unfortunately, this distribution is generally unknown. One manner to
circumvent this difficulty is to assume close hypotheses:

(Safe) Hy: 6 =0y and (Damaged) Hy: 6 =60y + 60/+/n (29)

where vector 66 is unknown, but fixed. Note that for large n, hypothesis H; corre-
sponds to small deviations in #. This is known under the name of statistical local
approach, of which the main result is the following [24, 23, 14].
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3.4.1 The residual is Gaussian

Provided that ¥(6y) is positive definite, the residual (, in (19) is asymptotically
Gaussian distributed with the same covariance matrix ¥(6p) under both Hy and Hy;
that is [22]:

Cn(60) m

(30)

N (0, 2(6) ) under Hy
N( \7(90) (59, 2(90) ) under H1

As seen in (30), a deviation 66 in the system parameter @ is reflected into a change
in the mean value of residual (,, which switches from zero (in the undamaged case)
to J(0y) 60, as expected, in case of small damage.

Note that matrices J(6p) and 3(6y) depend on neither the sample size n nor the
fault vector d6 in hypothesis H;. Thus we do not need to re-estimate them when
testing the hypotheses after collecting a new data sample, they can be estimated prior
to testing, using data on the safe system (exactly as the reference parameter ;).

In case of non-stationary excitation, a similar result has proven, for scalar output
signals, and with matrix ¥ estimated on newly collected data [25].

3.4.2 On-board y?-test for damage detection

Let J and $ be consistent estimates of J(6p) and %(6), and assume additionally
that J(6p) is full column rank (f.c.r.). Then, thanks to (30), deciding that residual ¢,
is significantly different from zero, stated as testing between the hypotheses Hy and
H; in (29), can be achieved with the aid of the following x2-test statistics:

CE TS F(FTET) e (31)

which should be compared to a threshold. In (31), the dependence on 6y has been
removed for simplicity. We stress that the only term which should be computed after
data collection is the residual ¢, defined in (19).

Test statistics x2 is asymptotically distributed as a x2-variable, with rank(J)
degrees of freedom and with non-centrality parameter under Hy: 667 775717 66.

3.4.3 The x?-test is invariant w.r.t. design matrices

It turns out that the test in (31) enjoys a nice invariance property w.r.t. the choice
of the design matrices in the subspace-based approach. The three design matri-
ces U, W1, W, are made explicit in the notation (7w, w,(60) for the residual defined
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in (19). A straightforward calculation shows that:

Cnsuwy,we = W ® V1) Cnirtr (32)

where ® is the Kronecker product, and V; is any invertible matrix such that:
UTST(O())Wl = VlST(QO); for example, V1 = UT ST(O()) W1 5(00) [26]

Now, if 5 def A(, then: J=AJ and & = AS AT as can easily be checked, and
using obvious notations. Therefore, if X721;U,W1,W2 denotes the x2-test (31) associated
with (n,v,w,,ws, from (32) we get that:

2 .2
Xn;UWy ,Wo — XnyIL,I,T

since the invertible matrix (W2 ® V1) factors out in (31).
Thus, for damage detection, all the proposed subspace-based methods are equiva-
lent, when using the true system order.

4 Modal diagnosis

Modal diagnosis consists in determining which eigenfrequencies and associated mode-
shapes have been affected by the damage. This problem may be addressed as an es-
timation problem, based on modal identification in the pre- and post-damage stages.
Typically, the changes in the frequencies obtained from experimental data are then
compared with the sensitivity of modal parameters obtained from an analytical model
[1, 2].

In the proposed approach, modal diagnosis is stated as a detection problem in-
stead. Moreover no analytical model is handled at this stage. The rationale is the
same as for addressing the damage detection problem above: having a (usually iden-
tified) reference modal parameter 6y in one hand and a new data sample in the other,
decide which modes and mode-shapes have deviated from their reference values.

4.1 Residual sensitivities and residual uncertainty

As for the damage detection problem, in a statistical framework the key issue is
again to assess the significance of the residual sensitivity to specified modal changes
w.r.t. the residual uncertainty. In other words, directional tests, focussed in specific
directions of the modal space, should be designed.

At this point, it should be noted that the sensitivity of the residual (,, w.r.t. a
specified mode and associated mode-shape can be extracted as the corresponding
columns of the Jacobian matrix J () of which an estimate is given in (27).
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4.2 On-board Y?-test for modal diagnosis

Let thus jz be the estimated Jacobian matrix corresponding to mode and mode-
shape j (j = 1,m). This is obtained by picking up the corresponding columns in
matrix O, (o) in (26), or equivalently in (51).

The counterpart of test (31), namely the directional or sensitivity test focussed
on this mode j, writes:

—1 j]T i—l C'n, (33)

5 Damage localization

Damage localization consists in determining which part of the structure has been
affected by the damage, more precisely which (groups of) elements of the structural
parameters matrices (e.g. M, C, K) have changed. This problem is often addressed
as an inverse estimation problem, based on an analytical model in the pre-damage
stage and on modal identification in the post-damage stage. Typically, the deviations
in the structural parameters corresponding to the observed deviation in the modal
parameters are searched for using model updating techniques [27, 28, 29].

In the proposed approach, damage localization is stated as a detection problem
instead. Of course, an analytical model is handled at this stage. The rationale is
similar to the approach for the modal diagnosis problem above: having a (usually
identified) reference modal parameter 6y and a reference structural (FEM) analytical
model in one hand, and a new data sample in the other, decide which structural
parameters have deviated from their reference values.

5.1 Residual sensitivities and residual uncertainty

As for the damage detection and modal diagnosis problems, in a statistical framework
the key issue is again to assess the significance of the residual sensitivity to specified
structural changes w.r.t. the residual uncertainty.

As made explicit in (30), the mean value of residual ¢, under the hypothesis H;
of a small deviation @ in the system parameter § from a reference value 6y, is:

E1(¢n) = J(60) 60 (34)
Under the assumption of small deviation again, the following relation holds:

80 ~ Jpy 6T (35)
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where U is the vector of (FEM) structural parameters to be monitored, and Jpy is
the Jacobian matrix containing the sensitivities of the modes and mode-shapes w.r.t.
those structural parameters.

In other words, the damage localization problem is addressed by plugging aggre-
gated sensitivities of the modes and mode-shapes w.r.t. (FEM) structural parameters
in the setting used for damage detection. Thus, plugging (35) into (34), we test, with
the aid of a y?-test again, whether the deviation in the residual (,:

E (Gn) = T(¥) 6¥ (36)

where
def

J) = J(6) Tow (37)

is significant or not. This results in directional tests, focussed in specific directions
of the structural space, which perform the same type of damage-to-noise sensitivity
analysis of the residual as for damage detection and modal diagnosis. These tests
deliver damage diagnostics and localization information, without solving any inverse
problem for model updating.

Of course, since the dimension of the structural parameter space is much higher
than the dimension of the modal parameter space, the §0 in (35) are linearly de-
pendent, even if the di’s are not. The idea [30, 31, 6] is to cluster somehow the
deviations dv in the structural parameter space.

The steps of this damage localization approach are now described in detail. The
off-line and on-board computation stages are distinguished, in 5.2 and 5.3 respec-
tively.

5.2 Off-line computations

The off-line stage is devoted to the computation of the residual sensitivities w.r.t.
structural changes. First we explain the different parameterizations and Jacobians
which are needed for this purpose. Then we describe three design steps: computing
the sensitivities (35), matching theoretical and actual sensitivities, aggregating the
sensitivities.

5.2.1 Computing the residual sensitivities to structural changes

For computing the residual sensitivity w.r.t. structural changes given in (37), we
need to compute the Jacobian Jyy defined in (35).
For this purpose, in addition to the structural parameterization ¥, two other

(d) def

parameterizations are needed: @, = 6, the set of the (discrete) identified modal
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parameters, and ®,, the set of the (continuous) analytical modal parameters com-
puted from (2). Since the former is a discrete time parameterization and the latter
a continuous time parameterization, we also need the continuous time counterpart
®; of <I>Z(-d), obtained using (8). Moreover, the re-parameterization of the modes in
terms of frequencies and damping coefficients are needed for both ®; and ®,, which
we note 9, and 1;, respectively.

It should be stressed that, when the system is assumed to be conservative, namely
C = 0, which is often the case in FEM models, ®, contains all the frequencies, but
not the damping coefficients, of the structure, and all the mode-shapes, which are real
and usually mass-normalized. Also, the FEM mode-shapes have as many components
as the total number of available sensors. Whereas 1J; contains those of the frequencies
and associated mode-shapes contained in the signature 8y which turn out to match
with modes in J,. Also, the mode-shapes have as many components as the actual
number of sensors used and are not mass-normalized.

Altogether, the sensitivity J(¥) defined in (37) writes:

J(¥) = T(b) Tpwg, Lew; Toive Loava Joaw (38)
where:

5@, 1S the Jacobian of the transformation (8) of the discrete modes into the

continuous ones;

e Zgyp is the Jacobian of the conversion (3) of the complex modes into continuous
frequencies and damping coefficients, and Zyg is the Jacobian of the inverse
conversion;

e Jy.9, corresponds to the manual matching between the identified modes and
the analytical (computed) ones;

o Js,u is the sensitivities of analytical modes to changes in structural parame-
ters.
The Jacobians J. o@D, Zey and Zye are computed in the Appendix, whereas the

derivation of Js,v and Jy,s, is addressed below in this section.

At this point, one comment is in order about the damage detection x?-test in
(31) and the modal diagnosis test in (33). Actually, we compute these tests using
J Jywg. Law, instead of J. But this does not make any difference, since the two

matrices J ), and Ze,s,; are square invertible and cancel out in (31) and in (33).
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5.2.2 Computing the sensitivities of analytical modes to structural
changes

The derivation of Js,v is described now. Differentiating the second equation in (2),
we get [30, 31, 32, 33]:

o 2uM+C)dp+ WCM+pC+K)dp+p2dM+pdC+6K=0 (39

When the matrices M,C, K are symmetric, pre-multiplying (39) with ¢, and
using ¢ (u?>M + pC + K) = 0 which results from that symmetry, yield:

¢" (u? M +p 6C + 6K) ¢
T 2uM+C) ¢
In case of an asymmetric system, the results of [34] should be used instead.
They generalize the approach of [35], which is based on a complete modal basis. An
overview on different types of approximation methods for handling incomplete modal
bases can be found in [36].
Plugging (40) into (39) yields the following linear system in d¢:

(W M+pC+K)dp=—06u(2pM+C)¢d— (u? M+ p dC+6K) ¢ (41)

op = (40)

This system has no unique solution: if d¢ is a solution, then d¢ + a¢, where a is a
real constant, is also a solution. The solution §¢ that is orthogonal to ¢ is selected,
namely:

" bp=0 (42)
and then pre-multiplied by the observation matrix
L §¢ (43)

since we are interested in the mode-shapes.

For each dM, 6C and 0K, the equations (40), (41), (42) and (43) yield the
corresponding change in the whole modal parameters set ®,. This leads to the first
order sensitivity relationship:

0Py = Jo, 0 6V (44)

where each column of the sensitivity matrix J,¢ corresponds to a change in a
structural parameter.

At this point, a comment is in order, on mode-shape normalization. As obvi-
ous from (41), the actual value of d¢ depends on the normalization chosen for ¢.
Therefore, it is important here to work with analytical mode-shapes normalized in
the same way as the identified ones. Typically, the first component is fixed equal to
one.
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5.2.3 Matching theoretical and actual sensitivities

How to match the changes in 9, with the changes in ¥; is explained now.

It is well known that there is usually a discrepancy between the numerical
modes ¥, provided by the analytical (FEM) model, and the identified modes ;.
Moreover, whatever the modal identification method is, there is an estimation error
on ;. Consequently, ¥; # ¥, in general. However, this discrepancy between ;
and 9, is not crucial within our damage localization approach. Actually, 9; is the
reference modal signature and must be accurately determined, which is ensured by
the subspace-based identification method, whereas 1, is only used for computing a
Jacobian matrix of sensitivities (change directions). A small error in such a direction
enters the algorithm at a second order level in the residual {,. It is expected that
this does not corrupt the localization delivered by the method.

Moreover, it should be noticed that the matching between 1J; and 9, is generally
partial. On one hand, only the first few natural modes are excited and/or observed,
whereas a p degrees of freedom finite element model yields p modes, with p often
very large (several hundreds). Consequently, ¥; is at best strictly included in ¥,. On
the other hand, 1; may contain modes which are not related to the eigen parameters
of the structure. These modes appear in the presence of an harmonic excitation (as
it is the case for rotating machineries for example [37]), or when the effect of the
environment should be considered as an unknown colored noise, instead of a white
noise as in (1).

Therefore, we assume that:

§9; = Jg.9, 694 (45)

where Jy,s, is a selection matrix which performs the correlation between the ana-
lytical (computed) modes and the identified ones.

5.2.4 Aggregating the sensitivities

The (M, C, K) parameterization has generally many more parameters than the modal
model. Thus, there are many more columns than lines in matrix 7 in (38). Moreover,
using a small number of sensors, it is not reasonable to expect the discrimination
of all possible structural causes of a given deviation detected by the global damage
detection test in (31).

To circumvent this difficulty, the idea is to aggregate the columns of J in (38)
into clusters, which play the role of macro-failures, and for each cluster to define a
barycentre, which plays the role of a Jacobian to be plugged in (31).

RR n -~ 4645



24 Michéle Basseuville, Laurent Mevel, Maurice Goursat

The x2-metric. In order to make the aggregation operation coherent with the y?
decision stage, the metric chosen for performing the clustering is the metric of the
XQ—test.

More precisely, let the j-th change direction be defined as the vector:

Ji = .77 T(00) Ty, Lo, Toive Toata Toaw(i) (46)
where Jg,w(j) is the j-th column of Jg,, and where s, 12

the inverse of the covariance matrix X,,:

$-1 _ §-1/2 §-T/2

is the ‘square root’ of

Note that such a decomposition is always possible since S, is guaranteed to be
strictly positive definite from its numerical computation in (28).
Furthermore, we define the norm and the scalar product of the J;’s as:

T T

Jil* =T Tj dig = e
I =957 T 4 = g0

(47)

Removing the small vectors. Vectors with a low magnitude are likely to blur
the results of the aggregation. Consequently, prior to clustering, small vectors are
rejected using the following rule, based on the contrast (ratio) between the expecta-
tions of the directional test under no damage and small damage assumptions [6].

By definition, vector [J; corresponds to a change with rate 1 in physical parame-
ter j. Therefore, up to a first order approximation, for a change with magnitude p in
the j-th direction, the change vector is ¢ J;. The expectation of the corresponding
sensitivity test (33) is equal to 1 under no damage hypothesis and to (1 + g{Tf@)
under this damage hypothesis. The above mentioned contrast is thus:

1+0* 7" J;

Consequently, considering that a damage with magnitude p in direction J; is de-
tectable provided that this contrast exceeds a threshold €1, the minimum magnitude
of a damage for being detectable should be:

ver—1

Omin = —y -
1T
A damage vector J; will be rejected if this minimum damage magnitude cannot
be reached, e.g. because greater than a percentage of variation on the physical

parameters, namely if:
€2

Omin > m
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Altogether, the rejection rule for small vectors writes:

ver—1
1751 < 100 ¥=—
2

where €1, €2 are two thresholds selected by the user.

Clustering the remaining vectors. Since we are interested in change directions
rather than change magnitudes, the change vectors to be clustered are normalized
within this metric. Therefore, the aggregation process should work on the unit
sphere, and a classification method able to handle this geometry is needed. For this
reason, a vector quantization method [38, 39] of common use in speech processing has
been chosen [6]. This method performs a hierarchical classification, while controlling
the variability within the classes.

For each class, a barycentre C; is computed. This aggregation mechanism can
thus be thought of as a statistical sub-structuring.

5.3 On-board Y?-test for damage localization

For performing damage localization, we should assess, for each barycentre Cj,
whether the corresponding damage is significant or not. This problem is similar
to the damage detection and modal diagnosis problems addressed in sections 3.4
and 4.2 respectively, and is solved in the same manner.

Because of (46), the following normalized residual should be considered:

~ def &—
G E ST G
Then the counterpart of the y2-test in (33) is easily shown to write:

.. C: C.T -
2/ : T J ]

Xn(7) = G, Cn
IC;11?

Its number of degrees of freedom is equal to rank(J;).

Assume that x2(j) exceeds a given threshold. Then, all the structural elements
within the class corresponding to the barycentre C; are possible causes of the detected
damage.
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6 Discussion and relation to other works

Several issues are addressed in this section, concerning the design and the handling
of residuals for damage detection and localization.

First some further comments on the design of residuals for fault or damage detec-
tion are provided. Then the subspace-based damage detection residual introduced
in section 3 is related to some other residuals, used for damage localization or model
updating.

Residuals for fault detection. Model-based approaches to fault detection and
isolation have been investigated, in [40, 41, 42] to mention but a few. They build
on discrepancies between process model outputs and measured outputs, generically
called residuals, often generated as an output prediction error:

def

ex(0) = Yy — Yipo1(0), (48)

where i}k\k—l(a) is a one-step ahead prediction of the output data, computed on
the basis of the parameterized model. The residual ¢ is then evaluated through a
comparison with given thresholds. From a conceptual point of view, however, this
type of residual suffers from the following limitation.

If the system is linear, written in an input-output or state-space form, and what-
ever the estimation method is, the prediction Y is a linear combination of measured
inputs and outputs. Stated otherwise, residual (48) is a first-order statistics in that
case. But, from statistical inference theory, it is known that for performing infer-
ence about second-order characteristics — here, (modal) vibrating characteristics, or
equivalently the eigenstructure of a linear state space system —, it is mandatory to
use (at least) second-order statistics, that is covariances. Using linear combinations
of the output data is not sufficient (in the statistical sense). This might be contrasted
with some of the symptoms discussed in [43].

It should be noted that the subspace-based residual defined in (19) is actually a
linear combination of the output covariances, and indeed is aimed at monitoring the
system eigenstructure, as desired.

The above remark does not mean, however, that the prediction error (48) should
not play any role in residual generation. As clearly stated in the system identification
literature [44, 45, 46], a parameter estimate should be updated with the aid of the gra-

dient of the squared prediction error w.r.t. the parameter: —1/2 9 (e,{(@) €k (9)) /06.

And if the faults or damages affect the dynamics of the system, a residual built on
that gradient is relevant too.
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Subspace-based residuals and other health monitoring residuals. We now
comment on how the proposed subspace-based residuals relate to some other damage
localization and model updating residuals in the literature.

In [1], damage detection is based on changes in the flexibility matrix computed as
F =& Q! ®7, where diagonal matrix Q, called modal stiffness matrix in the case of
proportional damping, is the stiffness matrix of the single degree of freedom system
resulting from decoupling of the equations by transformation to modal coordinates.

The damage locating vectors introduced in [5] are the last right singular vectors,

namely the singular vectors associated with singular value 0, of the change §F def

F! — F9 in the measured flexibility matrix computed as F 4f k=1 In other words,

13 7

these vectors form the kernel space of matrix AF. When viewed as loads on the
system, they lead to stress fields identically zero over the damaged elements. This
property is considered in [5] as a damage localization ability. An important limitation
is that this is basically an input-output approach. However, the method can be
extended to flexibility proportional matrices which can be computed from output-
only data [47].

Oun the other hand, the subspace-based residuals ¢ defined in (19) are derived
from the first left singular vectors of the observability matrix in modal basis O(6y),
from which matrix S(6p) in (19) is computed. In other words, for computing ¢, we

need the kernel space of matrix O7'(6y).

One class of residuals used for model updating reviewed in [27] has the following
form

W (0; — 0y — T3,v 6V)

where W is a weighting matrix (design parameters), and subscripts i,a have the
same meaning as in 5.2.1. In other words, these residuals are based on discrepancies
between identified and analytical modal parameters. This has to be contrasted with
the residuals in (19) which handle altogether the identified modal parameters in
0y and newly collected data in H. These residuals do not involve any analytical
model, and do not require any re-identification of the modal parameters on the new
data. Moreover the x2-test in (31) involves the precision in the estimated modal
parameters [23]. This test statistics allows to assess whether a deviation in the
reference modal parameter is significant w.r.t. the inherent inaccuracy in the modal
parameter estimate.

In [28], strong emphasis is put on the importance of the physical meaning of the
chosen parameterization. It has been argued above, however, that balancing this
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property with requirements on invariance w.r.t. changes in the state-space basis on
the one hand, and on modal identifiability and detectability properties on the other
one, provides us with other useful points of view.

Another overview of residuals used within model updating methods can be found
in [48].

On the use and physical interpretation of the SVD. It is well known that one
major byproduct of the singular value decomposition (SVD) is to provide us with
various subspaces of interest, among which the right and left kernels (null space)
of the considered matrix [18]. As highlighted in [43], the use of the SVD for the
purpose of damage detection and localization is thus widespread. Moreover, the
physical interpretation of the corresponding vectors is an important issue.

As mentioned above, the SVD is used in [5] for extracting the null space of
the change 6F in the flexibility matrix measured in both undamaged and damaged
situations. The singular vectors are interpreted in terms of loads with null stress,
and each singular value is interpreted as the difference in the external work done by
the associated singular vector.

In the approach of this paper, the SVD is also used for extracting the null space of
a matrix, namely the transpose of the observability matrix. Moreover, as explained
in 3.1.3 and confirmed by extensive numerical experiments, the SVD helps in handling
and overcoming non-stationary ambient excitation.

On the mode-shapes normalization. The last comment on the design and com-
putation of residuals for health monitoring concerns the mode-shape normalization
[36]. As outlined in 3.3.2, the proposed damage detection x2-test is invariant w.r.t.
mode-shape normalization, which turns out to be a useful property in practice. This
has to be contrasted with the approach in [5].

Structural aggregation. Now some comments are in order on the statistical clus-
tering of the sensitivities of the modes and mode-shapes w.r.t. FEM parameters
described in section 5.

It should first be noted, from (46), that noise-normalized sensitivities are handled
in the proposed approach. Consequently, the norm and scalar product defined in (47)
introduce a noise-normalized metric for assessing the size of the modes and mode-
shapes sensitivities to changes in structural parameters. Here noise refers to both
measurement noise and modal estimation errors, as pointed out in 3.3.3. This has
to be contrasted with the MAC (modal appropriation criterion) value, which is, in
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some sense, an absolute value: the MAC value does not take into account neither any
measurement noise, nor any uncertainties in the modes and mode-shapes estimates
(measured structural behavior).

Second, we stress that the statistical procedure described in 5.2.4 performs the
aggregation of physical parameters, and thus generates what can be considered, in
some sense, as super-elements. This procedure might be called statistical substruc-
turing?.

7 Application example

In this section, some numerical results obtained with the proposed damage detection
and localization method on a laboratory testbed called steel-quake are provided.
Results obtained with the damage detection method on other real or laboratory
examples can be found in [49, 52], together with some implementation issues. Some
results obtained with the damage localization method on a real example can be found
in [52].

The steel-quake structure is used at the Joint Research Centre in Ispra (Italy)
to test the performance of steel buildings during earthquakes. The structure is a
two-storey frame, excited with the aid of an impact hammer. The locations selected
for the four impact tests are shown in Fig. 1. For each impact location, eight to ten
experiments are performed, yielding data samples from the structure under different
non-stationary excitations. Fifteen accelerometers are used for recording the reaction
of the structure to the hammer impacts. The sampling frequency is 128 Hz, and for
each channel 3200 data points are recorded. The sensor locations are shown in
Fig. 2. Damage scenarios have been generated using artificial seismic loading, and
cracks appeared at different locations, in the vicinity of sensors 1,4, 8,10 and 13.

Damage detection. The damage detection test has been applied, using sen-
sors 2,8,10,13. The reference parameter §y has been identified on the data of the
experiment (Q10; the frequencies and damping coefficients are given in Table 1.

The theoretical value of the y?-test (31) under no damage assumption is 80.
The test has been computed on the data of the four undamaged scenarios Q09 to
@12, and on the data of the four damaged scenarios ()39 to QQ42. The test values
are given in Table 2, showing a clear discrimination between the undamaged and
damaged cases.

4Substruc‘curing is a procedure that condenses a group of finite elements into one element rep-
resented as a matrix (super-element).
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Figure 1: Impact locations Q09-12. Figure 2: Sensors locations.

Table 1: Subspace identification - Some estimated modes (sensors 2/8/10/13, Q10).

Mode 1 2 3 4 5 6 7

8

Freq.(Hz) | 20.7728 | 14.4937 | 12.9889 | 11.8070 | 10.7943 | 9.6879 | 6.1302 | 3.9240
Damp. 0.2426 | 0.0195 | 0.0176 | 0.0610 | 0.2035 | 0.8905 | 0.0448 | 0.1803

Table 2: Test values for undamaged and damaged scenarios.

Scenario | Undamaged | Damaged
Q09 /39 | 2.81-10e2 | 3.78 - 10e6
Q10 /40 | 1.53 - 10e2 | 2.20 - 10e7
Q11 /41 | 6.75 - 10e2 | 2.18 - 10e4
Q12 /42 | 2.88 - 10e2 | 1.62 - 10e4
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Damage localization. The results reported here have been obtained using
the new fully automated modal localization toolbox embedded in the Scilab Modal
toolbox described in [53].

Damage localization has been performed using a rough FE model of the steel-
quake structure. This FE model has been obtained from the SAMCEF model used
in COST F3, and updated using the Structural Dynamics Toolbox of E. Balmes.
Although we advocate that using an inaccurate FE model is not critical for our
localization method which handles modal changes directions, too large differences
between the FE model and the structure may lead to localization errors. Moreover,
the following comments are in order.

e Using that FE approximate model, we have been able to match the identified
and computed mode-shapes for the first three modes only. Some work is still in
progess for improving the FE model, in order to take into account mode-shapes
of higher frequencies.

e The selected mode-shapes turn out to be in the X and Y directions only. This
lack of information in the modal signature leads to localization inaccuracy in
the Z direction.

e It also turns out, after careful comparison of the three mode-shapes in both
the undamaged and damaged cases, that these mode-shapes have been hardly
affected by the damage. Consequently the localization is to rely heavily on
the frequencies, which is known not to be the most favorable situation for
localization.

e Even though we use the first three correct mode-shapes only, for computing
their sensitivities in (38), we must use the full mass and stiffness matrices, with
all the inaccuracies due to the errors in the FE model.

Damage has been localized on the front, left and right piers around sensors 4, 8
and 10. Some damages have been found around sensor 1 as well. In a preliminary
experiment, damages have been found around the Z sensors. But it turned out that
the norm of the Jacobian columns associated with those events was very low, which
could result in false alarms, and removing the Z sensors removed the false alarms as
well. The damage localization test did not perform well the discrimination between
damaged elements situated on a same pier. It is expected that adding a mode-shape
in the Z direction will help in this respect. As a whole, the localization results
obtained with this rough FE model have been satisfactory.
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8 Conclusion

We have addressed the damage localization problem stated as a detection problem
and not as an inverse estimation problem. The proposed damage localization method
is based on both a subspace residual and on a statistical analysis of aggregated
sensitivities of the residual to the damages. We have described in detail the key
components of the statistical damage detection and damage localization steps. We
have distinguished the computations which can be performed off-line at a design
stage and the computations which have to be done on-line while processing newly
recorded data. We have related the proposed approach to several methods available
in the literature. Numerical results obtained on a laboratory testbed (COST F3
steel-quake benchmark) have been provided.
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Appendix: Some Jacobian computations

This appendix is twofold. First the sensitivity J(6y) to modal changes given in
(25), in particular matrix O, (6o), is explicited in a manner which takes advantage
of the real and imaginary parts of all complex numbers and vectors. Second, we
compute the Jacobians J ) ®, of the transformation (8) of the discrete modes into

the continuous ones, the Jacobian Zgy of the conversion (3) of the complex modes
into continuous frequencies and damping coefficients, and the Jacobian Zyg of the
inverse conversion.

Computation of O, () for J(f)

Since the modes and mode-shapes are pairwise complex conjugate, the observability
matrix (15) writes

) [
dA DA

Opn®)=| . . (49)
PAP DAP

Taking advantage of the real and imaginary parts of the modes and mode-shapes,
another matrix is introduced as follows:

p+1 —

R(BAP) é(mp)

which results from a post-multiplication of Op41(0) by a permutation matrix.
Similarly, from @ defined in (10), define

R(A)
g def R(vec®) | [ R(O)
R, ()
S(vec @)
Now let
0]
DA
Opt1 def vec .
DAP
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Then
~ def ~ §R(® +1)
Opr1 = Opy1 = P 50
ptt = VOETpH ( 3(6p11) (30)
Note that N N N N _
Oy < dvec Opy1/00 = 80,,11/00
Using Cauchy-Riemann theorem, we get from (50) that
06,1 /07— [ OR(Op1) [ORO) IR(©,11)/03(0)
Pt 03(0,:1)/OR(0) 93(Op11)/03(0)
Therefore, for computing O, (o), we proceed as follows:
e Compute O, from (26) using only half of the modes and mode-shapes;
o Fillin M E (0, 0}y, );
e Then
R(M
b2 (00) = ( Sut) ) 61)

Computation of J‘ng) q)_,l'q),; and Zye

Since none of the transformations (8) and (3) affect the mode-shapes, the restriction
of the Jacobian to the eigenvectors is, in the three cases, the identity matrix with
size 2 m r. Thus, in each case, we first concentrate on the restriction of the Jacobians
to the eigenvalues.

Computation of Jq)(d)q,_- Using the notation:

a=R(p), b=S(p),

the first equation of (8) writes:

z=¢€"" cos(rh), y=e"* sin(7bh),
from which we deduce:
Oz Oz
da Ob r -y .
. . (gg(;\) f“?) a
dy By y S(A) @A)
Oa 0b
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Then:

Ty = 0
oo,
i My,

0 I 2mr

Computation of Zgy. The relation (3) writes equivalently:

—2n fd
a = ﬁ, b = 27 f,
from which we deduce:
da  Oa o f  —2nd
od Of | VOT=@F Vi—& | a 4
o o .
ad of "
Then:
Ay
Jo9 = 0
® A
0 Ier
Computation of Zye. The Jacobian of the relation (3) writes
od od — b? —2ab
da b Vi@ +b%)3  /(a? + b?)3 -
of of . 1
Oa 0Ob Py
Then:
By
Tve = - 0
Bn
0 IZmr
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