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4 J.-D. Benamou

Introduction

I arrived at UCLA in the fall of 1992. At that time a post-doc, I had two papers on my
desk. The first one, “Upwind Finite-Difference Calculation of Travel-Times”, Geophysics ,
56:812-821, 1991 by J. Van Trier and W. W. Symes was carrying two messages :

1. as claimed by J. Vidale [81], a geophysicist, the Eikonal equation can be solved as
partial differential equation (PDE) using a finite-difference solver sharing the upwind
properties of schemes used for hyperbolic problems.

2. The second message, more subtle, is the observation that the obtained solution is
not equivalent to the classical output of the traditional numerical ray tracing (RT)
method. It was conjectured that only a part of the ray tracing solution is obtained
using a direct resolution of the Eikonal equation and corresponds in the Geophysical
terminology to the “first arrival travel-times”.

Message #1 seemed to pave the way to a new field of geophysical application for the applied
mathematicians working on hyperbolic problems. Indeed, the Eikonal equation was already
used as a prototype in the mathematical theory of viscosity solution of Hamilton-Jacobi (HJ)
equation [31] and their numerical analysis (see for instance [32] [77]). ENO (Essentailly Non
Oscillatory) solvers, for instance, had their HJ version [69]. Message #2 however was bad
news. Some analysis was clearly needed to understand the precise relation between the
viscosity “first arrival” single-valued solution and the full GO (Geometrics Optics) solution
potentially multi-valued. Moreover there was no indication that any HJ solver would be able
to compute the GO solution and, in that case, would be of limited use as later arrivals are
absolutely needed (see [26]) in many geophysical applications such as migration ([18] [79]
[19]) for instance.

An answer came almost instantly in the form of the second paper, a preprint when I was
studying it in 1992 : “Numerical resolution of the high frequency asymptotic expansion of the
scalar wave equation”, J. Comp. Physics, 120:145-155, 1995 by B. Engquist, E. Fatemi and
S. Osher (instant reply is a typical Osher feature). They proposed an inventive procedure to
extend the Eikonal finite difference solution when it becomes multi-valued. As we will see,
this algorithm was incomplete but it was the start of a new field of research we will refer to
as Eulerian GO.

Eulerian GO has maintain a high level of activity and interest in the applied mathe-
matics community in general and in the “level set” community in particular. The reason
is, the Eikonal equation lies at the crossroad of many different scientific fields : It is the
high frequency approximation of different types of wave equation [35] [30] but can also be
derived using the calculus of variations and Fermat’s principle [42] [84]. The same asymp-
totic method, called WKB, is also used for the Schrédinger equation and there has recently
been some interest in the application of semi-classical limits [61] to the Hemlholtz equation
[16] [25] [43], the equation in the high frequency limit is a “Liouville” kinetic equation. The
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Eulerian Geometrical Optics 5

failure of GO to represent accurately the wave-field near caustics or when diffraction occurs
has kept busy several generations of mathematicians [39] [21] [17] and is closely linked to
the possible multi-valuedness of GO solutions. The Hamiltonian structure of the problem
has been extensively studied in differential simplectic geometry [33] [49] [7] which is the
fundamental tool to understand the qualitative structure of GO solutions. It is also a tool
in the application of microlocal analysis to the controllability of the wave equation [8]. Vis-
cosity solutions have ground in optimal control theory (see [9] for a review) while numerical
upwind schemes are traditionally used to solve hyperbolic conservations laws [44]. Finally,
and this is probably why Stan Osher has pioneered the field, the idea of replacing RT, i.e
solving ordinary differential equations (ODEs) for Lagrangian trajectories and other associ-
ated Lagrangian variables, with the computation of Eulerian variables, solution of PDEs, is
at the heart of the “level set” method [68]. Basically, the “level set” method keeps track of
the Lagrangian trajectories using (precisely) the level sets of the associated Eulerian vari-
able. This variable is the solution of a PDE usually computed on a finite difference grid. In
Eulerian GO however, rays are allowed to cross and the associated Eulerian functions are
multi-valued. As a consequence, merging of two curves at the same level will never happen,
they can instead intersect by simple superimposition. Self-intersection may also happen and
is a more serious problem.

This research has been the source of many contacts and collaborations between geo-
physicists and applied mathematicians. We have tried to understand ideas and compare
methods. In particular the “level set” philosophy of the applied mathematicians turned out
to be radically opposed to decades of RT practice in geophysics. I must confess that in the
early 1990’s, I naively believed we would produce a general Eulerian GO solver and I clearly
underestimated the difficulties. Even though viscosity solvers (i.e. first arrival Eulerian H-J
solvers) are suitable and actually used in several context in the oil industry (see [46] for
instance) no significant application of multi-valued (or multi-phase) Eulerian solvers has yet
emerged in geophysics as there are yet no operant Eulerian algorithms able to solve truly
complex problems more efficiently than RT even in two dimensions.

Eulerian GO remains nonetheless a fascinating research challenge with a potentially
larger field of application than geophysics alone (see [14] [15] [45] for a plasma application
for instance). This paper is more an introduction to the topic (as I see it) than a real review
of the field. Still, it gives a flavor of the different approaches (that I am aware of) under-
taken in the last ten years. Of course it does not pretend to be extensive and complete (I
apologize for any omission). It must be understood that it is a personal interpretation of
these methods and cannot be substituted for the original technical content of the reviewed
articles. It is therefore potentially subject to inaccurate or incomplete descriptions. I also
have seized this opportunity to sketch minor unpublished works when they fit.

The paper is organized in three parts. The first three sections introduce the mathematical
models that are usually used in this literature. We stick to the 2-D case where one dimension
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6 J.-D. Benamou

can be interpreted as a propagating direction and assimilated to time. It simplifies the
presentation and still exhibits the complexity that makes Eulerian GO a difficult problem.
Then we quickly review the numerics behind RT and some of its more sophisticated version
and give basic information on viscosity single-valued solutions and their computations (two
sections). The final four sections present the different categories of Eulerian GO numerical
methods.

1 Mathematical Models

1.1 The Hamiltonian system and Calculus of Variation

The classical 2-D two-point ray tracing problem consists in finding all (say C?) curves

[0,t] — R?
s = y(s)

between two prescribed end-points y(0) = yo and y(t) = y; that minimize (possibly locally)
the “action”

t o q '
/0 il ds (1)
_d()

where () = - The integral is the physical length weighted by the inverse of a strictly
positive smooth speed function ¢, hence a time for the signal to travel, the “travel-time”,
between end-points. The optimal curves, called rays, are constrained at both end and satisfy
a set of ordinary differential equation given by the classical Euler-Lagrange equations of the
calculus of variation [84] [42].

In a typical geophysical application, travel-times have to be calculated for many “source-
receiver” pairs of point. As the actual computation of two point rays is difficult because of
the end-point constraints, a different problem is generally considered : the final y(t) = y;
constraint is relaxed but the curves are allowed to depend on a parameter that can either
represent their initial direction (or angle) in the case of an isotropic source point or simply
the initial position y(0) = yo, where yo spans a given source sub-manifold. We may explicitly
write the dependence y(s, o) in the sequel. We concentrate on the second case. The action
can be made slightly more general by the addition of a given initial travel-time function ¢°

t 1 .
/0 m“y(s’%)llds + ¢ (90),

and we now also minimize with respect to the initial position of the curve. Then the optimal
curves satisfy a classical initial value problem with initial conditions depending on y¢ and
#°. Note that we can interpret every individual ray as a two point ray by fixing a posteriori
the end-points. The idea is therefore to propagate, or “shoot”, a large number of rays from
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Eulerian Geometrical Optics 7

the source region in order to cover as well as possible the receiver region. Standard ODE
solvers can be used to do so (see section 2).

We will use a further simplification throughout this paper and refer to it as the parazial
model. It consists in a dimensional reduction of the problem when the physical situation is
such that rays propagate along a privileged axis usually denoted z (for depth) in geophysics.
More precisely we assume that no ray can turn back in the z direction. Then, z can be used
to parameterize the curves instead of s. As a consequence, we can work with 1-D curves :

0,2¢] — R
z — y(z)

representing the horizontal position of the ray at depth z and z; is a given final depth. The
action now writes

/OZf o V1+9(z,50)2 dz + ¢° (yo)

c(y(2,90))

where (.) = %. In this configuration yp € R spans the surface z = 0. The rays are the y
solutions of the 1-D Hamiltonian system (throughout the paper the z and s notations are
equivalent)

y(sayO) = Hp(say(SJyO)ap(sayO))a y(07y0) = Yo, (2)
P(S;yo) = _Hy(s)y(sayO)ap(sayO))a p(OJyO) = 20 (yO);

where the Hamiltonian function H is given by

(s.9.0) = |27y ~ Q

¢ may depend on s as it is a physical dimension (z), H, and H), are the partial derivatives
of H. The couples (y,p) are called bicharacteristics and live in phase-space, here simply
R, x Ry x R,. The travel-times are solutions of

Qb(S,y(]) = p(37y0) : Hp(s7y(s7y0)7p(s7y0)) - H(S,y(s,y(]),p(s,y(])),
¢(0,90) = ¢°(o)-

The travel-time, also called phase, ¢(s,yo) is therefore transported by the corresponding
ray y(s,y0). When rays are crossing, the travel-time is a a multi-valued function of the
domain spanned by the rays.

4)
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8 J.-D. Benamou

1.2 High frequency wave equation approximation

The other classical derivation of GO is based on the WKB approximation of a linear wave
equation. Let us consider for instance the Helmholtz equation

Au(X) + ou(X) =0. (5)

To be consistent with the previous section, let us take X = (z,z) where z represents the
horizontal axis y(z) is living on. We now assume that equation (5) is set on the half-plane
R x R, with a Dirichlet boundary condition

w(0,2) = a(2)e™*" ) (6)
on z = 0 and ad-hoc radiation boundary conditions at infinity.

For high frequencies w, the oscillatory behavior of the solution generally makes the direct
numerical resolution of (5) too expensive even in two dimensions. Fortunately, when the
scale of the variations of % are much smaller than the wavelength, it is relevant to use a WKB
approximation of u [35] [30]. Let us recall briefly the principle of this approximation before
discussing numerical methods in this framework. The solution of (5) is a priori replaced by
the following asymptotic expansion

- @, 2 iwe
u—(a+iw+(iw)2+...)e (7

called the WKB ansatz. After plugging this expansion in equation (5), we find at the leading
significant orders w? and w the Eikonal equation for the phase ¢

1
IV61? = ®
(where V¢ = (¢, ¢,)) and the transport equation for the amplitude a
2Va - Vé +alp = 0. (9)

The structure of the ansatz u ~ ae™? automatically takes into account the oscillations. The
approximation of the solution of (5) now relies on the resolutions of (8)-(9).

The classical method is Lagrangian and applies an “inverse level-set” strategy : one
simply notices that the integral curves of V¢, again called rays and denoted Y(s) (i-e.
4Y — V¢(Y(s)) and s is a parameterization of the curve) are solutions of a simple system
of ordinary differential equations (ODEs)

dy

P 1_, 1
ds n

P(s), o = 5V(5(V(s) (10)
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Eulerian Geometrical Optics 9

(set P(s) = V(Y (s)) and use (8)). The phase ¢(X), can be computed as the integral of
| P||? along a ray Y (s), since

d _dy B 9

L o(v(5) = T V(v (5) = 1Ps)] (1)

Notice that (10-11) enters the Hamiltonian framework (2-4) in 2-D with the Hamiltonian
function

(Y. P) = 5(IPIF = 7g5) (12

Using the paraxial simplification of section 1.1, we can re-parameterize Y as Y (s) = (2, y(2))
and then (10-11) can be reduced to (2-4). The initial conditions are recovered from the iden-
tification of (6) with the ansatz (7).

1.3 Amplitudes

The Lagrangian resolution of (9) is a bit more involved. We just summarize here the main
ideas. A complete and compact presentation of this topic can be found in [12] where other
models are proposed for the computation of the amplitude. It consists in writing equation
(9) as a conservation law and integrate it over a “tube” of ray. A tube is a domain formed
by the rays y(s,yo) issued from an initial ball yo € B(go,€), go being the initial position of
a central ray and also bounded in s (say s €]0,¢[). One can then let € goes to 0 to establish
the conservation equation (we use the paraxial model)

2 _ 1990, %) 1 _ 2 _ 1y 9y(t, o) 1
a (an(oayo))l ayo c(an(an_O) =a (tay(ta yO))' ayo C(t,y(slgy_()))‘ (13)

Thus, knowing the amplitude at s = 0 gives the amplitude along the ray at all later “times”
s=1:

a2(t: y(t, -7/_0)) = a2(07 y(oa -7/_0))

(t y( 11]0) |6y(07g0)| ay(t7g0)|)—1
c(0,%(0,90))"  Byo 9o

provided |3y(t’y0 | does not vanishes. This happens in particular at caustics which are the
points on the rays where an infinitesimal tube of neighboring rays collapses. This is actually
the mathematical definition of a caustic point : a ray y(s, yo) encounters such a point when
the determinant of the Jacobian matrix of y with respect to yo (here simply a scalar) is 0.
This quantity is called “geometric spreading” as it provides a local measure of the geometric
convergence or divergence of the rays. At caustics points (14) predicts an infinite amplitude,
an artifact of the high frequency approximation. This is what people generally imply when
they say that GO fails at caustics.

(14)

RR n°® 4121



10 J.-D. Benamou

1.4 Computing amplitudes and localizing caustics

Caustics being an important ingredient of multi-valuedness and therefore of our problem,
it is important to understand how they can be evaluated. The computation of %y’f“) is
performed using a set of additional ODEs obtained via a linearization of the system (2) with

respect to yo :

( 8 9
5y (590) S (3.0
6- = A(S;y(é’,yo);P(S;yo)) ) ap )
D &
= —(8,%0) (5,%0)
< 36?/0 o (15)
8—;0(07?10) Idgxa
@(0 Yo) ) 22—¢;(yo)
\ (9:!/0 ’ Yo
where
H,,(s,y, H,,(s,v,
Altyp) = ( oy(8,9,D) op(8,Y5D) ) ‘ 16)
_Hyy(say:p) _Hyl’(sayap)

Finding a caustic point on a ray therefore consists in solving (2-15). When |§TZ| vanishes
or more precisely changes its sign, the ray has passed a caustic point.

Let us point out (for further use) that, as solutions of (15) with non-zero initial conditions,
g—ij(s,yg) and g—;}(s,yg) cannot vanish simultaneously. Indeed, they satisfy (15) with non
zero initial conditions. One can equivalently notice that a tube of bicharacteristics (i.e. in
phase-space) has constant section. This property is also a consequence of Liouville’s theorem

(see [5]).

1.5 Examples of Multi-Valuedness

We now give two explicit examples of multi-valuednes which will be used to illustrate the
Eulerian GO solvers.

The first (trivial) case involves rays issued from different sources. This occurs for instance
when the boundary condition (6) is the sum of two waves :

w(0,2) = ap1 (2)e™?” ) + ag 5 (z)e9"" (@), (17)

Let ¢ = 2 and ¢%!(z) = z, ¢®%(z) = —z two independent initial phase functions for system
(2-4). The analytical solutions are simple and consist in rays of slope 1 for the first function
and slope —1 for the second (figure 1). Geometrical spreading is constant in both cases and

INRIA



Eulerian Geometrical Optics 11

1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
2] n (2]
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
-0.5 0 0.5 -0.5 0 0.5 -0.5 0
y y y

Figure 1: Left: Rays from the first source (shot from s = 0). Center : Rays from the second
source. Right: superposition. Note this also represents fronts (normal to rays in this case).

so are the amplitudes. The level curves of travel-time are called the fronts and here are
straight lines orthogonal to the rays. The linearity of the Hemlhotz equation ensures the
GO solution to be the sum of these two contributions. The rays cross but it is a simple
superimposition (figure 1). There is absolutely no interference between the two single val-
ued GO solutions and they can indeed be simulated either with rays but also by solving (8)
twice, once for each source.

More problematic is the case of a caustic formed either by focusing initial conditions
or variations of the speed ¢ that bends the rays. It is of course impossible to know a pri-
ori when and where a caustic will appear but differential geometry tells you how. It also
provides information on the possible structures of multi-valued solutions (see [7] [6] [33] [49]).

In this theory, the set of bicharacteristics strips A = {(s,y(s,90),2(s,%0)); (s,90) € R} x
Ry, } is considered as a (Lagrangian) sub-manifold of co-dimension 1 of phase-space R, x R, x
R,. Next we need to introduce the canonical projection from phase-space to configuration
space :

II:RFxR, xR, — R xR,
(8,9,p) — (5,9)

In our first example A is actually the union of two disjoint sub-manifolds A = Ay U Aa
associated with each source that simply superimpose when projected in s,y space. The
associated phase function (travel-time) is automatically bi-valued.

In the caustic case, A folds on itself in the p dimension direction. The Lagrangian solution
TI(A) is multi-valued and the projection become singular on the fold. The projection of the

RR n°® 4121
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Figure 2: Left: Rays shot from s = 0. Right: Level curves of ¢, the values of ¢ increase in
the s direction.

fold is the caustic. Quite remarkably, differential geometry provide a generic classification of
the different stable ways A can locally fold (stable means here that the structure described
below of A cannot change under small perturbation in phase-space). More precisely, up to
an unknown change of variable in phase-space which preserves the volume element dy A dp,
a local analytical description of A near multi-valued solution is given. In our 2-D case there
are two possibilities where (s,p) are used to parameterize A : the Fold, y = 3p? and the
Cusp, y = 4p° + 2sp (which corresponds to the junction of two Folds). A similar but larger
classification exists for higher dimensions.

A cusped caustic may be obtained using :

y° 0 —3(x —
c=1, ¢°(4°) :/0 %daz, with p°(z) = \/% (18)

Figure 2 shows the corresponding rays, solutions of (2), shot from s = 0 upwards. The
cusped caustic can easily be distinguished as the curve which separates the multi-valued
zone (where points are reached by three rays) and the single-valued zone (only one ray). In
this case it is possible to solve analytically system (2) and represent the level curves of the
Lagrangian phase for a continuum of rays. It is done on figure 2. The value of the phase
increases from bottom to top. The level curves of the phase fold on themselves inside the
caustic where the solution is multi-valued.

—~

1.6 Lagrangian to Eulerian

It is also possible to recover the Eikonal equation (8) from system (2-4) using a Lagrangian
to Eulerian transformation (basically the “level-set’method) :

INRIA



Eulerian Geometrical Optics 13

As we proceed along the ray and as long as the “no caustic’ property %(s,yo) #0
is satisfied, we can apply the local inversion theorem to the mapping yo — ¥(s,yo). This
implicitly means following a “level-set strategy” is legitimate : the Eulerian variable ¢(s, x)
evaluated at the Lagrangian coordinates specified by the rays matches the Lagrangian phase :

¢(3,y(3,y0)) = 90(8,,1/0) (19)

It is well defined in the domain spanned by the rays y(s,yo) as long as there are no caustics.

A classical result of the calculus of variation [42] [84] then states that :

b2 (8,9(5,0)) = p(5,%0)- (20)

Note that the initial conditions in (2) satisfy (20). It is then straightforward to derive
the Hamilton-Jacobi equation, first in Lagrangian coordinates and then back to Eulerian
coordinates :

{ $s(5:2) + H(s,7, §a(s,2)) = 0, for (s,5) € Rf xRy (1)

#(0,50) = ¢°(v0), for yo € Rﬁ-

Away from caustics, ¢ defined by (19) is called a classical solution of (21). We recall that we
are working here under the paraxial model and that the rays propagate in a privileged s (or z)
direction. As a consequence the phase can only increase in this same direction and ¢, is pos-

itive. We can therefore extract a square root in (8) to recover (21) with H = —, / m —p.

1.7 A paraxial limiter

A clever modification [71] [46] of H deserves to be mentioned. It leads to a systematic use of
the paraxial model even when there exists rays that potentially turn backwards. We recall
that V¢ = (95,1;) gives the direction of the ray. If this direction makes an angle § with
the s axis, # must satisfy (according to (8)) the relation

cosf

'4[}3(55'77) =

c(s,z)’
Then the assumption

oS 0oz

Vs(s,2) > >0 (22)

c(s, )
guarantees that the rays cannot deviate more than an angle 6,,,, from the s axis and
therefore cannot turn back. Hence the idea to modify the Hamiltonian function to a finite
aperture Hamiltonian :

H‘g(s,w,p) = —\/max(ﬁ — P2, (ﬁ €080 maz)?)- (23)

RR n°® 4121



14 J.-D. Benamou

This Hamiltonian cuts off parts of the solution associated with rays that make an angle higher
than 60,4, with the privileged s-axis direction. It replaces them by a plane wave propagating
in the 6,4, direction. It therefore prevents numerical problems, should = t1’$)2 — p? become
negative thus indicating a turning ray.

1.8 (s,p) Maslov projection

Let us come back to the Fold. Multi-Valuedness is a consequence of the projection II of the
Lagrangian submanifold described by y = 3p? on the (s,y) space (section 1.5) : each point
y is associated with two p-branches : p = :I:\/(%) It is important to notice, as Maslov
did ([28] or [39] for a review), that a single-valued projection is still possible but onto (s, p)
space. Actually we know more : %(s,yo) and g—;)(s,yo) cannot vanish simultaneously.
Therefore it is always possible to find a projection space (here (s,p)) where the phase is
single-valued. The Maslov Lagrangian treatment of the amplitudes at caustics is therefore
based on the resolution of equation (9) in (s, p) space. Geometrical spreading (as used in
formula (14)) is replaced by |§7’;(s,y0)|. Two equivalent corrected transport equations (for
each p-branch) in (s,y) can also be derived [63] and a weighted combination of the solution

of both projection ((s,y) and (s,p)) has been proposed to yield a uniform solution [59].

In such a configuration, it makes sense to choose as the Eulerian configuration space, the
space spanned by p(s,yo) instead of y(s,yo). As long as the p trajectories do not cross, i.e.
g—;(s, yo) # 0, it is possible to invert yo — p(s,¥yo) and switch to Eulerian variables denoted
(s,q) (the g Eulerian variable corresponds to the p Lagrangian variable) As before, we need
a variable to describe the phase : ¢(s,q) but also one to keep track of the position y which
we denote X(s,q) :

X (3,p(3,90)) = y(s,%0)-
(24)
¢(s,(s,90)) = ¢(s,%0)-

Now, simply deriving the above formulae with respect to s and with the help of the
Hamiltonian system (2), we can establish that X and ¢ satisfy in Eulerian coordinates (s, q)
the equations :

XS(S,(]) - Hy(saX(5>Q)7Q) : Xq(37p) = Hp(37X(37Q)7Q)7

¢s(37q) - Hy(S,X(S,q),q) ) ¢q(37q) =q- HP(S,X(S,Q),Q) - H(S7X(57(I)JQ)

the initial conditions are deduced from (24).

(25)

1.9 The Kinetic model and the Wigner transform

It is also of course, always possible to perform the Lagrangian to Eulerian transformation in
the full phase-space where there cannot be caustics. The Eulerian phase function ¢(s, z, q)
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is always well defined by

¢(37y(37y0)7p(37y0)) = QO(S,:UO) (26)

and satisfies

04 (8,2, 0) + Hy(5,2,0) - 0 (5, 7,4) — Hy(5,7,) - 8y (5,2,0) =
¢- Hy(s,2,q) — H(s,2,0). (27)

When working in higher dimensions (2 or 3), the ¢ variable can advantageously be replaced
by c(s 77 Where ¢ lives on the unit sphere [36] [37] [29]. We indeed know (see section 1.3)

that the bicharacteristics (Y, P) and therefore the solution of (27) live on the hyper-plane
”P“ = C(sly)-

A kinetic approach to GO where rays can be considered as the trajectories of particles
in phase-space yields a similar equation. Let us define the density function of a family
(yi(8),pi(8))i=1,..,,5 of N such particles as

f(s,2,9) Zaz & —yi(5))8(g — pi(s)) (28)

where § is the Dirac mass and a; can be interpreted as the “weight” of the particle and could
depend on s in a more sophisticated model. The dynamics of the particles being governed
by (2), f(s,=,q) satisfies the following kinetic equation

fs(saxaq) + Hy(37$7Q) : fm(57$7Q) - Hp(‘g:wa(I) : fq(S,.Z’,Q) =0. (29)

Note (29) can be derived from Helmholtz equation (5) using semi-classical limits [16] [25]
(see also [43] in the bounded domain case). This theory, based on the Wigner transform is
well known in the study of Schrodinger equations [61]. In the 2-D setting of section 1.3, the
Wigner density w, (X, P) is the fourier transform of a delocalized quantity :

wo(X,2) = Fy=(u(X + 5= Z)u(X ~ 5-7)) (30)

Under the paraxial model simplification where (X, Z) is replaced by the reduced coordinates
(s,z,€), the limit wy, = lim,_, o w, can be shown to satisfy in a weak sense equation
(29). The link between the weak limit of the Wigner measures and multi-valued GO is also
studied in [64] [51] in which it is established (still in a weak sense and away from caustic
points) that

(woo(saxaé.) 3 T, {. Zak € pk( )) (31)

where np is the number of bicharacteristics (y(s), pr(s)) such that yx(s) = z. In this model
ar(s) = a(yr(s))? is the square of the amplitude, solution of (9) and carried by the kth ray.
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2 Lagrangian numerical methods

The numerical resolution of the system of ordinary differential equations (2-4) (generally
coupled to (15)) is usually performed using standard Runge-Kutta solvers that are now
commonplace in academic and commercial software packages (we will not describe this type
of technique here). There also exist “simplectic” solvers that preserve (or try to preserve)
the Liouville conservation property of each volume element dy A dp (See [47] for a review).
The numerical difficulties are linked to the format either of the given speed function or of
the output.

The speed is commonly given sampled on a grid. The solver then obviously needs an
interpolation method as it does not necessarily evaluate the right-hand side of the system
at grid points. The most common technique seems to be the use of splines. Notice that the
“level-set” /Eulerian approach does not directly encounter this problem if grid discretization
of the equation matches the sampling grid for the speed. The interpolation then occurs au-
tomatically at the level of the solution through the discretization of the equation. Of course,
if the grid discretization of the equation does not match the sampling grid then interpolation
is also needed.

At the other end of the numerical procedure, travel-times and other quantities such as
geometrical spreading are generally required at a large number of receiver points that are
not necessarily reached by the rays that have been shot whatever the number. Interpolation
is then again needed. There are several approaches to the problem (see [24] for a short
introduction).

The wavefront construction method [82] evolves in s a representation of {y(s,¥0)/yo € D}
(D being an initial set of rays) using a finite number of rays (y(s,¥o,;))i=1..nr that retain
their initial neighbor connectivities. It is then possible to compute a mesh surface of the
wavefront and of the travel-time field above even if the solution is multi-valued (rays cross
and the surface folds). Mesh cells can collapse or conversely become so large that inter-
polating travel-times may be inaccurate. Several techniques have been proposed either to
improve interpolation or to provide a criterion for the elimination and division of cells. I
refer to [23] [66] [83] [58] [62] for more details about these Lagrangian practices.

Let us finally mention that the numerical resolution of large 3-D problems may be time

consuming. As each ray can computed independently the parallelization of the computation
of a large number of rays is also used.
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3 Eulerian viscosity solvers

3.1 Viscosity solution

In the presence of a caustic there is still a notion of weak single-valued solution for equation
(21) called “viscosity solution” [31] [9]. Viscosity solutions are worth considering because
any stable numerical scheme converges to this class of solution [77] [32]. These schemes are
generally called upwind because they discretize space derivatives on the opposite side to the
direction of the rays (would rays be traced).

A link can be made between Lagrangian and Eulerian viscosity solution using the theory
of optimal control [11]. The viscosity solution can be characterized as the value function of
the following optimization problem

o(s,7) = in / Ly, 9(0)d+ ), (32)
{yo € Ry, y(.) € WHT*(R); Jo

y(0) = yo, y(s) =z}

where the minimization is performed with respect to the admissible curves y(.) and their
initial point yo. The “Lagrangian” function L(s,z,v) = supper, {p-v — H(s,z,p)} is the
Legendre transform of H with respect to p. One can formally check that the Euler-Lagrange
equations of this problem correspond to the Hamiltonian system (2). It means that the rays
are the critical curves of the optimization problem (32) and the viscosity solution the opti-
mal value of the cost function.

When each point is only reached by one ray, we have a single-valued classical solution
and the value function of problem (32) is exactly the integral of the phase ODE in (2).

If more than one ray reaches the time space point (s,z) and if we denote (yo,x)k=1..n
the m initial points of these curves, then the viscosity solution ¢ selects minimum of the
associated phases :

¢(s,x) = min o(s,yo,k)- (33)
k=1..n

If there is a zone where no ray penetrates, the viscosity solution implicitly generates
“non-classical” rays to fill this empty zone. It means that the optimal curves will still satisfy
the Hamiltonian system (2) but not necessarily the original initial conditions (see [13] for
more on this phenomena). When the configuration space is bounded, the optimal curves
may only satisfy the ray equations (2) piecewise (they can be reflected or diffracted) or they
can creep along boundaries. These interesting situations are probably linked to diffraction
phenomena and should hopefully be investigated elsewhere.

The viscosity solution corresponding to our two examples in section 1.5 are presented in
figure 3 and 4. They can be obtained by applying the minimum phase principle (33). It is
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Figure 3: Left : Level curves of the viscosity solution ¢ with a kink on y = 0.5. Right :
Level curves of the multi-valued solution ¢.
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Figure 4: Left : Level curves of the multi-valued solution ¢. Center : Viscosity solution
level curves of the viscosity solution ¢ (first arrival) with a kink on y = 0.5. Right : Level
curves of the remaining part of the multi-valued solution (second arrival).

easily interpreted because, when the speed c is constant, travel-time is proportional to the
distance function. Both cases exhibit a vertical curve of singularities in the gradient of ¢
called a kink (or shock).

3.2 Upwind solvers

Convergence of numerical solvers towards the viscosity solution relies on theoretical prop-
erties (monotonicity, stability, etc..). The general proof of convergence for Hamilton-Jacobi
equation is quite technical [77] [32] and I have not seen any simplification attempt in the case
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Figure 5: The ray reaching (s/t1,z;) (dt = ds).

of the Eikonal equation (even for constant speed). I show here how the standard Godunov
solver can be derived in a simple case. This derivation gives a good intuition of what upwind
solvers amount to.

Let us take H(s,z,p) = —v/1 —p? (i.e. does not depend on (s,z) and ¢ = 1). The
discretization points in s are denoted (s? = jds)jcz+ and (z; = idz)icz in © where ds
and dz are fixed grid steps. The phase at grid points is ¢g’ = 1(s?,z;) . We focus on the
behavior of the solution between s; and s;;, around point z;. We further suppose that a
continuous piecewise linear approximation of the phase is made (the viscosity solution can

I _qpd Y
be shown to be C%) and denote v, = % and ¢} = % the (constant) slopes of
this approximation respectively on the left and the right of z;, these are called the upwind

derivatives. Remark that these quantities also give the slopes of ralys H,(v7) = 7\/%

respectively on each side of z;. We now consider a ray such that y(s’ 1) = z; and y(s7) < z;
(figure 5). We can exactly integrate (4) between on ]s/, s7*1[ and find :

. . . J+1

P = B = 9s) + [ P Hy(s,(s),0(8) — H()ds (g

=P(s?, i) — (77 = /) H(y7)

which is a finite discretization of (21).

The problem now reduces to determining automatically the direction of the rays and de-
ciding what should be done when rays converge (shocks or kinks) or diverge (rarefactions).
Figure (5) shows the four possibilities to be considered : A. H,(¢, ) > 0, Hy(¢F) > 0. B.
Hy(y3) 20, Hy(v7) <0. C. Hp(vhy ) <0, Hy(yF) > 0. D. Hy(¢;) <0, Hp(¢F) < 0. The

front (level curve of phase ¢ = ]) is shown as a dashed line.

The sign of the upwind derivatives easily gives the direction of the ray and cases A and D
are dealt with like in (34). Conversely we need an additional criterium to deal with situations
B and D. Following the minimal phase property of the viscosity solution (33) we decide to
select the minimal phase solution. It will be given by the ray with highest slope (in absolute
value) for B (the side where the front, dashed line, is the closest to point s;41,z;)). In case
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C, there are no rays from (s;,z;) to (sj+1,%;) but using (32) and recalling that the phase
is here the distance function, we postulate that the zone, uncovered by “classical” rays, is
covered by a fan of “diffracted” or “virtual” rays from point (s;, ;). Minimum travel-time
is then associated to the “virtual” ray with 0 slope (see also section 3.5 on this topic).

Using the monotonicity of H, (H is strictly convex) the following formula automatically
determines the correct upwind derivative in case A to D :

42 = modmax(max(s; , 0), min(4F,0)). (35)
Here modmaz(a,b) return the highest module argument. The discretization of (21) then is
(T @) = (87, @) — (71 = 87) H(yy). (36)

One can convince himself (by writing it down case by case) that (36) is actually a simpli-
fied version of the general Godunov solver for p convex Hamiltonians that reach minimum
value at 0 [69] :

HG(d}w_a by) = ewt¢€1(¢;,¢j)H(tj>$ia¢) (37)
where I(a,b) = [min(a,b), max(a, b)] and ext defined by

_ minaswsb lf a S b
eTtycr(a,b) = { maxp<y<p if a > b

There are of course many other possibilities for both s and z discretization of (21). For
more details you can go to this (incomplete) list of references : [69] [55] [77] [57] [52] [20].

Let us also mention less classical works: an HJ solver on unstructured grid [1] [2] [3], a
specific grid refinement procedure [71] and an attempt at exploiting the linearity of Hamilton-
Jacobi equations in the (RU 400, Maz, +) algebra [40]. The derivation of a Godunov solver
for the Eikonal equation in an anisotropic medium is given in [72].

3.3 CFL condition

The derivation also clearly shows why a CFL condition is needed and how it should be
determined. To be valid, our reasoning requires that the “light cone” formed by rays reaching
(s7*1, ;) and retro-propagated at “time” s = s/ has support inside [z, ,T;y1]. Assuming
constant grid steps ds and dz, a global sufficient CFL condition is

dt < max Hy(p)dt. (38)
P

Notice that, if using the finite aperture Hamiltonian (23), (38) simplifies to

dx

dt < tan(0mae)
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3.4 More upwinding - 2-D stationary equation

The paraxial model (section 1.1) turns a 2-D problem into a 1-D evolution problem with
Cauchy data : a space dimension is transformed into a “time” dimension. This simplifica-
tion is however not always possible, especially for applications (such as in [73] [3] [48] ...)
which rely on the “stationary” 2-D Eikonal equation (8) in a bounded domain with Dirichlet
or Neumann boundary condition. The first possibility for solving this equation consists in
looking for the stationary state of an evolution equation on a 2-D + time extended domain.
The numerical solvers are then similar to those described in section 3.2. The second option
is to derive a discrete stationary Hamilton-Jacobi equation by means of “local” upwinding.
The discrete equation can be solved by several iterative methods [70] [73] and has been the
base for the development of the “fast-marching” method [75] [76]. In this last method, one
notices that it is not necessary to update the grid values at all iterations. More precisely,
it is only necessary to sweep the domain following the rays. Several techniques designed to
propagate (like a wavefront) a confidence band where points may need updating have been
proposed ([75] [53]) thus reducing the computational cost of the method. I would like here
to make two remarks : first the paraxial model relies on the same philosophy except that one
knows a priori the direction this band should be propagated in. The “band” then reduces
to its most simple form : a grid line. The second remark is that “fast-marching” in some
sense is a Lagrangian sweep of the Eulerian grid while, in general, the equation derives from
a “level-set” approach which precisely moves from a Lagrangian to a Eulerian description.

Even though the discrete 2-D model has been extensively used (in particular through
“fast-marching” applications), nowhere have I seen its fully detailed derivation. I therefore
give here, for the sake of completeness, a complement to [73]. It again illustrates, along the
way, the “upwinding” philosophy.

The derivation of the discrete equation is based on the remark that the viscosity solution
1 of (8) satisfies the “optimal control” formulation:

1
sup {V¢(z,y).¢ — —} =0. (39)
lall<1 c(z,y)
We use Cartesian coordinates (z,y) and skip all details about domain and boundary condi-
tions. A regular grid discretization is introduced and (z;,y;) = (i dz,j dy) denote the grid
points, 9;; is the discrete approximation of ¥ at (z;,y;).

A first order finite difference approximation is made in (39) and the equation is written
at z = (x4,9;)-

i 95) — — WVij 1
sup {d}((x y]) dt Q) 1'0 J } =0 (40)
i<t —dt (i, y;)
dt is chosen such that (z,y) — dtq) €](i — 1)d=z, (i + 1) dz[x](j — 1) dy, (j + 1)dy[. Let
us restrict ourselves to the first quadrant Jidz, (i + 1) dz[x]jdy,(j + 1)dy[ on which we
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approximate 1 using a “convex linear” combination of the value at grid points :
V((z,y) — dtq) = avhij + Brhit1j + 7 Yij4
where a, 8 and 7 are such that

(z,y) —dtq = a(zi,y;) + B (ziy1,¥5) + 7 (Tiz1,¥j41))
a+p+v=1L1

The optimization problem (40) now depends on («, 3,7). It can be worked out for the four

i — _ dzdy i i i ; famy -
quadrants and taking dt = Tty simplifies into the discrete Hamiltonian :
9i5(D5 Vij, D iz, Dy ¥ij, Df hiz) = 0, (i, §) (41)
where
1
ii(a,b,¢,d) = v/max(at,b )2 + max(¢t,d )2 — —,
gl]( ) \/ ( ) ( ) C(.’l]'z', y])

at = max(O,a), b = max(O,—b) and D;’lp” = %, D;'gb” = W, D;¢” =

Yij—Yij—1 doh o — WYij+1—Yi
dy ’ Dy w“ - dy '

The convergence of the discrete solution toward the continuous viscosity solution as the
mesh size goes to zero is proved in [73]. Several iterative methods can be used to compute
the discrete solution (4;;), one popular choice being a relaxation method complemented by
the “fast marching” strategy.

3.5 Source point simulation

The problem here is to simulate point source initialization (rays flowing in different directions
from a single point) under the paraxial model where the natural Cauchy data initialization
at z = 0 corresponds to one ray per point. When the source point (rays flowing isotrop-
ically in all directions) is located in a zone of constant speed C the analytical solution is
known and we can set the initial condition away from the source point to avoid this problem.

This is however not always the case and I would like to explain here a practical ap-
plication of the “rarefaction effect” observed in case C, figure 6. The phase 9(s7,.) has a
discontinuous gradient at x = z; that produces diverging rays on each side. As already
noticed, there is a center zone which is not covered by the “classical” rays. The Lagrangian
solution cannot take into account the singularity of the phase at z = x;.

We therefore turn to the definition (32) of viscosity solutions to understand what the

solution is. A simple way to force all paths to emanate from a given “source” point x; is to use
the initial phase function ¢° to penalize all other points. For instance ¢°(z) = 400, Yz # =;
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Figure 6: The four Riemann problem cases (dt = ds).

and ¢°(x;) = 0 precisely achieves this goal. This last choice cannot be used in practice.
A numerically safe way to approximate it is ¢°(z) = a|z — z;| where « is taken as big as
possible. This precisely correspond to “rarefaction” case C discussed in section 3.2 where the
slope of the rays is +«a. Because the gradient Vi = (¢,,1,) satisfies the Eikonal equation
(8) a cannot exceed % the inverse of the speed. From a numerical point of view, the CFL

condition is even more stringent :
/1 _ 2
dt < |’lﬂz| _ c2 «a ‘

dz |1 a

The initial phase ¢°(z) = a|r — x;| mimics a point source Lagrangian initialization by
producing a fan of "ray” paths from z; that fill the fan left empty by the classical diverging
rays. The introduction of a singularity in the initial phase function therefore generates a
point source initialization that would otherwise not be possible using the paraxial model.

A set of diverging rays, though not from a single point, can be initialized using ¢°(z) =
alz — z;|?>. We can also introduce an € parameter dependent smoothing of the singularity of
|z — z;|, the singular function being the 0 limit . The conjecture of the convergence as € — 0
of the solution towards some diffractive wave phenomena is, it seems to me, an interesting
one.
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4 Eulerian multi-phase solvers - splitting methods

As explained in section 3.1, the computable viscosity solution is single-valued. The first
obvious technique to compute a multi-valued GO solution by Eulerian means is to find
a computable way to split this multi-valued solution into as many single-valued solutions
as necessary. This turns out to be non trivial , essentially for geometrical reasons, and
apparently cannot be done automatically without a priori knowledge of the structure of the
multi-valued solution.

4.1 Caustic splitting of the multi-valued solution

We here assume that we are dealing with a cusped caustic. The multi-valued solution can be
split into three single-valued branches delimitated by the caustic curve which corresponds
to the projections onto (s,y) space.

In figure 7, we represent the three families of rays or portions of rays which are associated
with each branch and in figure 8 the corresponding level curves of the phase. The left and
right branches (—C!l and —C'r) are associated with the rays before they reach the caustic,
the last branch (+C) is given by the portions of rays once they have passed the caustic. A
comparison with figure 3 shows that the viscosity solution is composed of the left branch
—Cl for y < 0.5 and the right branch —C'r for y < 0.5 (they match on the kink y = 0.5). The
viscosity solution therefore never “reaches” the caustic. By this we mean that the portions
of rays implicitly associated with the viscosity solution do not reach the caustic (the notable
exception is the singular tip of the caustic also called the cusp). Superimposing the three
plots in each figure gives back respectively the complete family of rays and the multi-valued
phase (figure 2).

Each branch separately can be shown to satisfy an optimal characterization like (32) and
is interpreted as the viscosity solution of the Hamilton-Jacobi equation set in the domain
corresponding to the actual support of the branch [11]. More precisely, if we denote 1)~ ¢!,
=" and *C the three branches of the phase, they individually satisfy equation (21)
on their respective domain (represented on figure 8) bounded by the caustic. The initial
conditions for the —C branches are given by ¢° and “out-going” or homogeneous Neumann
boundary conditions can be used along the caustic. The +C branch, which forms the
remaining part of the multi-valued solution once the rays have passed the caustic, uses
Dirichlet boundary conditions ¢t¢ = ¢~ ¢! on the right part of the caustic and ¢7¢ = ¢~ ¢
on the left part.

4.2 Caustic localization

There have been several attempts to implement the branch splitting algorithm of section 4.1.
The main difficulty is the localization of the caustic boundary, in our case a free boundary as
it depends on the solution itself. In the original paper [11], I used an Eulerian version of the
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Figure 7: From left to right : the families of ray associated with the three different branches
of the Lagrangian solution. The caustic is used to split the rays. In particular the branch
+C is made of the remaining parts of the rays of the branches —C's stopped at the caustic
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Figure 8: From left to right : The corresponding level curves of the phase. The values of

the branches —C's and +C' match on their respective part of the caustic.
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system of equation (15) coupled to the Eikonal equation (21) in order to detect the caustic
boundary. This gave a set of Eulerian transport equations coupled to (21) for a variable
B(s, ) defined as

B(s,y(s,90)) = det<§—;0(s,yo>>.

The method then consists of monitoring the position of the caustic by testing for 0 values
of 3. In practice there is no such thing as an exact 0 numerical value, hence the need to
introduce a small tolerance parameter to localize the caustic. This causes inaccuracy as well
as the necessary interpolation of the caustic curve on a grid.

This problem was solved in the case of a Fold caustic [14] (two branches) through the
derivation of a specific equation for the caustic curve. Let z.(s) be the parameterization of
the caustic. It satisfies the ordinary differential equation

i‘c(S) = Hp(zawc(s)apc(s)) (42)

where, at the continuous level, p.(s) = ¢;9(s,z.(s)) = ¢79(s,z.(s) is the identical one-
sided derivative of the two branches +=C' connected at the caustic. It constitutes, coupled
with the two +£C Eikonal equations, a closed Eulerian system for the GO Fold solution.
At the numerical level things are not so straightforward. The phase will typically behave
as ++/z. — = near the caustic (we assume that the branches lie on the left of the caustic).
It is therefore not possible to approximate p. by simple upwind finite differences on one
or the other branch. We nevertheless obtained a first order numerical closure in the form
pe(8) ~ 0.5 % (¢;¢(s,2:(8) — dz) + ¢ (s,2.(8) — dx)) (dzx is a grid step) where now ¢ ¢
can be safely approximated using finite differences. This numerical study is complemented
by a moving grid strategy to adjust the domain to the caustic curve. The initial conditions
for the +C branch and the caustic are not necessarily given by the physics of the problem.
We therefore designed an automatic initialization procedure for the system which does not
interfere with the sought for solution. This Eulerian GO method has been used to compute
High Frequency solutions of the Helmholtz equation in a plasma physics context [15].

Let us also mention a "time asymptotic method" [13] based on a local change of variable
in “time” 3(s,z) that maps the caustic at § = +o0o0. The Eulerian problem is then set on
an unbounded domain and the solution is asymptotically stationary. This method has also
been combined with the Fold equation method above [14] to derive an Eulerian method in
the cusped caustic case (three branches) [10].

4.3 Shock-splitting

The hyperbolic conservation law community has a long experience of shock capturing. That
is, finding precisely where the viscosity solution is discontinuous without tracing the charac-
teristics. In the case of Hamilton Jacobi equations shocks are called kinks and are the locus
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of discontinuous gradients. The viscosity solution remains continuous.

In [36], a method based on kinks detection is proposed. It relies on the idea that kinks
are curves (in 2-D) where rays, that would otherwise cross, are terminated. The method
can simply be illustrated on the superimposition case (figures 1 4) of section 1.5. The first
step of the method consist in the computation of the viscosity solution (center plot of figure
1). It is then possible to detect numerically the kink, denoted K, (here the straight line
z = 0.5) and store the trace of the (continuous) viscosity solution t,;s. on K. It is then
used as a Dirichlet boundary condition ¥ = ;s on K for a new 2-D stationary Eikonal
equation (8). We can assume here that we in fact have two problems on each half plane
bounded by the kink with the same boundary condition. This new solution will be the
second arrival depicted on the right plot of figure 4. It is important to realize that the phase
data 1 on the kink curve K determines its tangential derivative and therefore also V1) as
the Eikonal equation (8) must be satisfied up to the boundary. Recalling that V1) gives the
ray direction, this second Eikonal resolution indeed continues the rays that have been shut
off by the viscosity solution. No other initial or boundary conditions will interfere and give
rise to multi-valuedness.

The limitation of this approach is clear when considering our second example of multi-
valuedness. If we consider the viscosity solution associated with a cusped caustic, we observe
as in the previous case a kink at = 0.5. The rays flowing out of the kink to form the second
part of the solution actually “fold” and live in a domain bounded on one side by the caustic.
The solution is again multi-valued (two branches) and a new kink develops. The second step
of the procedure as proposed in [36] will not see the caustic curve. The viscosity solution
necessarily “fills” the zone behind the fold caustic, a similar phenomena to the source point
procedure described in section 3.4. In this zone one observes the formation of artificial
wavefronts which may interfere with the real solution and generate a new kink.

4.4 Segment projection

The segment projection method [37] originally developed for fluid mechanics application
also is a caustic splitting approach. It uses two complementary representations of the GO
solution that provides an overlapping mechanism over the caustics . The first representation
decomposes the GO solution into single-valued branches, separated by caustics in the (s,y)
space, called X-segments and represented each by X (s, ¢) solutions of (25). The GO solution
can also be split in a single valued branches separated by caustics in the (s, p) space. These
branches are called P-segments. A similar Eulerian variable Q(s,z) is needed and defined
by

Q(say(s7y0)) :p(sayﬂ) (43)
for their representation. Each P-segment therefore satisfies the equation (derived from (43))
Qs(sa .CL') + Hp(sa T, Q(S, 'Z')) . Q.’E(Sa m) = _Hy(sa X(S, Q)7 Q)- (44)
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The fundamental “Maslov” remark of section 1.8 now guarantees that a caustic cannot ap-
pear simultaneously in (s,y) and (s, p) space. As a corollary, we know therefore that the
P-segments can be used to monitor the localization of the caustic boundaries and the appari-
tion of new caustics in (s, y) space and symmetrically the X-segments are used in (s, p) space.

More practically, let us consider an (s,y) fold caustic curve located at (s, z.(s), p.(s)) in
phase-space which “links” two X-segments on each side of ¢ = p.(s). There cannot be an
(s,p) caustic at (s,z.(s),pc(s)), we therefore know that a P-segment Q(s,z) is well defined
in a neighborhood of (s,z.(s)). Actually we have Q(s,z.(s)) = pc(s)) and z(s) is locally
characterized by Q»(s,z.(s)) = 0. The P-segment can therefore be used to update the ¢
position of the caustic defining the boundary for the associated X-segments. The same cri-
terion can be used to detect the occurrence or disappearance of an (s,¥) caustic thus leading
to the splitting of an X-segment in two or the merging of two X-segments into one.

In the 1-D paraxial model, each P-segment is therefore associated at most with two
X-segments and each X-segment with two P-segments as the same procedure is applied to
(s,p) caustics. The main numerical issue is therefore to maintain a table of correspondence
between segments. The method has been successfully applied to multi-valued GO solution
consisting of several successive cusped caustics. Its main drawback is its computational cost,
similar to RT.

5 Eulerian multi-phase solvers - a matching method

Slowness matching [78] can be thought of as a domain decomposition method. The domain
is decomposed into non overlapping sub-domains and the different branches are sorted out
by checking “matching” conditions at the interface between Eulerian single valued solutions
of (21) on each sub-domain. We describe below the matching condition and how these Eu-
lerian solutions are generated. The method is designed to solve in an Eulerian fashion the
problem of finding all travel-times of rays between a source point and a sets of “receivers”.
Notice that the problem is “time” reversible as travel-time does not depend on the direction
of the ray.

We stick to the simplest configuration and describe the algorithm first in the continuous
setting : The Eulerian GO problem is solved, under the paraxial model simplification, be-
tween z = 0 and z = 1 (rays are flowing in the privileged 2z direction). We further assume
that rays may cross but only at depth lines z = 0 or z = 1 where the source and “receivers”
are located (i.e. the receivers are at z = 1). We consider two sub-domains separated by the
interface set at z = z;, the 0 < z < z; domain is referred to as the bottom sub-domain and
the z; < z < 1 as the top sub-domain. We denote 1, the solution of (21) in the bottom
domain with initial condition ¢°(z) = a|z — x¢| at 2 = 0 that simulates an isotropic point
source at xq (see section 3.5 on Eulerian point source initial conditions). It is naturally
associated with rays traveling upwards from z = 0 to z = z;. Similarly 47! denotes the
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solution of (21) in the top domain with the same initial condition, ¢°(x) = a|z — z1], but
this time set at z = 1. It means that the z “time” evolution is run backward from z = 1
to z = z; for the top solutions and associated rays travel downwards. As rays are supposed
not to cross inside the domain (they actually only cross at source points) a family of singled
valued Eulerian solutions (1} ) indexed by the source location z; can be computed in the

top domain.

The method then consists in finding for all (receivers) source points x; the slowness
vectors that “match” at one or more points z,, on z = z; :

Vwﬁi(zumm) = _kup(ziamm)- (45)

We recall that 4X = V(Y (s)) (section 1.2) is the direction of the ray, also called slowness
vector. Condition (45) is the indication that two portions of ray match in position and
speed. It is the Eulerian indication that there is a ray traveling from (0,z9") to (1,z%")
through (0.5, z,,) and the total travel-time is the sum of travel-times on each sub-domain

dn u
¥ (0.5,2m) + 1%{(0.5, Zm). There are as many rays as matching points z,,. Under the

paraxial model Vi) = (4/ c% —2,1,) and the matching condition (45) simplifies to finding

the roots z,, of equation

0 21 om) + Orhun (2t 7m) = . (46)

After discretization, travel-times and finite difference approximations of derivatives are only
known at grid points. The matching condition (46) can only be satisfied in some “discretized”
sense through interpolation or other root finding method. A common choice is also to let
x1 vary over the discretization grid.

In order to obtain a more general method, it is possible to relax the single-valued con-
dition in the upper domain. The algorithm is then applied recursively : we first set z; such
that the solution is single valued in the bottom domain 0 < z < z;. If ray crossings occur in
the top domain, apply the algorithm to the top domain : the initial condition is set at z = 2;
with initial condition ¥“P(2;,.) and a new interface is determined such that the solution is
single valued in the bottom domain. A recursive depth search is also necessary to build a
tree of matches and compute all travel-times. The simplest decomposition is to consider
successive horizontal strips made of one horizontal grid line as the bottom sub-domain.

This method may seem complicated and the cost of many Eulerian solutions and slowness
matchings prohibitive. One must keep in mind however that it computes the travel-times
between all two points rays between a source point and a family of “receivers”. In this respect
the computational costs worked out in [78] indicate that the method is competitive.
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6 FEulerian phase-space solvers and capturing methods

As mentioned in section 1.9, it is also possible to write an Eulerian equation either for the
phase ¢(s, z, q) (27) or a “density” of particles f(s,x,q) (29). In both cases the main variable
is defined over an Eulerian representation of the full phase-space R, x R, x R,. We already
discussed the advantage of this approach : there are no caustics and no multi-valuedness in
this space (section 1.8). Even though the ¢ variable can be changed for an angle (section
1.8) the drawback, using such equations, is the dimension and thus the cost of the problem.
In this paper where we treat a 2-D GO problem under a paraxial dimensional reduction,
phase space is three dimensional (3-D). The full 2-D stationary problem corresponds to a
4-D phase-space. A 3-D GO model will lead to 6-D phase-space (5-D if paraxial). The
challenge therefore is to find ways to reduce the dimensionality of the problem.

6.1 Full phase-space solvers

In [29] the authors combine different techniques but the model basically remains (29). The
problem is to track a 1-D curve representing the front in a 3-D phase-space. The curve is
modeled as the intersection of two 2-D surfaces which are advanced using a fast level set
method. Details including, in particular, the initialization (and re-initialization when nec-
essary) of the intersecting surfaces and cost estimates are given in [29] as well as 2-D and
elementary 3-D test cases.

The approach pursued in [41] starts from the stationary form of the Eulerian phase-
space equation (27). The idea of propagating a front is temporarily dropped. An “escape”
stationary equation is solved in which the Eulerian variable represents at each phase-space
point the travel time to exit a bounded phase-space domain following the Hamiltonian
dynamics (2). The corresponding Lagrangian problem would amount to shoot rays from all
phase-space points in the domain (point sources everywhere). The result can therefore be
used to evolve any initial condition that forms a curve in phase-space. The fast marching
method is then adapted to solve this phase-space PDE.

6.2 Moment methods

It is common practice in kinetic theory to consider quantities, averaged in “speed” ¢, called
moments : my(s,z) = [ ¢*f(s,,q)dg. When the p dependence of the Hamiltonian is in the
form (see [27])

H(s,2,p) = 59+ V(5,2) (47)

with V' a given potential (note that V' = 0 leads to Burgers equation), the moments can be
shown to satisfy the infinite hierarchic system

Osmyp(8,x) + Opgmps1(s, ) + kO, V (s, z)myp_1(s,2) =0 (48)
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for £k = 0,1,2,... with m_; = 0 by convention. The ¢ variable is eliminated as in the
Hamilton-Jacobi equation and dimensionality then reduced. The moments still carry in-
formation on the multi-valued structure of the GO solution : let us for instance consider a
phase-space solution with two branches p;(s,z) ¢ = 1,2. We recall that f represents a density
of particles that moves according to the Hamiltonian dynamics. The simplest representation
for f is given (see also (31)) by

2

f(S,Z',Q) = 26((] - pi(s,.’L')),

i=1

i.e. we simply count the number of rays going through (s, x). It is also possible to transport a
characteristic function bounded by the curves p;(s,z) (a technique inspired by the transport
collapse method [22]) :

f(s,2,q) = H(pa(s,2) —q) — H(pi(s,7) — q) (49)

where H is the Heavyside function and we suppose that po > p;. Then several remarkable
simplifications occur. The first two moments satisfy

mo=p2—MN
50
{ my = 5(p5 — p}) (50)

which can be easily inverted point-wise. The bi-valued GO solution is easily recovered from
the first two moments. The special form (49) also provides the closure formula

which enables the truncation of (48) at k¥ = 1 and the computation of the first two moments.
More on the numerical resolution of (48) can be found in [27]. A general closure procedure
is also proposed for a finite number of branches in the spirit of the closure of Boltzmann
moment equations [60].

The application of this method to the “real” GO problem turns out to be nontrivial
[36] [74]. First notice that the paraxial model with the Hamiltonian function (3) does not
allow the derivation of a similar moment system but the full 2-D Hamiltonian function (12)

H(X,P) = L(||P|? - %) has a form similar to (47) and obeys the same Hamiltonian

dynamics (10). A kinetic equation similar to (29) can be derived in this 2-D setting :
fs(5,X,Q) + VxH(X,Q) - Vx f(s,X,Q) - VpH(s, X,Q) - Vo f(s, X,Q) =0.  (51)

Setting X = (z1,22) and Q = (q1, ¢2), we have a two parameter family of moments

(s, X) = / (s, X, Q)dQ
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which satisfy the 2-D extension to system (48)

amkl(s X)+8$1mk+1l(s :c)+8z2mk l+1( )+ (52)
kawl( X))mk 1[(8 X)+18m( Q(X))mkl 1( X):O
for all integers k,{ > 0 and with the same convention my, _; = m_q; = 0. Assuming a finite
number N of branches the density function is chosen in the form

(5, X,Q) = Zaz 5, X)8(|QIl — 575)0(arg(Q) — Oi(s, ).

( )

This formula is similar to (31), a; and 6; represent respectively the amplitude and direction
angle of the i** ray at position (s, X) . The Eikonal equation (8) forces the modulus of the
ray vector P; to be equal to 61—2 and is allowed as an unknown only the angle 8; this vector
makes with a fixed given direction. The point-wise relation between the moments and the

multi-phase Eulerian amplitudes and angles becomes the (non-linear) system

N
1 3
My, = Z a,(c Ye+t cos” 9; sin! 6; (53)

i

The polar decomposition of the ray vector therefore reduces the problem with IV phases in-
cluding amplitudes computations to 2N variables instead of 3N. In [74] the authors explain
how, by carefully choosing 2N moments, it is possible to close system (52). Analytical and
numerical inversion procedures are discussed for (53). A comprehensive numerical analysis
of (52) is also done explaining the difficulties of this method. Numerical results for two
phases are provided.

The moment method has also been applied to multi-phase calculation for the Schrodinger
equation [51].

7 Dynamic surface extension (DSE)

It is difficult to decide whether the DSE method of John Steinhoff is Eulerian or Lagrangian.
It is probably safe to say that it belongs to both families and even safer to describe it in a
separate section .

The algorithm borrows its dynamics from ray tracing but uses a fixed grid for the repre-
sentation of the front. Ultimately it can be understood as a (rather involved) interpolation
method to sample as “uniformly” as possible the front. I simplify the presentation by con-
sidering, as in section 4, the curve {y(s,y0)/yo € D} (D being an initial set of rays) that
moves according to the Lagrangian equations (2). A fixed “Eulerian” grid is given and, at
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fixed time s and for each grid point z; (i € I) the closest front point in term of a distance
(the Euclidean distance is the simplest choice) is computed :

Yo,i = a‘rginfyOED”:L.’i - y(sayo)” (54)

The front at “time” s + ds is then represented by the discrete set {y(s + ds,y0,:)/i € I}.
Actually, it necessary to compute and store the set of bicharacteristics (y(s + ds, yo,i), (s +
ds,yo,i))ic1- As the front moves, its closest grid point representation also changes and must
be recomputed as in (54) but at time s + ds. This “closest point” projection step is the
feature that distinguishes DSE from plain RT. At each “time” step (or possibly at every
n*" time step) a new representation of the front is calculated. As the front is sampled on
the grid, some interpolation method is of course needed to maintain a reasonable degree of
accuracy in its reconstruction.

As the grid points are fixed and uniformly distributed (note that this is not a prerequi-
site of the method) the resolution of the front cannot get worse than the step of the grid
itself. Multi-phase solutions naturally project on different families of points and interpola-
tion between points projecting onto different branches may produce spurious results. Fronts
merging, as in the case of a true focal point where all rays cross at same “time” s, is patholog-
ical : all grid points project on the same (single) front point and the phase-space information
(the p variable) is lost. One could think of several ways to fix this problem but still this is
an indication that the method can underresolve converging front behavior that occurs on a
scale smaller than the grid step. The case of the cusped caustic is analyzed in [65] where a
fix is proposed based on several modification of the distance used in the projection step (54).

One can look at DSE with a “level set” point of view. This method uses again a fixed Eule-
rian 2-D grid to compute the motion of a 1-D curve. The “closest point” front representation
is clearly highly redundant. A “fast marching” band limitation is certainly recommended to
keep the computational cost of DSE reasonable.
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