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Abstract: We consider traffic grooming in WDM unidirectional rings with all-to-all uni-
form unitary traffic. We determine the minimum number of SONET /SDH add-drop multi-
plexers (ADMs) required when the grooming ratio is 3. In fact, using tools of design theory,
we solve the equivalent edge partitioning problem: find a partition of the edges of the com-
plete graph on n vertices (K,) into subgraphs having at most 3 edges and in which the total
number of vertices has to be minimized.

Key-words: Traffic grooming, graph, edge-partition, design theory, WDM rings.

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65



Minimisation du nombre d’ADM dans les anneaux
WDM unidirectionnel avec un facteur de groupage 3

Résumé : Nous considérons le probléme du groupage de trafic dans les anneaux WDM
unidirectionnels dans le cas d’un échange total avec un trafic unitaire uniforme. Nous dé-
terminons le nombre minimum de multiplexeurs & insertion/extractions (ADM) lorsque le
facteur de groupage est 3. En utilisant des outils de la théorie des designs, nous résolvons
le probléme équivalent de partition d’arétes : trouver une partition des arétes du graphe
complet & n sommets (K,,) en sous-graphes ayant au plus 3 arétes telle que le nombre total
de sommets soit minimum.

Mots-clés : Groupage, graphe, partition des arétes, théorie des designs, anneaux WDM.
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1 Introduction

Traffic grooming is the generic term for packing low rate signals into higher speed streams
(see the surveys [9, 13, 15]). By using traffic grooming, one can bypass the electronics in
the intermediate nodes. Typically, in a WDM network, instead of having one SONET /SDH
Add Drop Multiplexer (or ADM) on every wavelength at every node, it may be possible
to have ADMs only for the wavelengths used at that node (the other wavelengths being
optically routed without electronic switching). The objective is either to minimize the
transmission cost, in particular the number of wavelengths, or to minimize the equipment
cost, in particular the total number of ADMs used in the network.

Here, we consider the particular case of unidirectional rings with static uniform symmet-
ric all-to-all traffic. In this case, for each pair {i, j}, we associate a circle (or circuit) which
contains both the request from i to j and from j to 4. If each circle requires only % of the
bandwidth of a wavelength, we can “groom” C circles on the same wavelength. C is called
the grooming ratio (or grooming factor). For example, if the request from 7 to j (and from j
to 1) is one OC-12 and a wavelength can carry an OC-48, the grooming factor is 4. Given the
grooming ratio C' and the size n of the ring, the objective is to minimize the total number
of ADMs used, denoted A(C,n), and therefore to reduce the network cost by eliminating
as many ADMs as possible from the “no grooming case”’. For example, let n = 4; we have
6 circles corresponding to the 6 pairs {1,2},{1,3},{1,4},{2,3},{2,4},{3,4}. Without
grooming, that is if we assign one wavelength per circle, we need 2 ADMs per circle; then a
total of 12 ADMs are required. Suppose now that C' = 3, that is we can groom 3 circles on one
wavelength. One can groom on wavelength 1 the circles associated with {1,2},{1,3},{1,4}
using 4 ADMs and on wavelength 2 those associated with {2, 3}, {2,4}, {3,4} using 3 ADMs
for a total of 7 ADMs.

This case of unidirectional rings with static uniform symmetric all-to-all traffic has been
considered by many authors [1, 3, 8, 10, 11, 12, 16, 17, 18, 19, 20] and numerical results,
heuristics and tables have been given (see for example those in [17]). This case presents
the advantage of concentrating on the grooming phase (excluding the routing). It can also
be applied to groom components of more general connections than two opposite pairs into
wavelengths or more general classes. These components are called circles [3, 20] or circuits
[17] or primitive rings [6, 7].

In [1] it is noted that the problem of minimizing the number of ADMs for the unidirec-
tional ring C,,, with a grooming factor C, can be expressed as follows: partition the edges
of the complete graph on n vertices (K,,) into W subgraphs By, A = 1,2,..., W, having
|E(B))| edges and |V(B,)| vertices, with |E(B,)| < C and where ZKV:l |V (B,)| has to be
minimized (the edges of K, correspond to the circles, the subgraphs B) correspond to the
wavelengths and a vertex of B corresponds to an ADM). In [1] various results are given
using tools of design theory [5] and they improve and unify all the preceding results in the
literature. Note that design theory was also used in [6, 7] for a slightly different problem
with C' = 8, as they consider bidirectional rings and 4 requests are grouped in a circle.
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4 J-C. Bermond & S. Ceroi

Here we completely solve the case C' = 3. This case is easy to solve when there exists a
partition of K, into K3’s (triangles), as K3 is the graph with 3 edges having the minimum
number of vertices. For that we can use the existence of Steiner Triple Systems or (n,3,1)-
designs which can be stated as follows (for a proof see [2]).

Theorem 1 (Steiner’s theorem) For any n =1,3 (mod 6), the edges of K,, can be par-
titioned into K3'’s.

Note that the problem we consider here is different from the problems of design theory in
which one looks for a partition of the edges into isomorphic subgraphs and such a partition
exists only for some values of n. For other values one can think to use results on packings
or coverings to solve our problem. For example, for C =3 and n # 1 or 3 (mod 6), one can
think that the best solution is obtained by taking as many K3’s as possible, but it does not
necessarily lead to an optimal solution. Consider for example Kg. It can be partitioned into
the 4 triangles (1,2, 3),(1,4,5),(2,4,6), (3, 5,6) plus the 3 edges 1-6, 2-5, 3-4. So, altogether
we have 5 subgraphs and 18 ADMs. However, we can also partition Kg into the 3 K3’s
(1,2,3),(2,4,5),(3,5,6), the star K, 3 with edges 1-4,1-5,1-6, and the path P; with edges
2-6,6-4,4-3. This solution uses 5 subgraphs and 17 ADMs. Similarly, if we use a covering of
the edges of Kg by 6 K3’s and delete the edges covered twice, we will have to use 6 subgraphs
with 3 vertices and altogether 18 vertices. More generally, when n is even, a covering of K,

2
3
solution uses about [2] fewer ADMs.

Here, we determine the exact value of A(3,n), denoted by A(n). The main theorem can
be stated as follows:

by K3’s needs [ -| triangles and 3 times more ADMs; but we will show that the optimal

Theorem 2
(1) When n is odd, A(n) =n(n —1)/2+¢€, where e =0 if n =1 or 3 (mod 6), and
e=2ifn=25 (mod 6) ;
(1) When n is even, A(n) =n(n —1)/2+ [2] + €, where e =1 if n = 8 (mod 12),

and € = 0 otherwise.

Furthermore our solution uses the minimum number of subgraphs (wavelengths) possible,
that is [@-I ; therefore for C' = 3, the conjecture of [3] that the minimum number of

ADMs can be achieved with the minimum number of wavelengths is true (in [1] it is shown
that the conjecture is false for many values of C, the first one being C = 7).

2 Notation

As we mentioned in the introduction, we want to partition the edges of K, into subgraphs
with at most 3 edges and to minimize the total number A(n) of vertices in such a partition.

INRIA
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Here are the possible connected subgraphs with at most 3 edges:

Name Class # vertices # odd degree vertices
E oo | 2 2
Ps . 3 2
Ks A. 3 0
K3 /I\ 4 4
Py ; 4 2

For a given partition P of the edges of K,,, we denote by a1, a2, as, b3, c3 the number
of subgraphs of type respectively E, P3, K3, Ki 3, Ps+. By counting the number of edges of
K,, we have:

ar + 2a2 + 3az + 3bs + 3¢z =n(n —1)/2 (1)

The sum of the number of vertices of the subgraphs in the partition P is denoted A(P).
Thus
A(P) =2a1 + 3a2 + 3a3 + 4bs +4cs =n(n—1)/2+ a1 + ax + bz + ¢3 (2)

Finally, following the definition of A(n) given in the introduction, we have
A(n) = min{A(P) : P is a partition of K, }.

3 Lower bounds

In this section we prove that A(n) has at least the value given in Theorem 2. Let P be any
partition of the edges of K,,.

Case (i): if n = 1,3 (mod 6), equation (2) gives immediately A(P) > n(n—1)/2. Suppose
now that n = 5 (mod 6). Thus n(n —1)/2 =1 (mod 3). Then equation (1) modulo 3 gives
ay + 2&2 75 0.

Suppose that a; 4+ a2 + b3 + c¢3 = 1. Note that the subgraphs E, P, K; 3 and P, have
vertices with odd degree. As every vertex in K, has even degree, we have a contradiction,
thus a1 + a2 + b3 + ¢3 > 2.

Then by equation (2), A(P) >n(n —1)/2+ 2.

Case (i) : As n is even, the degree of each vertex of K, is odd, so every vertex must
be an odd degree vertex of at least one subgraph; but the number of odd degree vertices
of E, P3, K3, K1 3, and P, are 2,2,0,4,2 respectively; thus we have the following additional
inequality:

2a1 + 2a5 +4b3 +2c3 > n (3)
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6 J-C. Bermond & S. Ceroi

From (3) we deduce that
4(&1—}-&2—}-1)3—}-03) 2n+2(a1 +a2+03)

So
n
a1+ as + bz +c3 > [Z-I

which gives the result for the cases n #Z 8 (mod 12).

Now if n = 8 (mod 12), then n(n —1)/2 = 1 (mod 3) and thus equation (1) modulo 3
gives the additional constraint a; + 2a2 > 1. Thus we have 4(a1 + a2 + b3 +¢3) > n+ 1 and
A(P) > n(n—1)/2+n/4+ 1 as required.

4 Upper bounds

Let p1,p2,...,p be some nonnegative integers; the complete multipartite graph with class
sizes p1,P2, ..., P, denoted Ky, p,.... p is defined to be the graph with vertex set Py U P> U
...UP; where |P;| = p;, and two vertices € P, and y € P; are adjacent if and only if i # j.
For t > 0, we denote Kyx; (resp. Kgxt,u) by Kgg,....q (resp. Kg 4. . 4..) where g occurs ¢
times.

Using terminology of design theory, the existence of a partition of the edges of K, 5,,....n,
into K}, is equivalent to the existence of a k-GDD (group divisible design) with group sizes
D1,D2,-- -, D1, also known as k-GDD of type g7' 95> ... g%, where there are a; values of the
p;’s equal to g;.

The following theorem of Colbourn [4] (see also [14, Theorem 1.24]) will be used repeat-
edly:

Theorem 3 Let g,t and u some nonnegative integers. Kgx: . can be decomposed into Ks3’s
if and only if the following conditions are all satisfied:

(1) ifg>0thent>3,ort=2andu=g,ort=1andu=0, ort=0;

(i1) u < g(t—1) or gt =0;

)
(i11) g(t—1)+u =0 (mod 2) or gt = 0;
(iv) gt =0 (mod 2) or u=0;
(v) ¢?t(t —1)/2+ gtu =0 (mod 3).

We now prove the upper bounds in Theorem 2. Actually we give a stronger result, by
exhibiting the classes of the decomposition.
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Theorem 4 Let n > 2. There exists a partition of K, using
1. ifn=1,3 (mod 6), @ Ks;
2. ifn =5 (mod 6), % K3 and 2 Ps;
3. ifn=0,4 (mod 12), ) _ n Ky and 2 Ky 3;
4. if n=2,8 (mod 12), M-1=2 _ [n2] g [222] K, 5 and 1 E;

5. ifn=6,10 (mod 12), 2 _ nd2 g n=2 [ 5 gnd 1 Py,

Proof.

First case : n odd.
If n =1,3 (mod 6), the result is exactly Theorem 1. Suppose now that n =5 (mod 6).
First we deal with the casesn =5 and n =11 :

e K can be decomposed into 2 K3’s (1,2,3), (1,4,5), and 2 P3’s with edges 4-2,2-5 and
4.3 3-5;

e Ky is the union of a K5 and a Kjxe,5. This K5 can be decomposed as seen above
into 2 K3’s and 2 P3’s. By Theorem 3 (with ¢ =1, ¢t = 6 and u = 5), K1x6,5 can be
decomposed into 15 K3’s. So K71 can be decomposed into 17 K3’s and 2 P3’s.

Now for n > 17 and n = 6p+5 (p > 2), Kep+s is the union of 2p K3’s, 1 K5 and a Kzxop 5.
But K5 can be decomposed into 2 K3’s and 2 P3’s, and K3x2p 5 can be decomposed into
K3’s by Theorem 3 with ¢ =3, t = 2p and u = 5.

Second case : n even.

First, we deal with the following small cases:
e case n = 2 : trivial;

e case n = 4 : K, can be decomposed into the K3 (1,2,3) and the K7 3 with edges
4-1,4-2,4-3;

e casen = 6: asstated in the introduction, K¢ can be decomposed into the Py with edges
2-6,6-4,4-3, the K; 3 with edges 1-4,1-5,1-6, and the K3’s (1,2,3), (2,4,5), (3,5,6);

e case n = 8 : take a decomposition of K7 in K3’s, and connect an additional vertex oo
to all vertices of the K7. The 7 edges incident to oo can be decomposed in 2 K 3’s
and one F;

RR n° 4626



8 J-C. Bermond & S. Ceroi

e case n = 10 : Ky can be decomposed into the K; 3 with edges 9-2,9-4,9-6, the K, 3
with edges 10-1,10-3,10-5, the P; with edges 8-9,9-10,10-7, and the following K3’s:

(1,5,6) (1,2,8) (1,3,9)
(2,6,7)  (2,3,5) (2,4,10)
(3.7,8) (3,4,6) (57,9
(4,8,5) (4,1,7) (6,8,10)

Now let n = 4t + u with t = 0 (mod 3), ¢ > 3 and w = 0,2,4,6,8 or 10. K, can be
decomposed into ¢ Ky's, a K, and a K4x: . By Theorem 3 with g = 4, K4+, can be
decomposed into K3’s, except when ¢ = 3 and u = 10, i.e. n = 22, for which the condition
(43) is not satisfied. Now for n # 22, each K4 can be decomposed into a K3 and a K; 3, and
K, can be decomposed as shown above. Hence we get a partition of K, into the required
number of K3’s, K1 3’s, E and P;.

Finally for n = 22, Ky can be decomposed into 4 K4's, a K¢ and a K4x46. Each K4
can be decomposed into a K3 and a K 3. The K can be decomposed as seen above into a
Py, a K1 3,and 3 K3’s. By Theorem 3 with ¢ =¢ = 4 and w = 6, K4x4,6 can be decomposed
into K3’s. Thus we get a partition of K, into a Py, 5 K; 3’s and some K3’s, as required.

Note that, as mentioned in the introduction, our solution uses the minimum number of

subgraphs possible, that is [@-I, showing that for C' = 3, the conjecture of [3] is true.

5 Conclusion

In this article, we have determined the minimum number of SONET add-drop multiplex-
ers (ADMs) required with a grooming ratio 3 in unidirectional WDM rings with all-to-all
uniform unitary traffic. We have also shown that this minimum number is attained with a
minimum number of wavelengths. The same ideas can be used to determine the minimum
number A(C,n) for larger values of C. For C' = 4 an optimal solution can be obtained
easily as we can partition the edges of K, into Cy’s and K3 + E. Therefore we have
A(4,n) = n(n — 1)/2 with the minimum number of wavelengths, a result obtained also in
[12]. We have also obtained partial results for the cases C' = 5 and C' = 6. In the latter case
we can use results on 4-GDD but they are not sufficient for all the congruence classes.

Acknowledgment. We thank David Coudert and Joseph Yu for their helpful comments.

References

[1] J.-C. Bermond and D. Coudert. Uniform all-to-all traffic grooming in unidirectional
WDM ring networks. Submitted to IEEE International Conference on Communications
- ICC08.

INRIA



Minimizing SONET ADMs in unidirectional WDM rings with grooming ratio 8 9

[2] Peter J. Cameron. Combinatorics: topics, techniques, chapter 8 : Steiner triple systems.
Cambridge University Press, Cambridge, England, 1994.

[3] A.L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic mul-
tiplexing costs in WDM ring networks. IEEE/OSA Journal of Lightwave Technology,
18 (2000), 2-12.

[4] C.J. Colbourn. Small group divisible designs with block size 3. J. Combin. Math
Combin. Comput., 14 (1993), 151-171.

[5] C.J. Colbourn and J. Dinitz, editors. The CRC handbook of Combinatorial designs.
CRC Press, New-York, 1996.

[6] C.J. Colbourn and A. Ling. Wavelength add-drop multiplexing for minimizing SONET
ADMs. Discrete Applied Mathematics, to appear.

[7] C.J. Colbourn and P-J. Wan. Minimizing drop cost for SONET/WDM networks with
+ wavelength requirements. Networks, 37 (2001), 107-116.

[8] R. Dutta and N. Rouskas. On optimal traffic grooming in WDM rings. IEEE Journal
of Selected Areas in Communications, 20 (2002), 1-12.

[9] R. Dutta and N. Rouskas. Traffic grooming in WDM networks: Past and future.
Technical report, CSC TR-2002-08, NCSU, 2002.

[10] O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring to mini-
mize cost of embedded SONET rings. In IEEFE Infocom, pages 94-101, San Francisco,
California, 1998.

[11] O. Gerstel, R. Ramaswani, and G. Sasaki. Cost-effective traffic grooming in WDM
rings. IEEE/ACM Transactions on Networking, 8 (2000), 618-630.

[12] J.Q. Hu. Optimal traffic grooming for wavelength-division-multiplexing rings with all-
to-all uniform traffic. OSA Journal of Optical Networks, 1 (2002), 32-42.

[13] E. Modiano and P. Lin. Traffic grooming in WDM networks. IEEE Communications
Magazine, 39 (2001), 124-129.

[14] Ronald C. Mullin and Hans-Dietrich O.F. Gronau. CRC handbook of Combinatorial
designs, chapter IIT : PBDs and GDDs : The Basics. CRC Press, New-York, 1996.

[15] A. Somani. Survivable traffic grooming in WDM networks. In D.K. Gautam, editor,
Broad band optical fiber communications technology — BBOFCT, pages 17-45, Jalgaon,
India, December 2001. Nirtali Prakashan. Invited paper.

[16] P-J. Wan, G. Calinescu, L. Liu, and O. Frieder. Grooming of arbitrary traffic in
SONET/WDM BLSRs. IEEE Journal of Selected Areas in Communications, 18 (2000),
1995-2003.

RR n° 4626



10 J-C. Bermond & S. Ceroi

[17] J. Wang, W. Cho, V. Vemuri, and B. Mukherjee. Improved approches for cost-effective
traffic grooming in WDM  ring networks: Ilp formulations and single-hop and multihop
connections. IEEE/OSA Journal of Lightwave Technology, 19 (2001), 1645-1653.

[18] X. Yuan and A. Fulay. Wavelength assignment to minimize the number of SONET
ADMs in WDM rings. In IEEFE International Conference on Communications — ICC;
New York, April 2002.

[19] X. Zhang and C. Qiao. On optimal all-to-all personalized connections and cost-effective
designs in WDM rings. IEEE/ACM Transactions on Networking, 7 (1996), 435-445.

[20] X. Zhang and C. Qiao. An effective and comprehensive approach for traffic groom-
ing and wavelength assignment in SONET/WDM rings. IEEE/ACM Transactions on
Networking, 8 (2000), 608-617.

INRIA



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



