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THE ARITHMETIC OF JACOBIAN GROUPS
OF SUPERELLIPTIC CUBICS

ABDOLALI BASIRI, ANDREAS ENGE, JEAN-CHARLES FAUGÈRE,
AND NICOLAS GÜREL

Abstract. We present two algorithms for the arithmetic of cubic curves with
a totally ramified prime at infinity. The first algorithm, inspired by Cantor’s
reduction for hyperelliptic curves, is easily implemented with a few lines of
code, making use of a polynomial arithmetic package. We prove explicit re-
ducedness criteria for superelliptic curves of genus 3 and 4, which show the
correctness of the algorithm. The second approach, quite general in nature and
applicable to further classes of curves, uses the FGLM algorithm for switching
between Gröbner bases for different orderings. Carrying out the computations
symbolically, we obtain explicit reduction formulae in terms of the input data.

1. Introduction

The success of elliptic curves in public key cryptography has created new interest
in the arithmetic of other curves. Indeed, being able to properly represent elements
of the associated group, the Jacobian, and to effectively realise the group law is
the first prerequisite for implementing a cryptosystem based on a curve. The two
simplest classes of curves, elliptic and hyperelliptic curves, which are quadratic
covers of the projective line, are well studied. So the focus has shifted towards the
next complex types of curves, cyclic Galois covers of the projective line, namely
superelliptic curves, and more general curves, the Cab curves [19]. All these curves
have a unique, rational point at infinity, so that the rational part of their Jacobian
group is isomorphic to the ideal class group of the coordinate ring of the curve.

In a cryptographic context, one is interested in curves defined over a finite field
Fq. Curve based cryptosystems may only be secure if their associated discrete
logarithm problem is intractable. This requires the Jacobian order N ≈ qg (where g
denotes the genus of the curve) to be sufficiently large to be resistant against attacks
with complexity O(

√
N). Using curves of genus greater than 1 allows us to decrease

the size of the ground field for the same order of magnitude. Another necessary
condition is that N be explicitly known and that it have a large prime factor.
Recent progress on point counting methods allows us to obtain cryptographically
suitable superelliptic curves over finite fields of small characteristic [14].

In the light of subexponential attacks on the discrete logarithm problem in hy-
perelliptic curves of large genus [1, 20, 9, 10, 8] and their analysis for small genus
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in [13], it seems advisable to restrict the genus to at most 4 also in the case of
other curves. Since even genus 4 curves are probably less secure than elliptic curves
for the same group order, curves of genus 3 are the most attractive ones from a
cryptographic point of view. With superelliptic and Cab curves, a genus of 3 or 4
can only be realised if the curve is a cubic cover of the projective line.

Jacobians can be seen as divisor class groups, which by their very nature do
not admit a unique representation for their elements. In the case of Jacobians
of superelliptic or Cab curves, however, a divisor class is canonically given by the
divisor of smallest degree it contains, the so-called reduced representative (this is
explained in more detail in Section 2). The core of their arithmetic therefore con-
sists of the reduction process, transforming any group element into its equivalent
reduced representative. The associated decision problem is, given an element of the
Jacobian, to decide whether it is already reduced. A necessary but in general not
sufficient condition for an ideal to be reduced is that its degree does not exceed
the genus of the curve. In Section 3, we use the geometry of superelliptic curves
to characterise reduced elements in genus 3 or 4. In particular, we show that for
the type of ideals encountered most of the time, the constraint that their degrees
do not exceed the genus is already a sufficient criterion for reducedness. We also
prove that, unfortunately, this is no more the case for superelliptic curves of higher
genus.

There are several general purpose algorithms for Jacobian arithmetic via effec-
tive versions of the Riemann–Roch theorem [17, 23, 16]. For superelliptic and Cab
curves, specific, more efficient algorithms are described in [2, 3, 12, 15, 5]. The
closely related arithmetic of cubic curves with several points at infinity is treated
in [22]. The algorithms use the representation of Jacobian elements by polynomials
and rely on rather heavy techniques of symbolic computation like LLL, Hermite
normal form and Gröbner basis computation. On a high level, these algorithms
admit a unifying description; see Algorithm 5.1. In Section 5 of this article, we
present two new reduction algorithms for cubic superelliptic and Cab curves, which
fit into this common framework. For the sake of conciseness, we limit the presen-
tation to superelliptic cubics, indicating the necessary modifications for Cab curves
in Section 6.

Before developing the new algorithms, we exhibit a special class of ideals allow-
ing a simplified polynomial representation, which is in fact not so special at all:
assuming a uniform probability distribution over the elements of the Jacobian and
that g is fixed and q → ∞, then these “special” ideals occur with a probability of
1− 1

qO(1). Hence, we call these elements “typical”.
Our first algorithm is inspired by the similarity between the representation of

typical superelliptic and of hyperelliptic ideals. It generalises Cantor’s reduction
algorithm for hyperelliptic curves as described in [6] and, for characteristic 2, in [7].
The algorithm uses only basic polynomial arithmetic, on top of which it is easily
implemented in a few lines of code. For general superelliptic cubics, it returns an
ideal of degree at most g. In genus 3 and 4, this means that the output is indeed
reduced according to our results of Section 3.

Our second approach is based on the FGLM algorithm of [11] for switching
between Gröbner bases for different orderings. In our context, FGLM provides the
link between the lexicographic and the Cab order (cf. Definition 2.1). The technique
we propose is in fact quite general and applies to arbitrary, also noncubic Cab
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curves. Carrying out all computations symbolically, one obtains explicit formulae
for the reduced ideal in terms of the input ideal, operating on the polynomial
representation. We derive such formulae for typical ideals of superelliptic curves of
genus 3. Evidently, these formulae can be made completely explicit to obtain the
coefficients of the output polynomials via straight line programs from the coefficients
of the input polynomials, very much as in the case of elliptic curves. This also
yields the precise number of operations in the base field. However, the results
depend heavily on the exact layout of the computations. We briefly report on this
approach in Section 6, leaving the details to [4].

2. Jacobians of superelliptic cubics

2.1. Definitions and elementary properties. Let K be a perfect field of char-
acteristic different from 3 and K its algebraic closure. A superelliptic cubic, as
introduced in [12], is an affine plane curve of the form

C = Y 3 − f
with f ∈ K[X ] of degree not divisible by 3 and at least 4 and without multiple
roots in K. The condition that the degree of f be not divisible by 3 implies that
the curve is absolutely irreducible, the lack of multiple roots is equivalent with
the nonsingularity of C. Notice that if the degree of f is larger than 4, then the
projective closure of C has a singularity at infinity. However, it corresponds to a
unique point ∞ on the nonsingular projective model of C.

Superelliptic curves are special cases of Cab curves; cf. [19]. For coprime positive
integers a and b, coprime to the characteristic of the ground field, a Cab curve is
defined by a nonsingular affine equation of the form

C = Y a +
∑

ia+jb<ab

cijX
iY j −Xb.

The coordinate ring of C is defined by K[C] = K[X,Y ]/(C), its function field
K(C) by the field of fractions of K[C]. Since C is nonsingular, K[C] is the integral
closure of K[X ] in K(C).

We may define the same objects over the algebraic closure K of K. Then for
a superelliptic cubic C, the field extension K(C)/K(X) is Galois and its Galois
group is generated by σ : Y 7→ ζ−1Y for a fixed primitive third root of unity ζ. In
geometric terms, C is a cyclic cover of degree 3 of the projective line. By Hurwitz’s
formula, its genus is given by g = deg f − 1.

The arithmetic object associated to the curve C is the K-rational part of its
Jacobian or, equivalently, its divisor class group. A rational prime divisor of C
is given by an orbit of points on C with coordinates in K under the action of
Gal(K/K) or, equivalently, by a discrete valuation of K(C), and its degree is
the number of points in the orbit. The group of K-rational divisors is the free
abelian group over the prime divisors, with the degree function extended naturally,
and of special interest is its degree zero part Div0

K(C). Associating to a function
in K(C) its divisor of zeroes and poles with the appropriate multiplicities and
noticing that it consists of orbits under Gal(K/K), one defines the subgroup of
principal divisors PrinK(C) and finally the K-rational part of the Jacobian as
JK(C) = Div0

K(C)/PrinK(C).
A Cab curve has a unique infinite prime divisor∞, which is furthermore rational

of degree 1. This leads to the following definition.
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Definition 2.1. Let C be a Cab curve. The Cab order of an element of K(C) is
given by the negative of its order at infinity. In particular, the Cab order of X is a,
that of Y is b, and that of an arbitrary polynomial can be obtained from these two
values via the ultrametric triangle inequality.

The multiplicity of ∞ in a divisor is completely determined by the finite part of
the divisor, and there is a bijective map between Div0

K(C) and the divisors formed
of only finite prime divisors, given by

∑
P 6=∞

mPP −

∑
P 6=∞

mP

∞↔ ∑
P 6=∞

mPP.

To simplify the notation in the following, we always omit the multiplicity of∞. For
instance, the following definition is readily formulated in terms of divisors omitting
the infinite prime divisor, since the notions of positivity and degree given therein
refer only to the finite part.

Definition 2.2. Let D =
∑
P 6=∞mPP and E =

∑
P 6=∞ nPP be divisors. The

coefficient mP = ordP D is called the order of D at P . The greatest common
divisor of D and E is defined by

gcd

∑
P 6=∞

mPP,
∑
P 6=∞

nPP

 =
∑
P 6=∞

min(mP , nP )P.

We write D ≥ E if mP ≥ nP for all P and we say that D is positive or effective
if D ≥ 0, i.e., all mP ≥ 0. If α, α1, . . . , αn are functions in K(C), we denote
by divα the principal divisor generated by α and we let degα = deg(divα) and
ordP α = ordP (divα). Finally, div(α1, . . . , αn) = gcd(div α1, . . . ,divαn).

By definition, the degree of a polynomial α ∈ K[C] is nothing but its Cab order.
Noticing that the Cab order of X is a and that the number of conjugates of α over
K(X) is also a, it is easy to show that

degα = degX NK(C)/K(X)(α).

Omitting ∞ in the notation of degree zero divisors, we have gone the first step
towards the equivalent representation of the K-rational part of the Jacobian of C
as the ideal class group of K[C]. Being the integral closure of K[X ] in K(C), the
coordinate ring K[C] is the intersection of all valuation rings of K(C) not extending
the infinite valuation ofK(X). Hence, there is a one-to-one correspondence between
finite prime divisors P of C and prime ideals p of K[C], which extends to degree
zero divisors and the group of fractional ideals of K[C] by homomorphism:∑

mPP ↔
∏

pmP ,

div(α1, . . . , αn) ↔ 〈α1, . . . , αn〉 .
Since principal divisors correspond to principal ideals, this homomorphism yields in
fact an isomorphism between the Jacobian JK(C) and the ideal class group HK(C)
of K[C].

In the following, we switch freely between the divisor and the ideal representa-
tion. When providing criteria for reducedness in Section 3, which is essentially a
geometric notion, it is more convenient to speak of divisors; the algorithms realising
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the arithmetic given in Sections 4 and 5 are more readily formulated in terms of
ideals.

Given a nonsingular affine curve with a unique point at infinity, which is moreover
rational, it is shown in [12], Theorem 1, that each divisor class contains a unique
positive divisor of minimal degree, which is at most g. The proof is based on the
Riemann–Roch theorem. This minimal divisor and its corresponding ideal are called
reduced, and the arithmetic in superelliptic Jacobians is realised by manipulating
these reduced objects. Hence, in the remainder of this article, all divisors will be
positive (i.e., all ideals will be integral), unless stated otherwise.

As mentioned in the introduction, we are mainly interested in curves of small
genus, especially of genus 3 or 4. Thus, when giving asymptotic estimates in the
following sections, it is understood that g is fixed and q →∞.

2.2. Typical divisors. It is a well-known fact from the theory of Dedekind rings
that any integral ideal of K[C] is generated by a polynomial in K[X ] and a second
polynomial in K[C]. Thus, any reduced K-rational divisor D can be written as

D = div(u, rY 2 + sY + t)

with u, r, s, t ∈ K[X ], deg r, deg s, deg t < deg u ≤ g, gcd(u, r, s, t) = 1.
The divisor D can also be written as the K[X ]-module

D = [u0, u1Y − v1, Y
2 + v2Y + w2].

This is exactly the Gröbner basis of the ideal for the lexicographic order or, equiv-
alently, its Hermite normal form (HNF).

Recall that the isomorphisms of K(C)/K(X) are given by {id, σ, σ2} with σ :
Y 7→ ζ−1Y , which are extended to points and divisors via (x, y)σ = (x, ζy) so that
div(fσ) = (div f)σ. The divisors Dσ and Dσ2

are called the conjugates of D. If D
is a prime divisor such that D = Dσ, then D is called ramified. In particular, the
ramified points are those with zero Y -coordinate.

The sum D+Dσ+Dσ2
is the divisor of a polynomial in K[X ] (namely the norm

of the corresponding ideal), so that Dσ + Dσ2
, which is a divisor in the opposite

class of D, is K-rational even when K does not contain a primitive third root of
unity and Dσ and Dσ2

are not rational themselves.
On hyperelliptic curves, which are degree 2 covers of the projective line, any

reduced divisor can be written as div(u, Y − v). On superelliptic curves, such a
simple form cannot always be obtained. For instance, if P = (x, y), then

div(X − x) = P + P σ + P σ
2
,

and the prime divisor P of degree 1 is represented by div(X − x, Y − y), while

P σ + P σ
2

= div
(
X − x, (Y − ζy)(Y − ζ2y)

)
= div(X − x, Y 2 + yY + y2)

does not equal any div(u, Y − v). However, the simpler representation is still the
typical case, as will be shown in Theorem 2.5, hence the following definition.

Definition 2.3. We call a divisor typical if it is of the form

div(u, Y − v) with u, v ∈ K[X ], deg v < deg u ≤ g and u|v3 − f.

Theorem 2.4. Let D be a K-rational reduced divisor which does not contain a
pair of conjugate prime divisors. In particular, it does not contain a ramified prime
divisor with multiplicity greater than 1. Then D is typical.
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Proof. Let D =
∑
mPP with distinct P = (xP , yP ) ∈ K×K be as in the theorem.

Then the xP are all distinct, and u can be chosen as
∏

(X − xP )mP of degree at
most g and v of degree at most deg u−1 such that it interpolates the points P with
the appropriate multiplicities mP , which is equivalent to u|v3 − f . The rationality
of u and v follows easily from that of D. �

For the remainder of this section, we assume that K = Fq is a finite field and we
examine more closely typical divisors. We show that all but a negligible proportion
of the reduced divisors are of this form.

Theorem 2.5. If K = Fq is finite and g is fixed, then the ratio of reduced typical
divisors in the rational part JK(C) of the Jacobian is in 1− 1

qO(1). More precisely,
this assertion even holds for reduced typical divisors with deg u = g and deg v = g−1
that do not contain a ramified prime divisor.

Assume a uniform probability distribution on reduced divisors. Consider the
addition of divisors without reducing them, i.e., carrying out only the composition
step of Section 4. Then with probability in 1 − 1

qO(1), doubling a random reduced
divisor or adding two independently chosen random reduced divisors yields a divisor
of the form div(u, Y − v) with deg u = 2g, deg v = 2g − 1 and u|v3 − f .

Proof. By Weil’s theorem [24], the Jacobian JK(C) contains qg
(

1± 1√
qO(1)

)
el-

ements. (This somewhat sloppy notation stands for
∣∣|JK(C)| − qg

∣∣ ∈ qg√
qO(1).)

Moreover, the number of points on C defined over Fqk for some natural number k

is in qk
(

1± 1
qk/2O(1)

)
⊆ qk

(
1± 1√

qO(1)
)

. Using Möbius inversion, one readily

deduces that the number of prime divisors of degree k is in 1
k q
k
(

1± 1√
qO(1)

)
⊆

O
(
qk
)
; that is, prime divisors of degree k behave basically like irreducible polyno-

mials of degree k. As for polynomials, it thus follows that the number of divisors
of degree at most k is in qk

(
1± 1√

qO(1)
)
⊆ O

(
qk
)
.

As an upper bound on the number of Jacobian elements that do not have the
required form, we now count the divisors of degree at most g that are not typical
or are typical with polynomials u or v of too low degree or contain a ramified prime
divisor. By the results of the previous paragraph, the number of divisors of degree
at most g containing a pair of conjugate primes (or twice the same ramified prime)
of degree i is in O

(
qiqg−2i

)
⊆ O

(
qg−1

)
. Summing up over the O(1) possible values

for i, we obtain by Theorem 2.4 that the number of nontypical divisors of degree at
most g is in O

(
qg−1

)
. The same kind of argumentation shows that the number of

divisors of degree less than g or containing a ramified prime is in O
(
qg−1

)
. Consider

now typical divisors with deg u = g and deg v ≤ g−2. For any given such v, there is
a constant number of possible u, so that the total number of such divisors is again
in O

(
qg−1

)
.

From the bound on the cardinality of the Jacobian we now deduce the desired
ratio on well-behaved reduced divisors.

The result on the sum of two divisors is obtained in a similar fashion, making use
moreover of a trivial generalisation of Theorem 2.4 to higher degree divisors. �

It is our aim in the present article to examine the arithmetic of typical divisors,
sometimes imposing additional restrictions on their degrees, and to propose efficient
algorithms for them. Whenever a divisor of a different form is encountered, which
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in the light of Theorem 2.5 happens with a negligible probability, one may have
recourse at a (presumably slower) generic addition method as described in [2, 3, 12,
15].

3. The geometry of reduced divisors

As for hyperelliptic curves, the addition in superelliptic Jacobians proceeds in
two steps. In a first step, the two reduced divisors are simply added and yield
a divisor of degree up to 2g. In the second step, this divisor is reduced to the
representative of minimal degree in its class.

Our new reduction algorithm of Section 5.1 outputs with high probability a
typical divisor. Unlike for the result of the generic reduction of [12, 2, 3], however,
there is a priori no guarantee that this divisor of degree at most g will be reduced.
In this section, we thus examine the conditions under which a low degree divisor
is reduced. To ease the presentation, we will henceforth consider all K-rational
divisors as being decomposed over K, so that instead of prime divisors we may
speak of points. (The rationality of a divisor then means that it consists of complete
orbits of points under Gal(K/K), and the notion of reducedness does not depend
on the field, K or K, over which the divisor is interpreted.)

In hyperelliptic Jacobians, all typical divisors are reduced. Unfortunately, this
is no more the case for superelliptic cubics, but at least in genus 3 and 4 the
nonreduced typical divisors can be recognised quite easily via the following main
theorem of this section.

Theorem 3.1. A positive divisor of degree at most 3 on a superelliptic cubic of
genus 3 is not reduced if and only if it consists of three collinear points. A positive
divisor of degree at most 4 on a superelliptic cubic of genus 4 is not reduced if and
only if it satisfies one of the following conditions:
• it contains a triplet of conjugate points;
• it consists of two pairs of conjugate points;
• it consists of four collinear points;
• it consists of four points T , U , V , W lying simultaneously on a parabola Y −v

with v ∈ K[X ] of degree 2 and an elliptic curve Y 2 +sY +t with s, t ∈ K[X ],
deg s ≤ 1 and deg t = 3. Furthermore, the elliptic curve intersects the
superelliptic curve exactly in these four points, three collinear points P σ1 , P σ2
and P σ3 and their conjugates P σ

2

1 , P σ
2

2 and P σ
2

3 . (Hereby, points designated
by different letters may coincide, in which case the assertions remain correct
even with the appropriate multiplicities.)

Proof. We first show the necessity of the given conditions. Let thus D 6= 0 be a
nonreduced positive divisor of degree at most g, and let D′ with degD′ < degD
be its reduced representative. Write

D′ =
∑

miPi +
∑

nj(Qσj +Qσ
2

j ),

µ =
∑
mi, ν =

∑
nj , degD′ = µ + 2ν, where the Pi and Qj all have different

X-coordinates. Let β ∈ K(X) be monic such that

div β =
∑

mi(Pi + P σi + P σ
2

i ) +
∑

nj(Qj +Qσj +Qσ
2

j ).

Since div β is positive, we even have β ∈ K[X ]. Then

D −D′ + div β = D +
∑

mi(P σi + P σ
2

i ) +
∑

njQj
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is principal and positive, whence

D +
∑

mi(P σi + P σ
2

i ) +
∑

njQj = divα

for some monic polynomial α. Write

α = rY 2 + sY + t

with r, s, t ∈ K[X ], so that

(1) N(α) = r3f2 + (s3 − 3rst)f + t3.

By the statement after Definition 2.2, degX(N(α)) = degα, so that

degX(N(α)) = max{3 degX r + 2(g + 1), 3 degX s+ (g + 1), 3 degX t}
= degD + 2µ+ ν = degD + 2 degD′ − 3ν
≤ degD + 2 degD′.

1. If degD ≤ g − 1, then degD′ ≤ g − 2 and degX(N(α)) ≤ 3g − 5. Together
with degX f = g + 1 and g ∈ {3, 4} this implies r = 0 and degX s ≤ 0, i.e.,
s ∈ {0, 1}. If s = 1, then divα cannot contain a pair of conjugate points,
whence µ = 0, ν =

⌊
degD′

2

⌋
≤
⌊
g−2

2

⌋
≤ 1 and degX(N(α)) ≤ g−1+

⌊
g−2

2

⌋
≤

g < degX f , a contradiction. If s = 0, then α = t is an element of K[X ]
with zeroes including P σi and Qj, so that β|α. Since degD > degD′ and

D = D′ + div
(
α
β

)
, we have degX

α
β ≥ 1, and D contains the divisor of a

vertical line, i.e., a triplet of conjugate points.
2. Let now degD = g and r = 0. We conclude from degX(N(α)) ≤ 3g− 2 that

deg s ≤ 1.
If s = 0, then D contains the divisor of a vertical line as above.
If s = 1, i.e., α = Y + t, then as before divα does not contain a pair

of conjugate points, µ = 0, ν ≤
⌊
g−1

2

⌋
= 1, degX(N(α)) ≤ g + 1 and

degX t ≤ 1. If ν = 0, then β = 0 andD = divα, contradicting degX(N(α)) =
max {degX f, 3 degX t} = degX f = g + 1. So ν = 1, D′ = Qσ + Qσ

2
for

some Q = (xQ, yQ), and div(Y + t) = divα = D + Q, whence D contains g
collinear points.

If degX s = 1, the case µ = 0 leads to degX(N(α)) ≤ g + 1 as in the
previous paragraph, contradicting degX(s3f + t3) ≥ g + 4. Assume thus
µ ≥ 1, and let P = (xP , yP ) be one of the Pi in D′. Then s(xP ) = t(xP ) = 0.
(For unramified P , i.e., yP 6= 0, this follows directly from α(P σ) = α(P σ

2
) =

0. For ramified P , i.e., yP = 0 and P = P σ, recall that ordP Y = 1 and
ordP α ≥ 2.) Hence X−xP |α in K[X,Y ] and P ≤ D. This shows that D−P
reduces to D′−P and by case 1, D−P contains a triplet of conjugate points
Q+Qσ+Qσ

2
, so that g = 4, D′ = P , β = X−xP and α = (X−xP )(X−xQ),

a contradiction.
3. Finally let degD = g and r 6= 0. Then 2g + 2 ≤ 3 degX r + 2(g + 1) ≤

degX(N(α)) = degD + 2 degD′ − 3ν ≤ degD + 2 degD′ ≤ 3g − 2 implies
g = 4, equality in the previous chain of inequalities, i.e., ν = 0, µ = 3,
r = 1, D′ = P1 + P2 + P3 with Pi = (xi, yi), not necessarily distinct,
α = Y 2 + sY + t and β = (X − x1)(X − x2)(X − x3). It follows now from
10 = degX(N(α)) = max {10, 3 degX s+ 5, 3 degX t} that degX t ≤ 3 and
degX s ≤ 1.
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We proceed to show that β|t−s2. Let m ≥ 1 be such that mP σ+mP σ
2 ≤

divα for P = (x, y). If P is a ramification point, i.e., y = 0, then we
deduce successively from ordP Y = 1 and ordP α ≥ 2m ≥ 2 that t(x) = 0,
ordP t ≥ 3, ordP (Y 2 + t) = 2, s(x) = 0, ordP s ≥ 3, ordP α = 2 and m = 1.
In particular, (X−x)m = X−x divides t−s2 since the latter is zero in x. On
the other hand, if P is not ramified, then ordP Y = 0, and ordP (ασ) ≥ m,
ordP (ασ

2
) ≥ m, which implies m ≤ ordP (ασ − ασ2

) = ordP (Y (Y − s)) =
ordP (Y − s). Consider the function α = (Y − s)σ(Y − s)σ2

= Y 2 + sY + s2.
We have just shown that mP σ + mP σ

2 ≤ divα, so that mP σ + mP σ
2 ≤

div(α−α) = div(t−s2), which implies (X−x)m|t−s2 since P is unramified.
Hence, (D′)σ + (D′)σ

2 ≤ divα leads to β|t − s2. We have furthermore
shown that D′ = P1 + P2 + P3 ≤ div(Y − s). Bézout’s theorem now implies
that div(Y − s) = P1 +P2 +P3 +Q+R = D′+Q+R for two further points
Q and R, which are not necessarily distinct from the others and from each
other. Consider two subcases.
(a) If degX t ≤ 2, then β|t− s2 implies t = s2 and α = α. This shows that

D = Qσ +Qσ
2

+Rσ +Rσ
2
.

(b) Let now degX t = 3, so that α = Y 2 + sY + s2 + cβ for some c ∈ K× is
an elliptic curve. Then

D = divα+D′ − div β
= divα+ (div(Y − s)−Q−R)− div(cβ)

≤ div
(
α(Y − s)

cβ

)
= div

(
Y − s+

f − s3

cβ

)
.

Notice that β divides f − s3 = N(Y − s) in K[X ] since

div β ≤ div(N(Y − s)).

Furthermore, the degree of v = s − f−s3
cβ in X is 2, so that Y − v

defines a parabola containing the points in D (with the corresponding
multiplicities).
Hereby, divα = D+P σ1 +P σ2 +P σ3 +P σ

2

1 +P σ
2

2 +P σ
2

3 , and P1, P2 and
P3 lie on the line Y − s. Hence, we are indeed in the last case of the
theorem.

This shows the necessity of the conditions given in Theorem 3.1. That they are
sufficient is easily seen by constructing the reducing functions as above. �

Corollary 3.2. On a superelliptic cubic of genus 3 or of genus 4, a typical divisor
div(u, Y − v) is reduced whenever deg u < g, or deg u = g and deg v = g − 1.

Proof. Theorem 3.1 shows that a nonreduced divisor of degree at most g either
contains a pair of conjugate points, in which case it is not typical, or it is of degree
g, but its points can be interpolated by a polynomial Y − v with deg v ≤ g− 2. �

The proof of Theorem 3.1 relies on the fact that between a nonreduced divisor of
sufficiently low degree and its reduced representative of even lower degree, there is
not enough “space” to squeeze the divisor of a higher degree rational function. As
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has also been seen in the theorem, the geometry becomes noticeably more intricate
in genus 4 than in genus 3, with more possible functions between the two divisors.
In higher genus, there are even more possibilities, and the corollary becomes wrong
already in genus 6, which is the next largest case since the degree of f must not be
divisible by 3.

Theorem 3.3. If g ≥ 6 and the field of definition K is sufficiently large, then on a
superelliptic cubic of genus g over K there are rational nonreduced typical divisors
div(u, Y − v) with deg u = g and deg v = g − 1.

Proof. Choose a line Y −s with s ∈ K[X ] of degree 1, not tangent to the superellip-
tic curve. By Bézout’s theorem, it intersects the curve in g+ 1 points P1, . . . , Pg+1,
none of which is infinite. Furthermore, as the line is neither vertical nor tangent, all
the X-coordinates of the Pi are distinct. Select an additional point Q on the curve
with a different X-coordinate. Then there is no univariate polynomial of degree
less than g− 1 interpolating P1, . . . , Pg−1 and Q, since the unique such polynomial
interpolating P1, . . . , Pg−1 is s. Thus, P1 + · · · + Pg−1 + Q is typical of the form
div(u, Y − v) with deg u = g and deg v = g − 1, but it is not reduced since it is
equivalent to P σg + P σ

2

g + P σg+1 + P σ
2

g+1 +Q of degree 5 < g. �

As a concrete example for genus 6 consider the curve

Y 3 −
(
X7 − 3X6 − 257

120
X5 + 15X4 − 271

24
X3 − 3X2 − 467

30
X + 27

)
over any field of characteristic different from 2, 3, 5, 7, 587, 1446474881 and
12668272824090432149. The divisor

div
(
X6 − 3X5 − 5X4 + 15X3 + 4X2 − 12X,

Y −
(

7
120

X5 − 7
24
X3 − 23

30
X + 3

))
decomposes as P1 + · · · + P5 + Q with P1 = (−2, 5), P2 = (−1, 4), P3 = (0, 3),
P4 = (1, 2) and P5 = (2, 1) on the line Y − (−X+ 3) and Q = (3, 7). The reduction
of this divisor yields

Q+ div
(
X2 − 3X +

343
120

, Y 2 + (−X + 3)Y +
(
−3X +

737
120

))
.

Over Q, the second term is a prime divisor, but it decomposes as described above
over some algebraic extension.

The divisors constructed in the proof of Theorem 3.3 are still special and close
to the nonreduced cases of Theorem 3.1 since even though their points cannot
be interpolated by a small degree polynomial, they contain a subdivisor with this
property. However, while this special property eases a general description for all
genus, it is not really necessary, as illustrated by the following example.

Example 3.4. Consider the curve Y 3 − f where f is the polynomial:

X7 − 133925X6− 389893X5 + 722500X4 + 897144X3 + 1012596X − 1344397,
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over some field of characteristic different from 2, 3 and 11 in which the polynomial
in X does not have a double root and consider the divisor

div
(
X6 + 3X5 − 5X4 − 8X3 +X2 − 9X + 11,

Y − (2X5 + 4X4 − 14X3 + 10X2 − 5X + 1)
)
.

This divisor reduces to

div
(
X5 − 268141X4 + 17974684859X3 + 49468657057X2

+ 46578236952X + 15407791040,

Y −
(

1
88
X3 − 67299

44
X2 − 251135

88
X − 15403

11

))
,

but it does not contain a subdivisor which can be written in the form div(u, Y −v)
with deg v < deg u− 1.

This sporadic example has been found by constructing an FGLM matrix of lower
than expected rank; cf. Section 5.2.

4. Composition

As in hyperelliptic Jacobians, two typical reduced ideals a1 = 〈u1, Y − v1〉 and
a2 = 〈u2, Y − v2〉 are multiplied in two steps. The first step is the composition,
in which a representation 〈u, Y − v〉 for the product a1a2 is sought. The second
step reduces this ideal, which corresponds to a divisor of degree up to 2g, to one of
degree at most g.

Composing two typical divisors does not necessarily result in a typical divisor
again. When both divisors contain the same ramified prime, or one contains a split
prime P and the other one its conjugate P σ, then the composed divisor contains a
pair of conjugate primes; Theorem 2.4 does not apply, and the standard represen-
tation by two polynomials will usually contain a polynomial of degree 2 in Y . In
the light of Theorem 2.5, this event occurs, however, with negligible probability, so
that we may content ourselves with describing the typical case. A multiplication
algorithm for ideals in more general form, but with coprime norms, is described in
[22]; for the general case, see [5].

Theorem 4.1. Let a1 = 〈u1, Y −v1〉 and a2 = 〈u2, Y −v2〉 be typical reduced ideals
of K[C], i.e., ui, vi ∈ K[X ], deg vi < deg ui ≤ g and v3

i − f = uiwi for some
wi ∈ K[X ]. Suppose that gcd(u1, u2, v

2
1 + v1v2 + v2

2) = 1, and let s1, s2, s3 ∈ K[X ]
be such that

s1u1 + s2u2 + s3(v2
1 + v1v2 + v2

2) = 1.
Let

u = u1u2,

ṽ = v1 + s1u1(v2 − v1)− s3(v3
1 − f),

v = ṽ mod u,
a = 〈u, Y − v〉.

Then a1a2 = a, and u|v3 − f.
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Proof. Notice that the expression for ṽ is in fact symmetric in v1 and v2 since

ṽ = (1− s1u1)v1 + s1u1v2 − s3(v3
1 − f)

= (s2u2 + s3(v2
1 + v1v2 + v2

2))v1 + s1u1v2 − s3(v3
1 − f)

= s2u2v1 + s1u1v2 + s3(v2
1v2 + v1v

2
2 + f)

= v2 + s2u2(v1 − v2)− s3(v3
2 − f).

We show first that a1a2 ⊆ a = 〈u, Y − v〉 = 〈u, Y − ṽ〉. The product a1a2 is given
by 〈u1u2, u1(Y − v2), u2(Y − v1), (Y − v1)(Y − v2)〉, and it suffices to show that its
four generators lie in a. This is trivial for u1u2 = u.

u1(Y − v2) = u1(Y − ṽ) + u1(ṽ − v2)
= u1(Y − ṽ) + u1(s2u2(v1 − v2)− s3(v3

2 − f))
= u1(Y − ṽ) + u(s2(v1 − v2)− s3w2);

thus, u1(Y −v2) ∈ a, and the same argumentation applies to u2(Y −v1). Concerning
the last generator,

(Y − v1)(Y − v2) = (Y − v2)(Y − ṽ) + (Y − v2)(ṽ − v1)
= (Y − v2)(Y − ṽ) + (Y − ṽ)(ṽ − v1) + (ṽ − v2)(ṽ − v1),

and it suffices to show that (ṽ − v1)(ṽ − v2) ∈ a. This holds since u1|ṽ − v1 and
u2|ṽ − v2, so that u divides the product.

We next show that u|v3 − f . Let p be an irreducible polynomial and ei such
that pei ||ui; thus pe||u for e = e1 + e2. If e1 = 0, then pe2 |v3

2 − f and v ≡ v2

(mod u2) imply that pe|v3 − f ; ditto for e2 = 0. If e1, e2 ≥ 1, assume without loss
of generality that e2 ≤ e1, so that u2

1 ≡ 0 (mod pe). Furthermore, v3
1 ≡ f ≡ v3

2

(mod pe2), and from gcd
(
u1, u2,

v3
1−v

3
2

v1−v2

)
= 1 we deduce that pe2 |v1 − v2. This in

turn yields 1 ≡ s3(v2
1 + v1v2 + v2

2) ≡ 3s3v
2
1 (mod pe2). By the definition of v, we

have
v ≡ v1 − s3u1w1 (mod pe).

Hence,

v3 − f ≡ v3
1 − f − 3v2

1s3u1w1 (mod pe)
≡ u1w1(1− 3s3v

2
1) ≡ 0 (mod pe)

since pe1 |u1 and pe2 |1− 3s3v
2
1 .

Notice now that the norms of a1, a2 and a are given by u1, u2 and u = u1u2,
respectively; this follows from the divisibility by the u∗ of the norms of the Y − v∗,
which are given by v3

∗ − f . The unique decomposability of ideals in Dedekind
domains into prime ideals and a1a2 ⊆ a then imply a1a2 = a. �

We may specialise Theorem 4.1 to the situations of squaring an ideal or of multi-
plying two distinct ideals. By the analysis of Theorem 2.5, there is an overwhelming
probability that in the first case the corresponding divisor does not contain a ram-
ified prime divisor and that in the second case, if one divisor contains a prime P ,
then the other divisor contains none of its conjugates P , P σ or P σ

2
. This leads to

the following algorithms for composition.

Corollary 4.2 (Squaring/doubling). Let a1 = 〈u1, Y − v1〉 be a typical reduced
ideal with v3

1 − f = u1w1, and suppose that gcd(u1, v1) = 1. Write

s1u1 + 3s3v
2
1 = 1,
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and let

u = u2
1,

t = −s3w1 mod u1,

v = v1 + tu1.

Then a2
1 = 〈u, Y − v〉.

Corollary 4.3 (Multiplying/adding). Let a1 = 〈u1, Y − v1〉 and a2 = 〈u2, Y − v2〉
with v3

i − f = uiwi be two typical reduced ideals such that gcd(u1, u2) = 1. Write

s1u1 + s2u2 = 1,

and let

u = u1u2,

t = s1(v2 − v1) mod u2,

v = v1 + tu1.

Then a1a2 = 〈u, Y − v〉.

Notice that the intermediate reduction of t implies directly that v is reduced
modulo u.

In the next section we need an algorithm for inverting an ideal in the class group;
the following algorithm solves this problem by multiplying the two conjugate ideals.

Proposition 4.4 (Inverting/negating). Let a = 〈u, Y − v〉 with v3 − f = uw be a
typical reduced ideal such that gcd(u,w) = 1. Then

〈u〉a−1 = 〈u, Y 2 + vY + v2〉.

Proof. Carrying out similar computations as in the proof of Theorem 4.1 and using
the fact that u and w are coprime, we obtain

aσaσ
2

= 〈u, ζ−1Y − v〉〈u, ζ−2Y − v〉 = 〈u, Y 2 + Y v + v2〉.

From aaσaσ
2

= 〈u〉 we then deduce the desired equality. �

5. Reduction

Reduction algorithms have been proposed by Arita for Cab curves [2, 3] and
Galbraith, Paulus and Smart for superelliptic curves [12]. Later, Harasawa and
Suzuki noticed that these algorithms follow the same principle and generalised [12]
to Cab curves. All these algorithms can be synthesised as follows.

Algorithm 5.1 (Reduction).
Input: ideal a of K[C]
Output: reduced ideal Red(a) equivalent to a

1. Choose an integral ideal b in the class of a−1, such that b = ua−1 for some
u ∈ a.

2. Let e 6= 0 be the minimum of b with respect to the Cab order.
3. Put Red(a) = eb−1 = e

ua.

Arita represents ideals of K[C] by their Gröbner bases with respect to the Cab
order and chooses u as the Cab minimum of a. His approach relies on Buchberger’s
algorithm, whose complexity in the Cab setting is not quite clear.
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In [12] and [15], ideals are represented by their Hermite normal forms as K[X ]-
modules or, equivalently, by their Gröbner bases with respect to the lexicographic
order. The natural choice for u is then the minimum with respect to this order.
The minimum for the Cab order can be computed via a variant of LLL for function
fields due to Paulus [21].

In this section, we describe two new algorithms for realising the arithmetic in the
Jacobians of superelliptic cubics. We hereby concentrate on typical ideals as intro-
duced in Theorem 2.4. Sometimes, further restrictions as examined in Section 2.2
are imposed. In the rare case that the input or output data do not match these
assumptions, one may have recourse in the more general, but presumably slower,
algorithms of [2, 3, 12, 15].

Our first algorithm is inspired by Cantor’s reduction of ideals in hyperelliptic
function fields [6]; it turns out, however, that it can also be stated in terms of
Algorithm 5.1.

The second approach follows the framework of Algorithm 5.1. Representing
ideals by their lexicographic Gröbner bases, we use the algorithm of [11] to find the
Cab minimum. This method applies in complete generality to any Cab curve. We
carry out the symbolic computations explicitly for typical divisors in superelliptic
cubics of genus 3, thus obtaining closed formulae for the reduced ideal in this case.

5.1. Cantor reduction. Taking into account the similarities between the typical
representation of reduced divisors in hyperelliptic and superelliptic Jacobians, one
might be tempted to generalize the well-known reduction algorithms of the hyper-
elliptic case (see [6, 18, 7]). However, this approach fails for Gauß reduction, which
would amount to replacing div(u, Y − v) by

div
(
f − v3

u
, Y −

(
v mod

f − v3

u

))
,

which is a divisor in the opposite class. Unfortunately, if we are in the typical case
with deg u = 2g and deg v = 2g − 1, the new divisor has a degree of 4g − 2, which
is even larger than 2g. For polynomials v of unusually low degree, however, the
approach does work.

The generalization of Cantor’s algorithm as described in [6], and for the case of
characteristic 2 in [7], is more successful due to an additional degree of freedom.

Theorem 5.2. Let the sequences of polynomials ri, si and ti such that ri = siu+tiv
be obtained from applying the extended Euclidian algorithm to u and v. Assume
that we have gcd(ri, ti) = 1. Let

u′ =
t3i f − r3

i

u
,

v′ = ri(t−1
i mod u′).

Then div(u′, Y − v′) is a divisor in the class opposite to div(u, Y − v).

Remark. Notice that by [7], Lemma 7, gcd(ri, ti) = 1 happens with probability in
1− 1

qO(1) for any value of i. We then have

gcd(ti, u′)
∣∣ gcd(ti, t3i f − r3

i )
∣∣ gcd(ti, ri)3 = 1,

so that the inverse of ti modulo u′ does indeed exist.
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Proof of Theorem 5.2. Let ∼ denote equivalence of divisors.

div(u, Y − v) = div(u, tiY − tiv) since gcd(ti, u)| gcd(ti, ri) = 1
= div(u, tiY − ri) since tiv ≡ ri (mod u)
∼ − (div(tiY − ri)− div(u, tiY − ri))
= − div(u′, tiY − ri) (∗)
= − div(u′, Y − ri(t−1

i mod u′)).

For the step marked by (∗) notice that N(tiY − ri) = t3i f − r3
i = uu′, so that

div(tiY − ri) = div(uu′, tiY − ri). Let x ∈ K be a root of uu′ corresponding to
some point P = (x, y) in div(tiY − ri). Then ti(x) 6= 0, since otherwise ri(x) = 0,
contradicting gcd(ti, ri) = 1. Thus, y = ri(x)

ti(x) . Assume first that y 6= 0, which

implies that P σ and P σ
2

are not contained in div(tiY −ri). Hence, if (X−x)k||uu′,
then the multiplicity of P σ

m

in div(tiY σ
n − ri) is k if m = n and zero otherwise.

On the other hand, if y = 0, then ri(x) = 0, ordP ri ≥ 3, ordP Y = 1, and ti(x) 6= 0
imply ordP (tiY − ri) = 1. This shows that k = 1, and exactly one of u and u′,
say u, is divisible by X − x. The corresponding divisor div(u, tiY − ri) contains P
with multiplicity 1; the other one does not contain P . This shows that indeed (∗)
holds. �

To obtain a reduction, the degree of the new divisor must be smaller than that
of the original one. This is the case if i can be chosen such that

max{3 degX ri, 3 degX ti + (g + 1)} − degX u < degX u.

As in Cantor’s algorithm, a suitable index i exists provided that the degrees of the
remainder sequence in the Euclidian algorithm behave typically, i.e., decrease by 1
in each step. If there are larger jumps, then the algorithm may fail as in the case
of hyperelliptic curves.

Theorem 5.3. Let div(u, Y −v) be a divisor with degX u ≥ g, degX v = degX u−1
and u|v3 − f . Suppose that ri = siu + tiv with degX ri = degX u − 1 − i and
degX ti = i. Let i0 be the closest integer to 3 degX u−g−4

6 . If u′, v′ are computed
from i0 as in Theorem 5.2, then div(u′, Y − v′) is a divisor in the opposite class of
div(u, Y − v). If degX u ≥ g + 2, then deg u′ < deg u; if degX u ∈ {g, g + 1}, then
deg u′ = g.

Proof. Define the function d by

d(i) = max{2 degX u− 3− 3i, 3i+ g + 1− degX u},
that is, by the degree of the divisor after one step of the reduction process in
Theorem 5.2 with ri and ti. Since d is the maximum of a strictly decreasing and a
strictly increasing linear function, it is minimized by imin = 3 degX u−g−4

6 , where the
two linear functions admit the same value, if real arguments are permitted. The
value in this point is given by d(imin) = 1

2 degX u+ g
2 − 1, which satisfies d(imin) =

g − 1 for degX u = g, d(imin) = g − 1
2 for degX u = g + 1 and d(imin) ≤ degX u− 2

for degX u ≥ g + 2.
If only integral arguments are taken into account, then d takes its minimum

in one of the neighbouring integers of imin. Letting i be one of them, the slopes
−3 and +3 of the linear functions imply that d(i) = d(imin) + 3|i − imin|, so that
the minimum is indeed attained for the closest integer i0 to imin. Furthermore,
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since |i0 − imin| ≤ 1
2 , we obtain d(i0) ≤

⌊
g − 1 + 3

2

⌋
= g for degX u = g and

d(i0) ≤
⌊
degX u− 2 + 3

2

⌋
= degX u − 1 for degX u ≥ g + 2. For degX u = g + 1,

this argument yields only d(i0) ≤ g + 1. However, in this case, i0 equals 2g−1
6

which cannot be half-integral since g is different from −1 modulo 3, so that in fact
1
6 ≤ |i0 − imin| < 1

2 and d(i0) = g. A similar argument shows that |i0 − imin| = 1
3

and d(i0) = g if degX u = g. �
Theorem 5.4. Let g ∈ {3, 4}, and assume the typical behavior of the remainder
degrees of the Euclidian algorithm. Then two applications for g = 3, respectively
four applications for g = 4, of the reduction process of Theorem 5.2 to a divisor
div(u, Y − v) with deg u = 2g and deg v = 2g − 1 yield the reduced divisor in the
same class.

Proof. If g = 3, then by Theorem 5.3, the first reduction step yields a divisor of
degree 4 in the opposite class and the second one a divisor of degree 3 in the same
divisor class. The first three steps in genus 4 transform the divisor of degree 8 to
divisors of degree 6, 5 and 4, respectively, the latter of which lies in the opposite
divisor class. So a fourth step is needed to obtain a divisor in the original class. By
Corollary 3.2, these divisors are indeed reduced. �
Remarks. 1. Proposition 4.4 provides a simple way of computing the negative

of a divisor class. However, the output is neither in typical form nor reduced.
Theorem 5.3 and Corollary 3.2 show that in genus 3 or 4, one application
of the algorithm to a divisor suffices to obtain the reduced representative in
the opposite class.

2. If the genus of the superelliptic curve is larger than 4, then Theorem 5.3
still applies, and the algorithm will (with overwhelming probability) output
a divisor of degree g. However, as seen in Section 3, this divisor need not
necessarily be the reduced representative of the class. Nevertheless, the
algorithm may be used for the intermediate steps of the multiplication of a
divisor by a scalar. To assure reducedness of the final output, one may then
use another algorithm for the last reduction step.

3. The algorithm can be interpreted as a specialisation of Algorithm 5.1. All
but the last reduction step correspond to the computation of b.

Example 5.5. Consider the curve Y 3 − f where f is the polynomial

X4 + 391X3 + 1300X2 + 1583X + 1905

over the field F2003 and the ideal a = 〈u, Y − v〉 with

u = X6 + 420X5 + 1293X4 + 1420X3 + 1149X2 + 419X + 1538,
v = 1559X5 + 775X4 + 1541X3 + 162X2 + 368X + 1864.

The first step of the Cantor algorithm determines a1 = 〈u1, Y − v1〉 in the class of
a−1. Using Theorem 5.3, the polynomials u1 and v1 are computed with i0 = 2 as

u1 = 1757
(
X4 + 294X3 + 521X2 + 374X + 1973

)
,

v1 = 1768X3 + 349X2 + 274X + 972.

We need a second step with i0 = 1, which yields Red(a) = 〈u′, Y − v′〉 with

u′ = 879
(
X3 + 1123X2 + 428X + 1166

)
,

v′ = 1543X2 + 882X + 921.
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5.2. FGLM reduction. The FGLM algorithm of [11] is an efficient method for
switching between Gröbner bases for different orders. Since the first element of a
Gröbner basis is the minimum of the ideal, an early abort solves the second step
of Algorithm 5.1. We explain the principles of the algorithm applied to curves,
illustrating them by the concrete case of superelliptic cubics. All computations
may be carried out symbolically, which can be used to obtain explicit formulae for
the reduced ideal in terms of the coefficients of the input polynomials.

Let K[C] be the coordinate ring of a curve and b an ideal of K[C]. Consider
K[C]/b as a K-vector space with the natural basis B = (b1, . . . , bk) formed by
reduced monomials modulo b, ascending with respect to the first order. It is un-
derstood that the monomials are also reduced modulo the curve equation C.

In the context of Algorithm 5.1, we have a = 〈u, Y − v〉 with deg u = 6 and we
let b = ua−1 = 〈u, Y 2 + vY + v2〉 by Proposition 4.4. The Gröbner basis of b with
respect to the lexicographic order is given by

[u, uY, Y 2 + vY + (v2 mod u)],

whence

B = (1, X,X2, X3, X4, X5, Y, Y X, Y X2, Y X3, Y X4, Y X5)

and k = 12.
Similarly, let B′ = (b′1, . . . , b′k+1) be formed from the first k+1 monomials, again

reduced modulo the curve equation and ascending with respect to the second order.
In our case, we are interested in the C3,4 order, so that

B′ = (1, X, Y,X2, XY, Y 2, X3, Y X2, Y 2X,X4, Y X3, Y 2X2, X5).

As |B′| = |B| + 1, the b′i are K-linearly dependent in K[C]/b. Notice that any
nontrivial linear relation

∑
λib
′
i = 0 means that b =

∑
λib
′
i is an element of b.

The ordering of B′ implies that the second order of b equals that of the last b′i with
λi 6= 0. The minimum of b with respect to the second order can thus be obtained
by constructing B′ incrementally, that is, adding the b′i one by one, until the set
becomes linearly dependent. This leads to the following algorithm.

Algorithm 5.6 (Minimum by FGLM).
Input: b, B and B′

Output: i ≤ |B′| and λ1, . . . , λi−1 s.t. b′i −
∑i−1

j=1 λjb
′
j is the minimum of b w.r.t.

the second order

1. M ← empty matrix, i← 0
2. while rankM = i

• i← i+ 1
• write b′i =

∑k
j=1 µijbj

• add (µi1, . . . , µik) as a new row to M
3. compute λ1, . . . , λi−1 s.t. b′i =

∑i−1
j=1 λjb

′
j

Before applying the algorithm to our case, we fix some notation which will be
used throughout this and the following section.

Notation 5.7. For u ∈ K[X ] and α ∈ K[X,Y ] we denote by δu(α) the quotient
and by ϕu(α) the remainder in K[X,Y ] of α divided by u. When no confusion is
possible, we omit the subscript u.
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We now apply Algorithm 5.6 symbolically to the ideal b = 〈u, Y 2 + vY +ϕ(v2)〉
of a superelliptic cubic of genus 3, where u is monic of degree 6. After the first
six iterations, the matrix looks as follows. A subscript i indicates the coeffi-
cient of X i of a polynomial, and an entry “∗” stands for some element of K.

1XX2 X3 X4 X5 Y XY X2Y X3Y X4Y X5Y
1 1 0 0 0 0 0 0 0 0 0 0 0
X 0 1 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 1 0 0 0 0 0
X2 0 0 1 0 0 0 0 0 0 0 0 0
XY 0 0 0 0 0 0 0 1 0 0 0 0
Y 2 ∗ ∗ ∗ −ϕ(v2)3 −ϕ(v2)4 −ϕ(v2)5 ∗ ∗ −v2 −v3 −v4 −v5

If we had deg(v) ≤ 1, then we would obtain a linear dependency and Y 2 +
vY + ϕ(v2) would be the minimum of b. In the typical case, where deg(v) = 5, we
continue. The next interesting situation arises after adding XY 2, which is not an
element of B.

1XX2 X3 X4 X5 Y XY X2Y X3Y X4Y X5Y

X3 0 0 0 1 0 0 0 0 0 0 0 0
X2Y 0 0 0 0 0 0 0 0 1 0 0 0
XY 2 ∗ ∗ ∗ ∗ −ϕ(Xv2)4 −ϕ(Xv2)5 ∗ ∗ ∗ −ϕ(Xv)3 −ϕ(Xv)4 −ϕ(Xv)5

The algorithm could only stop here if (v4, v5) and (ϕ(Xv)4, ϕ(Xv)5) were linearly
dependent, i.e., if

det
(

v4 v5

ϕ(Xv)4 ϕ(Xv)5

)
= 0.

Notice that since ϕ(Xv) = Xv−v5u, this determinant equals v2
5 times the coefficient

of X4 of u mod v. For a typical remainder sequence in the Euclidian algorithm,
however, we expect this coefficient to be different from zero. After three further
iterations we obtain a square matrix, which we expect to be nonsingular (we will
see later that otherwise the reduced ideal would have a norm of degree less than 3).

1XX2 X3 X4 X5 Y XY X2Y X3Y X4Y X5Y

X4 0 0 0 0 1 0 0 0 0 0 0 0
X3Y 0 0 0 0 0 0 0 0 0 1 0 0
X2Y 2 ∗ ∗ ∗ ∗ ∗ −ϕ(X2v2)5 ∗ ∗ ∗ ∗ −ϕ(X2v)4 −ϕ(X2v)5

X5 0 0 0 0 0 1 0 0 0 0 0 0

Solving the linear system, we compute a quadratic polynomial t = t2X
2+t1X+t0

and the minimum

e = tY 2 +
(
ϕ(tv)3X

3 + ϕ(tv)2X
2 + ϕ(tv)1X + ϕ(tv)0

)
Y + ϕ(tv2)

= tY 2 +
(
ϕ(tv) mod X4

)
Y + ϕ(tv2).

We show now that in fact

e = tY 2 + ϕ(tv)Y + ϕ(tv2),

or, otherwise said, that ϕ(tv) is of degree at most 3. As an element of b =
[u, uY, Y 2 + vY +ϕ(v2)] with leading term tY 2, e can be written as a linear combi-
nation tY 2 + tvY + tϕ(v2) + q1uY + q2u. So its coefficient in Y is given by tv+ q1u.
Computing the Cab degrees of all terms, one finds that e can only be the minimum
if its coefficient in Y equals ϕ(tv).
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The concrete value of t is given as follows. (Notice that t is only defined up to
a constant factor; we choose it to be monic.)

t1 =
v4v3 − v2v5 − u5v

2
4 + v4u

2
5v5 − u4u5v

2
5 + u3v

2
5

v5v3 − u4v2
5 − v2

4 + v4u5v5

t0 =
v5u4 + u5v4 − v3 − u2

5v5

v5
+
v5u5 − v4

v5
t1 .

As a side note, t is (up to a constant factor) the multiplier of v obtained after
applying two steps of the extended Euclidian algorithm to u and v, that is, βu+tv =
r with r of degree 3. This is specific to the case of genus 3.

Our aim is now to derive an expression for Red(a) in the form 〈u′, Y −v′〉. First,
we show how to compute u′. By Algorithm 5.1, we have Red(a) = e

ua = 〈e, ẽ〉 with
ẽ = e(Y − v)/u. We let u′ be the norm of Red(a), given by

N(e) N(a)
N(u)

=
N(e)
u2

=
t3f2 + (ϕ(tv)3 − 3tϕ(tv)ϕ(tv2))f + ϕ(tv2)3

u2
,

where N(e) is computed from (1). Recall that the degree of N(e) equals the Cab
order of e, so that it is 15, and u′ is of degree 3. If we succeed in finding an
element Y − v′ of Red(a) with v′ ∈ K[X ], then 〈u′, Y − v′〉 is an ideal contained
in Red(a) of the same norm, so that these two ideals are equal. Furthermore, u′

divides automatically the norm f − (v′)3 of Y − v′.

Remark. If the FGLM Algorithm 5.6 had found a minimum e before the last step,
then the degree of N(e) would be less than 15, and we would find an element u′

in Red(a) of degree less than 3. This shows that in the typical case, the matrix
constructed by FGLM is of maximal rank, and the minimum is found in the last
step only, an argumentation that easily generalises to other curves.

To find a polynomial in Red(a) which is linear in Y , we define w ∈ K[X ] by
v3−f
u and develop

ẽ = −δ(tv)Y 2 + (vδ(tv) − δ(tv2))Y + (vδ(tv2)− tw).

A polynomial combination of e and ẽ eliminates Y 2 and yields

ṽ = tẽ− δ(tv)e = ṽ1Y − ṽ0

with

ṽ1 = t δ(tv2)− δ(tv)(ϕ(tv) + tv),
ṽ0 = −t2w + tv δ(tv2) + δ(tv)ϕ(tv2).

Substituting δ(tv) and δ(tv2), we find the alternative expression

ṽ1 =
ϕ(tv)2 − tϕ(tv2)

u
,

which shows that ṽ1 is of degree (at most) 1. In the typical case, we expect it to be
invertible modulo u′, so that v′ = (ṽ1)−1ṽ0. Notice that (ṽ1)−1 is easily computed
symbolically.

Example 5.8. We resume Example 5.5, applying the explicit FGLM formulae.
The minimum with respect to the Cab order in b is given by

e = tY 2 + (tv mod u)Y + (tv2 mod u),
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where t = 1328X2 + 911X + 1446. Then
N(e)
u2

= 1513
(
X3 + 1123X2 + 428X + 1166

)
,

ṽ = (1465X + 536)Y + 1783X2 + 1510X + 570,
v′ = 1543X2 + 882X + 921.

6. Further results

During this article we focus on the typical behaviour of divisors in superelliptic
Jacobians, occurring virtually all the time. Of course, it is possible to adapt the
algorithms to treat nontypical cases as well. The FGLM method, for instance,
actually becomes simpler, since the matrix does not have full rank any more and
the minimum is found earlier.

Carrying out the computations of the FGLM algorithm symbolically, we have
obtained explicit reduction formulae relating the coefficients of the output poly-
nomials to those of the input polynomials. In the following table, we provide the
number of multiplications and inversions in the ground field needed by the different
algorithms to reduce a typical ideal of degree 6 in the Jacobian of a genus 3 su-
perelliptic curve. The numbers should not be taken literally, since they are subject
to considerable variations depending on the polynomial arithmetic used and the
exact arrangement of the computations. They are rather meant to convey a vague
idea on how the algorithms behave. We describe our implementations of the new
algorithms in more detail in [4].

formulae Cantor following [12]
mul. 150 200 510
inv. 6 10 10

The described algorithms generalise without difficulty to C3,b curves. Completing
the cube, we can assume that such a curve is given by an equation of the form

C = Y 3 + hY − f
with deg f = b and deg h ≤

⌊
2b
3

⌋
. The formulae for Cantor reduction (cf. Theo-

rem 5.2) then become

u′ =
t3i f − t2i rih− r3

i

u
,

v′ = ri(t−1
i mod u).

Notice that the degree restriction on h implies that Theorem 5.3 remains valid,
whence the same number of reduction steps is needed as for superelliptic curves.
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