N
N

N

HAL

open science

On the Memory Usage of a Parallel Multifrontal Solver
Abdou Guermouche, Jean-Yves L’Excellent, Gil Utard

» To cite this version:

Abdou Guermouche, Jean-Yves L’Excellent, Gil Utard. On the Memory Usage of a Parallel Multi-
frontal Solver. [Research Report] RR-4617, LIP RR-2002-42, INRIA, LIP. 2002. inria-00071968

HAL Id: inria-00071968
https://inria.hal.science/inria-00071968
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00071968
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4617--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

On the Memory Usage of a Parallel Multifrontal Solver

Abdou Guermouche, Jean-Y ves L' Excellent, Gil Utard

No 4617
November 2002

THEME 1

apport
derecherche

RHONE-ALPES

On the Memory Usage of a Parallel Multifrontal Solver

Abdou Guermouche, Jean-Yves L’Excellent, Gil Utard

Théme 1 — Réseaux et systémes
Projet ReMaP

Rapport de recherche n°4617 — November 2002 — 16 pages

Abstract: We are interested in the memory usage of sparse direct solvers. We particularly focus
on the parallel multifrontal scheme. In the multifrontal approach two kinds of memory can be
distinguished: a static one which corresponds to the result of the factorization process (ie, the
factors), and a dynamic or active one, usually handled by a stack mechanism, which corresponds to
the working space of the factorization process. For some problems the stack size may be as large as
and even greater than the final factors. The size of the stack depends on the assembly tree and on
how the computation is distributed. We present an extensive study of the impact of state-of-the-art
sparse matrix reordering techniques on the assembly tree and on the memory occupation of the
MUMPS solver in both sequential and parallel executions. The main observation of this study is that
the stack of parallel multifrontal solvers does not scale well if a dynamic scheduling strategy based
only on the balance of the workload is used.

Key-words: Sparse matrices, multifrontal method, assembly tree, reordering techniques, memory.

(Résumé : tsvp)

This text is also available as a research report of the Laboratoire de l'Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.

Unité de recherche INRIA Rhone-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
Téléphone : 04 76 61 52 00 - International : +33 4 76 61 52 00
Téléconie : 04 76 61 52 52 - International - +334 76 61 52 52

Etude de ’occupation mémoire d’un solveur Multifrontal paralléle

Résumé : Nous nous intéressons dans ce rapport & l'occupation mémoire d’un solveur creux
direct. Dans la méthode multifrontale, la mémoire est divisée en deux parties : une partie statique
qui correspond au résultat du processus de factorisation (i.e. les facteurs), et une partie dynamique,
gérée par un mécanisme de pile, qui correspond & 'espace de travail du processus de factorisation.
La taille de la mémoire dynamique dépend fortement de la topologie de ’arbre d’assemblage guidant
la factorisation ainsi que de la distribution des calculs. Pour certains problémes, elle peut étre du
méme ordre de grandeur, voire plus grande que la taille des facteurs. Nous présentons une étude de
I'impact des techniques modernes de renumérotation sur la topologie de ’arbre d’assemblage ainsi
que sur I'occupation mémoire du solveur MUMPS pour les cas séquentiels et paralléles. Le principal
résultat de cette étude est que la mémoire dynamique pour les exécutions paralléles n’a pas une
bonne scalabilité si on utilise une stratégie d’ordonnancement basée uniquement sur 1’équilibrage
de charge.

Mots-clé : Matrices creuses, méthode multifrontale, arbre d’assemblage, algorithmes de renuméro-
tation, mémoire.

1 Introduction

Sparse direct methods and in particular multifrontal methods are robust and efficient techniques to
solve large sparse systems of linear equations. However, they are known for their relatively large
memory requirements compared to iterative methods so that an in-core execution is not always
possible: sometimes, large problems fail to be solved because of a lack of memory on the processors.
In this paper, we present a study of the memory usage of multifrontal solvers. Two types of memory
can be distinguished in the process of solving sparse linear systems: a static memory needed to
store the final factors of the sparse matrix; and an additional dynamic memory, also called active
memory, needed to store temporary values used by the computation. In the case of multifrontal
methods, this is handled by a stack mechanism. The size of the active memory can be large, and is
sometimes larger than the factors.

Reordering (i.e., renumbering the unknowns of a sparse linear system) is a well known technique to
reduce the fill in the final factors, and this has a significant impact on the static memory size. In this
paper we show that reordering techniques also have a big impact on the active memory size. In the
multifrontal method, the active memory size depends on the shape of assembly trees resulting from
the reordered matrix. Thus, we present an extensive study of the assembly tree shapes resulting
from various combinations of sparse matrices and reorderings.

The active memory size also depends on the way the assembly tree is traversed during the factoriza-
tion process and how the computation is distributed on the different processors. We experimentally
study the memory usage of the parallel multifrontal solver MUMPS.

In Section 2, we recall some general mechanisms of the multifrontal method. Then we give in Section
3 a description of the reordering techniques used for our study. In Sections 4 and 5, we study the
impact of these reordering techniques on both the shape of the assembly tree and on the evolution of
the dynamic memory, respectively. After that, we study in Section 6 the influence of the reordering
methods on the memory balance and occupation for parallel executions, then, we conclude.

2 The multifrontal method

Like other direct methods, the multifrontal method [9, 10] is based on the elimination tree [16],
which is a transitive reduction of the matrix graph and is the smallest data structure representing
dependencies between operations. In practice, we use a structure called assembly tree, obtained by
merging nodes of the elimination tree whose corresponding columns belong to the same supernode
[5]. We recall that a supernode is a contiguous range of columns (in the factor matrix) having the
same nonzero structure.

Figure 1 gives an example of a matrix and its associated assembly tree. From the initial matrix,
an assembly tree with three nodes (each corresponding to one supernode) is derived. The two first
independent leaf nodes contribute to the computation of the third.

In the multifrontal approach, the factorization of the matrix is done by performing a succession
of partial factorizations of small dense matrices called frontal matrices, and associated to each
node of the tree. The order of the frontal matrix is given by the number of non-zeros below the
diagonal in the first column of the supernode associated with the tree node. The frontal matrix is
divided into two parts: the factor block, also called fully summed block, which corresponds to the
variables which are factorized when the elimination algorithm processes the frontal matrix; and the
contribution block which corresponds to the variables which are updated when processing the frontal
matrix. Once the partial factorization is complete, the contribution block is passed to the father
node. When contributions from all children are available on the father, they can be assembled (i.e.

RR n~°4617

X X |0
X X |o

=
N
w
o]

415
X X | X
| |
X x! !
X X1 X
I I
X X
X 1 Iy x 125 346
| |
X Ix X X X X @ X X X
1 1 X X X X
X F| x x F| x

Figure 1: A matrix and the associated assembly tree.

summed with the values contained in the frontal matrix of the father). The elimination algorithm
is a postorder traversal (we do not process father nodes before their children) [20] of the assembly
tree.

The algorithm uses three areas of storage in a contiguous memory space, one for the factors, one
to stack the contribution blocks, and another one for the current frontal matrix [2|. During the
tree traversal, the memory space required by the factors always grows while the stack memory
(containing the contribution blocks) varies depending on the operations made: when the partial
factorization of a frontal matrix is processed, a contribution block is stacked which increases the
size of the stack; in opposition, when the frontal matrix is formed and assembled, the contribution
blocks of the children nodes are pushed out of the stack and its size decreases. Concerning stack
memory evolution, it is very dependent on the assembly tree topology. Figure 2 gives an example
of two trees and illustrates the influence of the tree topology on the stack memory. Indeed if we
consider the deep tree (on the left), we have to store only two contribution blocks simultaneously
whereas for the wide tree (on the right) we have five contribution blocks to store before processing
the right-most child of the root node (see figure 2). This example illustrates the impact of the
topology of the assembly tree on the stack memory.

AR

Deep tree Largetree

Figure 2: Importance of the tree topology for stack memory.

Note that in our description all the contribution blocks for children nodes in the sequential case are
assembled at once. Another approach could be to perform the assembly of a contribution block on
the fly, each time it is computed. This is generally not done in multifrontal solvers because this
strategy implies the use of more complex memory management algorithms and the structure of the
frontal matrix of the father is unpredictable when there is pivoting.

INRIA

In the rest of the paper we only distinguish between two areas of storage: the factors, and the stack,
where the term stack includes the storage for the current frontal matrix.

3 Reordering techniques

Reordering the variables of a sparse linear system, i.e. permuting columns and rows (with some
respect to numerical stability), aims at reducing the amount of fill-in.

Here we only consider symmetric reordering techniques which can also be applied to an unsym-
metric matrix A by considering the structure of A + A” (after some column permutation for very
unsymmetric matrices [8]).

Two popular schemes for symmetric reordering are bottom-up heuristics such as the minimum degree
(AMD [1], MMD [15]) or minimum fill (MMF [17, 21]) and global or top-down heuristics based on
partitioning the graph of the matrix, such as nested dissection [12]. A new class of algorithms
has been developed recently that hybridize top-down nested dissection with bottom-up minimum
degree.

Note that although these heuristics mainly focus on the reduction of fill-in, (and thus size of the
factors and number of operations), they also have a significant impact on the parallelism (see, e.g.
[3]). Here, we are essentially interested in the influence of such techniques on the memory usage
and consider the following bottom-up, top-down and hybrid heuristics:

e AMD: the Approximate Minimum Degree [1];
e AMF: the Approximate Minimum Fill, as implemented in MUMPS;
e PORD: a tight coupling of bottom-up and top-down sparse reordering methods [22];

e METIS: we use here the routine METIS_NODEND from the METIS package [14] which is an
hybrid approach based on multilevel nested dissection and multiple minimum degree;

e SCOTCH: we use a modified version of SCOTCH [18] provided by the author that couples nested
dissection and (halo) Approximate Minimum Fill (HAMF), in a way very similar to [19]. The
switch to HAMF is done when the size of the subgraph obtained is 120.

In the following, we simply use the terms AMD, AMF, METIS, SCOTCH and PORD to refer to
these heuristics. We should note that for AMD, AMF, SCOTCH and PORD, the assembly tree is
returned directly from the reordering algorithm, while for METIS, only the permutation is returned
and MUMPS rebuilds an assembly tree based from that permutation.

Finally, note that we had initially considered a pure nested dissection algorithm [12], but this one
was competitive only in a few cases, and only for extremely regular problems, so that we decided
to discard it.

Figures 4 gives the ratio between the peak of the stack and the final size of the factors in the
sequential case. (Note that the final size of factors for every test problem and every reordering
technique is given in Figure 3.) The matrices are from Table 1 and are extracted from either
the Rutherford-Boeing collection [7], the collection from University of Florida! or the PARASOL
collection?. We can see that the peak of the stack can be significant compared to the size of factors
(the ratio is near to 1). Furthermore, for certain problems like the matrix GUPTA3, the peak of
the stack is larger than the size of the factors. This illustrates the fact that the stack memory must
be well managed for both sequential and parallel executions.

! Available from http://www.cise.ufl.edu/~davis/sparse/
? Available from http://parallab.uib.no/parasol

RR n~°4617

Matrix Order NZ Type Description

BMWCRA 1 | 148770 | 5396386 symmetric | Automotive crankshaft model with nearly 150000 TETRA elements
(MSC-CRANKSHAFT-150K)

SHIP 003 121728 | 4103881 symmetric | Ship structure from production run

GRID 109744 | 1174048 symmetric | 11-point discretization of the Laplacian on 3D grids (152*38*19)
GUPTA3 16783 | 4670105 symmetric | Linear programming matrix (A*A’), Anshul Gupta
MSDOOR 415863 | 10328399 | symmetric | Medium size door
PRE2 659033 | 5959282 | unsymmetric | AT&T harmonic balance method, large example

RMA10 46835 | 2374001 | unsymmetric | 3D CFD model, Charleston harbor. Steve Bova, US Army Eng., WES
TWOTONE | 120750 | 1224224 | unsymmetric | AT&T harmonic balance method, two-tone. More off-diag nz than one-
tone
XENON2 157464 | 3866688 | unsymmetric | Complex zeolite,sodalite crystals. D Ronis

Table 1: Description of the test problems.

@EMETIS
B SCOTCH
OPORD

@ AMF
SAMD

Facotr size (millions of reals)

Matrices

Figure 3: Size of the factors (millions of reals).

OMETIS
BWSCOTCH
OPORD
BAMF
SAMD

77777277777

OMETIS
BSCOTCH
OPORD
BAMF
SAMD

-

Peak of the stack / Size of factors
Peak of the stack / Size of factors
o

V272722 727222 7 7

A

0 [
GUPTA3
Matrices Matrices

(a) (b)

Figure 4: Ratio between the size of the stack and the size of the factors.

4 TImpact of reordering techniques on the assembly tree

In this section, we study the impact of the reordering technique used on the shape of the corre-
sponding assembly tree We consider the test problems from Table 1 and the reordering techniques
METIS, SCOTCH, PORD, AMF and AMD introduced in Section 3.

We use the software package MUMPS (MUltifrontal Massively Parallel Solver) [4, 3], which implements
parallel multifrontal solvers with threshold partial pivoting for both LU and LDL” factorizations.
For our purpose, we first experiment with the sequential version, and the tree is processed using a
depth first search traversal. We have instrumented the code to obtain statistics on both the assembly

INRIA

tree and the memory and be able to understand in better detail the evolution of the memory usage
with time. Tests of MUMPS have been made on the IBM SP system of the CINES 2 which is composed
of 29 nodes of 16 processors. Each node is equipped with 16 GB of memory shared among its 16
Power3+ (375MHz) processors.

The general shape of the assembly tree (width and depth) was estimated by the number of nodes
(Table 2), and the percentage of leaves in the tree (Table 3). Regularity of the shape was estimated
by the standard deviation of the depth of the leaves (Table 5), the maximum depth of a leaf (Table
4) and the average number of sons (Table 6). Because the stack size is influenced by the size of
frontal matrices, we report for each tree the maximum size of a frontal matrix (Table 7), and the
average front size (Table 8). In these tables, the largest value of a row is in bold, while the smallest
value in italics.

General shape

We observe in Table 2 that for most test problems, SCOTCH generates the tree with the smallest
number of nodes. Then AMD and METIS provide approximately the same number of nodes, and
finally, AMF and PORD give trees with a much larger number of nodes compared to SCOTCH. In
addition, we observe from Table 3 that usually, SCOTCH and METIS generate trees with a large
percentage of leaves when compared to the trees generated by AMF, AMD or PORD. Effectively,
the trees generated by METIS and SCOTCH are rather wide (because of the global partitioning
performed at the top), while the trees generated by AMD, AMF and PORD tend to be deeper.

METIS | SCOTCH | PORD | AMF | AMD METIS | SCOTCH | PORD | AMF | AMD
SHIP_003 | 7474 429} 7798 | 8253 | 7634 SHIP_003 | 4338 59.4 435 | 387 | 430
BMWCRA_1 | 8767 2833 9268 | 9902 | 8320 BMWCRA_1 | 396 47.7 381 | 33.7 | 380
GRID 24953 | 10218 | 24081 | 29680 | 28224 GRID 58.8 67.9 49.0 | 491 | 512
GUPTA3 413 26 1790 | 1300 | 1898 GUPTA3 95.9 26.9 234 | 338 | 21.3
MSDOOR | 31611 | 28511 | 32843 | 33401 | 31335 MSDOOR 55.0 66.8 539 | 513 | 542
PRE2 204359 | 169920 | 215403 | 205297 | 195812 PRE2 69.1 68.9 74.0 | 655 | 61.0
RMA10 4608 3465 5109 | 5325 | 4524 RMAT10 43.2 429 427 | 418 | 396
TWOTONE | 35718 | 2790; | 41309 | 41794 | 39460 TWOTONE | 682 68.8 72.8 | 718 | 675
XENON2 | 18990 | 13130 | 20455 | 20386 | 19043 XENON2 483 70.4 492 | 453 | 422
Table 2: Number of nodes in the tree. Table 3: Percentage of leaves in the tree.

Regularity

On the other hand, according to Tables 5 and 4, we can see that PORD and AMF generate un-
balanced trees (where depth of leaves varies a lot depending on the branches) while SCOTCH and
METIS generate much better balanced trees. Finally, according to Table 6, we can see that PORD,
AMD and AMF have trees where the average number of sons for a node is smaller than for the
METIS and SCOTCH cases; this also illustrates that the tree is not very wide (but deep). These
remarks make sense when we know that AMF, AMD and PORD are based on local methods only
aiming at minimizing either the degree or the fill.

3Centre Informatique National de ’Enseignement Supérieur

RR n~°4617

METIS | SCOTCH | PORD | AMF | AMD METIS | SCOTCH | PORD | AMF AMD
SHIP_ 003 29 4 75| 122 | 32 SHIP_003 | 19.083 | 3.239 | 321336 | 508.799 | 25.375
BMWCRA 1| 21 14 54 | 100 | 34 BMWCRA 1| 4368 | 1.139 | 95.793 | 374.991 | 20.896
GRID 26 7 49 | 188 | 53 GRID 9304 | 0.955 | 98898 | 2852.83 | 149.809
GUPTA3 7 8 9 41 | 13 GUPTA3 3.154 3.837 | 1.022 | 114.437 | 5.733
MSDOOR 26 17 53 80 | 35 MSDOOR | 3.997 149 | 70.444 | 53.629 | 10.901
PRE2 56 18 115 | 99 | 42 PRE2 110.948 | 9.16§ | 815.96 | 265.048 | 21.521
RMA10 26 40 43 | 208 | 165 RMA10 1113 | 7414 | 67.729 | 2084.394 | 1331.673
TWOTONE | 55 15 77| 193 | 47 TWOTONE | 54308 | 5.172 | 294.802 | 458.468 | 80.65
XENON2 24 16 54 65 | 26 XENON2 7058 | 1.672 | 101.599 | 144.729 | 10.295
Table 4: Maximum depth for a node. Table 5: Variance of the depth of leaves.

METIS | SCOTCH | PORD | AMF | AMD

SHIP_003 1.78 2.463 | 177 | 1.631 | 1.754

BMWCRA 1| 1.656 | 1.911 | 1.615 | 1.507 | 1.612

GRID 2427 | 3111 | 1.959 | 1.966 | 2.051

GUPTA3 | 24.235 | 1316 | 1.305 | 1.509 | 1.27

MSDOOR | 2222 | 3.014 | 2.168 | 2.054 | 2.185

PRE2 3.233 3215 | 3.852 | 2.902 | 2.564

RMAT0 1.76 1749 | 1.746 | 1.719 | 1.654

TWOTONE | 3.144 | 3207 | 3.681 | 3.54 | 5.079

XENON2 1.93 3.369 | 1.962 | 1.823 | 1.726

Front size analysis

Table 6: Average number of sons.

According to Tables 7 and 8, we can say that in most cases, SCOTCH an METIS generate trees with
frontal matrices bigger than those generated by the other reorderings. This observation will help us
to explain some results in the next sections. Note that AMD generates trees with big variations of
the front size.

METIS | SCOTCH | PORD | AMF | AMD METIS | SCOTCH | PORD | AMF | AMD

SHIP_ 003 3456 3156 3426 | 3408 | 4038 SHIP_ 003 170 153 165 163 151
BMWCRA_1 | 2343 2040 2076 | 2496 | 2835 BMWCRA_1 177 287 172 187 183
GRID 2754 2343 1721 1536 | 1328 GRID 41 68 42 36 38

GUPTA3 827 5058 1643 | 3028 | 1030 GUPTA3 624 1248 365 338 336
MSDOOR 1372 1624 1358 | 1491 | 1610 MSDOOR 74 67 73 72 71
PRE2 4290 4334 5794 | 6476 | 7502 PRE2 15 13 14 14 14
RMA10 466 422 378 439 399 RMA10 60 59 54 53 56
TWOTONE 2382 2316 2561 | 2588 | 2684 TWOTONE 23 18 20 21 19
XENON2 25654 2623 2743 | 3663 | 4501 XENON2 70 69 70 71 76

Table 7: Maximal frontal matrix order.

Table 8: Average front order.

5 Impact of reordering techniques on the memory evolution for
sequential executions

After studying the shape of the assembly tree, we now focus on the impact of the reordering
techniques on the memory occupation in MUMPS. Before analyzing the results, we should mention
that we use a tree traversal that aims at optimizing the dynamic memory usage. Such techniques

are described in more details in the forthcoming technical report [13].

INRIA

Tables 9, 10 and 11 present the total amount of stack memory, the average stack size, and the peak
of stack, respectively. For all these quantities, we did not take integer storage into account, so that
the unit used is always the number of real entries.

Memory traffic

Table 9 gives the total amount of stack memory for each reordering technique. The total amount
of stack memory represents the sum of the sizes for the contribution blocks for all the nodes of the
tree. We can observe that the total amount of stack memory for SCOTCH is the smallest (in most
cases). This is due to the fact that SCOTCH has a smaller number of nodes compared to other
reorderings. We also see that PORD and AMF leads to the biggest global amount of stack memory.

METIS | SCOTCH | PORD AMF | AMD
SHIP 003 509.66 249.64 590.01 | 656.21 | 496.76
BMWCRA 1 | 432.23 286.21 425.46 | 709.76 | 541.35
GRID 252.53 147.23 204.81 233.06 | 201.2
GUPTA3 144.83 10.56 287.47 | 231.41 | 236.74
MSDOOR 230.75 175.43 247.32 | 244.51 | 213.60
PRE2 1186.45 | 280.019 | 1557.68 | 1267.98 | 623.01
RMA10 20.74 13.15 18.2 19.03 16.63
TWOTONE | 305.18 71.85 272.93 | 437.84 | 214.58
XENON2 274.28 203.04 348.95 | 507.88 | 446.99

Table 9: Total amount of stack memory (millions of reals).

Average stack size

Table 10 gives the average size of the stack during execution, defined as the average stack sizes for
all variations observed in the traces generated. We see that for PORD the average size of stack
memory is smaller than for the other reorderings. This is because PORD has deep trees (as shown
in the previous sections) where we have not to store a lot of contribution blocks at the same time.
Compared with reorderings that give deep trees like AMF or AMD, its tree has fewer nodes and
smaller frontal matrices which explains the difference in terms of the average size between AMD,
AMF and PORD. We can also observe that SCOTCH has a good average size because the number
of nodes of its tree is smaller than the one for the other reordering techniques.

METIS | SCOTCH | PORD | AMF | AMD

SHIP_ 003 5.76 6.74 4.31 7.01 | 10.67
BMWCRA 1 3.03 3.38 2.16 341 | 6.11
GRID 3.18 2.56 2.03 1.65 1.21
GUPTAS3 15.2 1.44 38.78 | 7.31 8.41
MSDOOR 1.62 2.42 1.15 1.64 2.12
PRE2 8.9 8.2 23.52 | 12.64 | 54.22
RMA10 0.16 0.13 0.097 | 0.17 | 0.14
TWOTONE 2.97 3.41 3.24 463 | 5.24

XENON2 4.69 4.89 3.9 6.11 | 11.27

Table 10: Average size of the stack (millions of reals).

Peak stack size

Finally, Table 11 gives the peak of the stack memory observed during the factorization. We can see
that the reorderings giving deep trees provide better (i.e., smaller) peaks of stack memory. Indeed,

RR n°4617

for our test problems, PORD and AMF have the smallest peak. This result is natural since deep
trees do not need to store as many contribution blocks simultaneously as the wide trees given by
SCOTCH or METIS. We can also observe that the peak of stack memory for AMD (which has a
deep tree) tends to be greater than for other reorderings and particularly PORD and AMF (which
also have deep trees). The first property of AMD’s tree that can help us to explain this phenomenon
is that we have observed that the nodes on the top of the tree for AMD are larger than the ones
for other reorderings. When these large nodes start to be processed, the stack memory will contain
large contribution blocks which will increase the size of the stack for the remaining subtrees.

METIS | SCOTCH | PORD | AMF | AMD
SHIP_ 003 23.42 23.06 20.86 | 20.77 | 32.02

BMWCRA 1| 10.69 9.53 8.16 11.26 | 19.32
GRID 17.08 11.91 5.83 4.17 3.79
GUPTA3 44.44 27.37 93.96 | 25.21 | 31.72
MSDOOR 4.12 5.22 3.49 4.18 5.82

PRE2 34.95 36.16 65.60 | 84.29 | 153.57
RMA10 0.43 0.39 0.28 0.34 0.33

TWOTONE 13.23 13.54 11.8 11.63 | 17.59
XENON2 14.39 15.21 13.14 | 23.82 | 37.82

Table 11: Peak of the stack (millions of reals).

The second property is that we saw that the tree of AMD is usually better balanced than those
of AMF and PORD (see Table 5). Also, the global effect of the sorting of brother nodes in MUMPS
(described at the beginning of this section) is that it puts the subtree with the biggest stack at the
left-most position, so that the biggest subtree is processed first.

AMF-PORD AMD

Figure 5: Structural difference between AMF’s tree and AMD’s tree.

Figure 5 illustrates the structural difference between AMD’s and PORD-AMF’s trees. For AMF
and PORD, once the deepest subtree is treated, only smaller subtrees still need to be processed,
requiring less memory. In opposition, for AMD, after treating the first node, subtrees that are not
far from the first one in terms of size still need to be processed. This will cause an increase of
the stack memory because of the storage due to the additional contribution blocks involved. This
explains why PORD and AMF behave better in terms of stack size than AMD, although all three
have deep trees.

Summary

To summarize this Section, we have seen that reordering techniques have a strong impact on both
the shape of the assembly tree and the memory usage in the factorization. Table 12 summarizes

INRIA

Shape of the tree Stack memory
Shape Balance Number of Frontal Peak of the Average size of
nodes matrices size stack the stack

METIS wide -+ } } t t
SCOTCH wide +++ - ++ + +
PORD deep - ++ - - -
AMF deep - ++ - - -

AMD deep + + + ++ ++

Table 12: Characteristics of the assembly tree and stack memory for different reordering techniques.
The symbol “+” means a bigger value, the symbol “” means a lower value.

the general observations made for the different reorderings on the assembly tree and on the stack.
Concerning the shape of the tree, we have observed that hybrid heuristics like METIS and SCOTCH
generate wide well-balanced trees (with a smaller number of nodes for SCOTCH). On the other
hand, PORD, AMD and AMF give deep trees; it is interesting to notice that AMD provides better
balanced trees than AMF and PORD. In addition, METIS and SCOTCH give trees with bigger
frontal matrices than the ones generated by other reorderings. From the memory point of view,
we have seen that PORD and AMF are the reorderings that use the smallest stack size (peak and
average). This should of course be related to the sizes of the factors, for which the following has
been observed (see, for example, [13]): for small matrices, factors with PORD and AMF are smaller
than with SCOTCH and METIS, while for large matrices, METIS, SCOTCH and PORD give the
smallest factors.

6 Memory usage for parallel executions

Because memory evolution depends on distribution of nodes of the assembly tree on processors, we
first describe the current scheduling strategy used in MUMPS. Then, we show the memory behavior
for parallel executions for different combination of matrices and ordering.

6.1 Scheduling strategy used in MUMPS

MUMPS use a combination of static and dynamic scheduling strategy. This is described in details in
[4] and [3]. The computation is driven by the assembly tree and to each node is assigned one type
of parallelism. Figure 6 summarizes the different types of parallelism available in MUMPS:

e The first type uses the intrinsic parallelism induced by the assembly tree: each branch of the
tree can be treated in parallel. A type one node is statically assigned to one processor which
processes it when processors assigned to children nodes have communicated the contribution
blocks. Leave subtrees are a set of type 1 nodes all assigned to the same processor. Those
are determined using a top-down algorithm [11] and a subtree-to-process mapping is used to
balance the computational work of the subtrees onto the processors.

e The second type corresponds to a 1D parallelism of the frontal matrices. For some nodes
in the assembly tree, the front is so big that is must be treated in parallel for an adequate
granularity. The front is then distributed by blocks of rows. A master processor is chosen
statically during the symbolic preprocessing step, all the others (slaves) are chosen dynamically

RR n°4617

PO: P1: PO
Type3

P2: P3 P2

SUBTREES

Figure 6: Example of distribution of a multifrontal assembly tree over four processors.

based on load balance considerations. The master processor is responsible for the eliminations
of the fully summed pivot block. The master processor dynamically chooses its slave processors
according to their load and assigns them new tasks. The load metric is the number of floating-
point operations still to be done, where only the operations corresponding to the elimination
process are taken into account (those are an order of magnitude larger than the operations
for assembly).

e The third type of parallelism, which is a 2D parallelism, concerns the root node, which is
processed by all processors using ScaLAPACK [6]: we use a 2D block cyclic distribution.

The choice of the type of parallelism depends on the position in the tree, and on the size of the
frontal matrices. For the top of the tree the mapping of type 1 nodes and masters of type 2 nodes is
static and only aims at balancing the memory of the corresponding factors. Usually, type 2 nodes
are high in the assembly tree (fronts are bigger), and on large numbers of processors, about 80% of
the floating-point operations are done in type 2 nodes.

6.2 Parallel Results

Tables 15 and 13 (resp. 16 and 14) shows the average stack peak, and the maximum of stack peak
on 16 (resp. 32) processors for different matrices and reorderings.

We can observe that METIS and SCOTCH tend to have a more balanced peak of the stack among
all the processors than other reorderings. This can be explained by the fact that these reordering
techniques generate well-balanced trees where all the subtrees are approximatively of the same size.
Concerning AMF and PORD, we can see that the stack memory is very unbalanced (particularly for
AMF). This is due to the shape of AMF’s and PORD’s trees which are very unbalanced. Indeed, for
unbalanced trees, the subtrees described in the previous section are not of the same size. As a result,
some processors will begin to treat type 2 nodes where other ones are still processing the subtrees.
Thus, these ones can be chosen as slaves which will cause an increase of their stack memory and an
increase of the stack memory unbalance.

INRIA

Concerning the scheduling strategy, only floating-point operations for the factorizations of frontal
matrices are taken into account, the memory of the processors is not considered. We observe that,
although the scheduling strategy gives good results from the point of view of load balancing, the
memory load balancing is not perfect and the difference between the maximum peak and the average

peak is usually significant.

METIS | SCOTCH | PORD | AMF AMD METIS | SCOTCH | PORD | AMF | AMD
SHIP 003 10.078 7.907 5.719 5.033 | 11.014 SHIP 003 5.484 4.296 2.992 | 2.621 | 6.154
BMWCRA_1 | 6.655 7.137 5.934 7.969 13.16 BMWCRA_1| 3%.681 3.709 3.708 | 4.161 | 6.691
GRID 4.123 4.194 3.384 1.804 3.184 GRID 2.371 1.897 2.029 | 1.088 | 2.465
GUPTA3 11.26 4.269 8.842 | 16.368 | 3.459 GUPTA3 10.936 1.669 7.89 | 16.07 | 3.256
MSDOOR 3.029 2.716 1.685 1.659 2.562 MSDOOR - 1.522 1.275 1.19 1.74
PRE2 10.162 13.032 10.905 | 10.992 | 23.18 PRE2 7.83 13.45 10.376 | 6.971 | 14.826
RMA10 0.404 0.411 0.407 0.347 0.36 RMA10 0.404 0.365 0.359 | 0.347 | 0.818
TWOTONE 3.65 2.758 3.022 2.944 4.104 TWOTONE 3.233 2.35 2.244 | 2.183 | 3.278
XENON2 5.093 5.173 4.631 7.107 9.495 XENON2 4.161 3.973 3.628 | 4.65 8.908

Table 13: Max peak of the stack on 16 proces-
sors (millions of reals).

Table 14: Max peak of stack on 32 processors
(millions of reals).

METIS | SCOTCH | PORD | AMF | AMD METIS | SCOTCH | PORD | AMF | AMD
SHIP 003 6.698 6.477 4.283 | 8.485 | 8.377 SHIP 003 2.994 2.835 2.245 | 1.877 | 3.586
BMWCRA_1 | 5327 5.557 3.826 | 5369 | 8.774 BMWCRA_1 | 2.765 2.748 2.428 | 2.878 | 5.088
GRID 3.504 3.409 2.645 | 1.38 2.774 GRID 1.407 1.411 1.549 | 0.779 | 1.84
GUPTA3 4.297 3.266 3.068 | 5.58 | 2.149 GUPTA3 1.715 1.601 1.86 | 3.034 | 2.138
MSDOOR 1.599 1.75 1.186 | 1.158 | 1.641 MSDOOR - 0.941 0.752 | 0.728 | 1.009
PRE2 7.042 6.855 8.15 8.438 | 15.691 PRE2 4.328 3.413 4.306 5.24 | 8.217
RMA10 0.252 0.247 0.203 | 0.225 | 0.271 RMA10 0.221 0.198 0.169 | 0.172 | 0.215
TWOTONE 2213 2.093 2.093 | 1.761 | 2.564 TWOTONE 1.512 1.409 1.354 | 1.196 | 1.581
XENON2 3.718 3.951 3.289 | 4.527 | 7.405 XENON2 2.299 2.429 2.048 | 2.801 | 4.308

Table 15: Average peak of the stack on 16 pro-

Table 16: Average peak of the stack on 32 pro-

cessors (millions of reals). cessors (millions of reals).

For matrices where the stack size is significant, if we compare the peak of stack memory measured in
the sequential execution (Table 11) to the maximum peak of stack on 16 (Tablel3) and 32 processors
(Table 14) , we don’t observe any linear improvement in the memory usage: in parallel doubling the
number of nodes, i.e. the memory size, doesn’t mean we are able to treat a problem twice larger!
Figures 7(a) and 7(b) illustrate this last point better. The first one gives the ratio between stack
memory peak on 1 and 16 processors. We can see that we never reach the bold line that represents
a perfect scalability; the best scalability observed is 11 but is in most cases between 2 and 4. This
illustrates that the stack memory does not scale well. Figure 7(b) gives a comparison between
the peak of the stack on 16 and 32 processors. Again, we observe that the memory usually does
not decrease linearly with the number of processors (except for some cases like GUPTA3 with
SCOTCH).

7 Conclusion

In this paper we have presented an experimental study of the memory usage for a parallel multi-
frontal solver. This memory usage can be divided into two parts: a static one which corresponds to

RR n~4617

EMETIS

B SCOTCH
OPORD

S AMD

ez

AR G

18

© < N (=] o]
= - — -

(s10ssao0ud
9T) Mead yoeis/(1ossaooud T) yead xoels

Matrices

(a) Ratio between stack memory peak on 1 and 16

Processors.

O METIS
B SCOTCH
OPORD
SAMF
NAMD

R

s Ao
s
—

D]

V7

77 A
lezzzszece

13, L)

i

7,
L
|

&

R, U
|

e

T

| ettt

N

I
T
77 B

AT
G

A %

T T

N

I, |
w e R

0,5 1

o
o

(s1ossas0.id
z¢€) Mead yoeig/(siossasold 9T) dead yoeis

Matrices

(b) Ratio between stack memory peak on 16 and 32

processors

Comparison of stack memory peak for different number of processors.

Figure 7

INRIA

the factors, and a dynamic one which corresponds to the active working space (the stack) needed to
perform the computation. Dynamic memory usage is determined by the assembly tree which itself
results from the reordering technique applied. Reordering techniques have a significant impact on
the memory usage: the amount of fill-in for the static memory (factors), but also the shape of the
assembly tree for the dynamic memory.

Whereas there are a lot of studies on the impact of reordering on fill-in, to our knowledge this is the
first work which studies the active memory usage of parallel multifrontal solvers, and in particular
links between the reordering technique and the stack evolution. We also observed that the stack
evolution not only depends on the shape of the tree but also on the distribution of the nodes on the
processors during the factorization, while the size of the stack may be significant compared to the
factor size.

The main result of our experiments is that the stack of parallel multifrontal solvers does not scale
well from the memory point of view: if a problem doesn’t fit in a p nodes parallel machine because
the active memory is, say 50% larger than the main memory of a node, doubling the number of
nodes does not guarantee that the problem will be solved !

In this parallel multifrontal scheme, the workload is not directly related to the memory occupation:
workload is mainly done in the factorization part, whereas the dynamic memory usage is more
related to the size of the contributions blocks needed in the assembly part. From the workload
point of view, the assembly part is one order of magnitude less than the factorization part. So a
scheduling strategy based only on the workload fails to balance the dynamic memory usage.

We are currently studying new scheduling strategies which are memory aware: these strategies try
to balance the work on the processors taking into account the memory constraints. We are designing
and experimenting such strategies within the dynamic scheduling part of MUMPS.

References

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algo-
rithm. STAM Journal on Matriz Analysis and Applications, 17:886-905, 1996.

[2] P. R. Amestoy and I. S. Duff. Memory management issues in sparse multifrontal methods on
multiprocessors. Int. J. of Supercomputer Applics., 7:64-82, 1993.

[3] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matriz Analysis and Applica-
tions, 23(1):15-41, 2001.

[4] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501-520, 2000.

[5] C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon. Progress in sparse
matrix methods for large linear systems on vector computers. Int. Journal of Supercomputer
Applications, 1(4):10-30, 1987.

[6] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK: A portable linear algebra library for distributed memory
computers - design issues and performance. Technical Report LAPACK Working Note 95,
(CS-95-283, University of Tennessee, 1995.

RR n~°4617

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

I. S. Duff, R. G. Grimes, and J. G. Lewis. The Rutherford-Boeing Sparse Matrix Collection.
Technical Report TR/PA/97/36, CERFACS, Toulouse, France, 1997. Also Technical Report
RAL-TR-97-031 from Rutherford Appleton Laboratory and Technical Report ISSTECH-97-017
from Boeing Information & Support Services.

I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM Journal on Matriz Analysis and Applications, 22(4):973-996, 2001.

I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear
systems. ACM Transactions on Mathematical Software, 9:302-325, 1983.

I. S. Duff and J. K. Reid. The multifrontal solution of unsymmetric sets of linear systems.
SIAM Journal on Scientific and Statistical Computing, 5:633-641, 1984.

A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorization. Int J. Parallel
Programming, 18:291-314, 1989.

A. George and J. W. H. Liu. Computer Solution of Large Sparse Positive Definite Systems.
Prentice-Hall, Englewood Cliffs, NJ., 1981.

A. Guermouche, J.-Y. L’Excellent, and G. Utard. Analysis and improvments of the memory
usage in a multifrontal solver. Technical Report to appear, INRIA, 2002.

G. Karypis and V. Kumar. MEINIS — A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices — Version 4.0.
University of Minnesota, September 1998.

J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM
Transactions on Mathematical Software, 11(2):141-153, 1985.

J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM Journal on Matriz
Analysis and Applications, 11:134-172, 1990.

E. Ng and P. Raghavan. Performance of greedy heuristics for sparse cholesky factorization.
SIAM Journal on Matriz Analysis and Applications, 20:902-914, 19909.

F. Pellegrini. ScoTcH 3.4 User’s guide. Technical Report RR 1264-01, LaBRI, Université
Bordeaux I, November 2001.

F. Pellegrini, J. Roman, and P. R. Amestoy. Hybridizing nested dissection and halo approximate
minimum degree for efficient sparse matrix ordering. Concurrency: Practice and Ezrperience,
12:69-84, 2000. Preliminary version published in Proceedings of Irregular’99, LNCS 1586, 986—
995.

E. Rothberg and R. Schreiber. Efficient methods for out-of-core sparse cholesky factorization.
SIAM Journal on Scientific Computing, 21(1):129-144, 1999.

Edward Rothberg and Stanley C. Eisenstat. Node selection strategies for bottom-up sparse
matrix ordering. SIAM Journal on Matriz Analysis and Applications, 19(3):682-695, 1998.

J. Schulze. Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods. BIT, 41(4):800-841, 2001.

INRIA

/<

Unit“e de recherche INRIA Lorraine, Technop6le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit"e de recherche INRIA Rhdne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit“e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit"e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http:/ /www.inria.fr
ISSN 0249-6399

