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Controle optimal de systémes couplés fluide-structure :
cas du solide rigide

Résumé : Ce rapport a pour objet ’étude d’un probléme de controéle optimal pour un sys-
téme mécanique constitué d’un solide rigide élastiquement supporté, dont le comportement
est régi par une equation différentielle ordinaire, au sein d’un fluide newtonien en écoulement
incompressible, dont ’évolution est régie par les équations de Navier-Stokes. Nous établis-
sons la structure du gradient d’une fonctionnelle de cott & minimiser grace & l'introduction
d’un nouveau probléme adjoint. La structure de cet adjoint est reliée & l’utilisation d’un
champ transverse ALE intervenant dans le contexte de la minimisation de fonctionnelles
eulériennes non-cylindriques.

Mots-clés : Interaction fluide-structure, équations de Navier-Stokes, formulation ALE,
analyse de sensibilité, champ transverse, optimisation de forme, controle optimal.
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4 Marwan Moubachir , Jean-Paul Zolésio

1 Introduction

This report deals with the analysis of an inverse boundary problem arising in the study of
bridge deck aeroelastic stability. The aeroelastic system consists of an elastically supported
rigid solid moving inside an incompressible fluid flow in 2-D.

As described in [21], the stability analysis is performed by solving an instability tracking
problem, which eventually leads to the determination of critical wind speeds of minimal en-
ergy that may produce unstable structural motions. Our work is focused on the mathemat-
ical justification of optimality conditions associated to the minimization problem involved
in the instability tracking method.

The aeroelastic system we are dealing with, is described by a non-cylindrical system of par-
tial differential equations, where the evolution of the moving boundary is unknown.

In case, where the evolution of boundaries is prescribed, inverse problems have been first
considered by Da Prato et al [7] for a general parabolic equations written in non-cylindrical
domains. The works of Wang [26] and Acquistapace et al [1] are closely related to the
first one. The basic principle is to define a map sending the non-cylindrical domain into a
cylindrical one. This process leads to the mathematical analysis of non-autonomous PDE’s
systems.

Recently a new methodology to obtain eulerian derivative for non-cylindrical functionals was
introduced in [14]. This methodology was applied in [13],[12] to perform dynamical shape
control in non-cylindrical Navier-Stokes equations where the evolution of the domain is the
control variable.

For the aeroelastic coupled problem, there is a lack of results for the control case. The
present report is an attempt to fill this gap. It is organized in four parts :

¢ In section 2, we introduce the notations and the mechanical system we shall deal with
and we state the main result of this report, namely the structure of a cost functional
gradient with respect to inflow boundary conditions pertubations. The proof is given
in the remaining part of the paper.

e In section 3, we recall early results concerning the well-posedness of the coupled fluid-
structure system.

e In section 4, we introduce the minimization problem and its associated Lagrangian
functional.

e In section 5, we perform derivation of the Lagrangian with respect to state variables.
This allows us to obtain the structure of the adjoint variables involved in the cost
functional gradient.

2 Mathematical settings

We consider a two dimensionnal flexible structure in rigid motion. For the sake of simplicity,
we only consider one degree of freedom for the structural motion : the vertical displacement

INRIA
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Figure 1: Arbitrary Euler-Lagrange map

d(t)es where es is the element of cartesian basis (e1, e2,€3) in R3.

The structure is surrounded by a viscous fluid in the plane (e1,e2). We consider a control
volume © C R? containing the solid for every time ¢ > 0. Hence, the analysis of the coupled
problem is set in € x (0,7) where T' > 0 is an arbitrary time.

In order to deal with such coupled system, we introduce a diffeomorphic map sending a fix
reference domain )y into the physical configuration 2 at time ¢ > 0.

Without loss of generality, we choose the reference configuration to be the physical config-
uration at initial time (¢ = 0).

Hence, we define a map T; € C*(Q) such that

Q{ = Tt( )7
Q4 = T

| 2]

Since we only consider one degree of freedom motion, we write
9 = QG +dt)e

We set ¥° = U ({t} xT%), Q) = U ({t} x @) and L =T/ x (0,T)
0<t<T 0<t<T
The map T; can be actually defined as the flow of a particular vector field, as described in

the following lemma :

Lemma 1 ([27]) Assuming that d(.) is smooth enough, there exists a vector field V that
builds Q , i.e

Q_tf:
Q_f:

L(V)(©
T(V)(%)

)

RR n°® 4611



6 Marwan Moubachir , Jean-Paul Zolésio

where Ty(V) is solution of the following dynamical system :

T,(V): Qy— Q
xo—  z(t,z0) = T (V) (o)

with
dzx
1= V(r,z(r)), 7€][0,T] (1)
z(r = 0) = zo, in Qo

In our simple case, we can give an example of an appropriate flow vector field :

V(x,t) = d(t)es, r €0
V(z,t) = Ext(d(t)es), ze€Qf (2)
V(z,t) -n=0, r €Tl

where Ext is an arbitrary extension operator from I'§ into Q{; . The map T; is usually referred
as the Arbitrary Euler-Lagrange map.

The solid is described by the evolution of its displacement and its velocity and the couple
(d, d) is solution of the following ordinary second order differential equation :

md+kd = Fy,
[a.d] (¢ = 0) = [do. ] 3)

where (m, k) stand for the structural mass and stiffness. F is the projection of the fluid
loads on I'{ along the direction of motion es.
The fluid is assumed to be a viscous incompressible newtonian fluid. Its evolution is described
by its velocity u and its pressure p. The couple (u,p) satisfies the classical Navier-Stokes
equations written in non-conservative form :

Ou+Du-u—vAu+Vp=0, QF (V)

di =0 v
u(t = 0) = uo, Q{;

where v stands for the kinematic viscosity and wu., is the farfield velocity field.
Hence, the projected fluid loads F; have the following expression :

Ff=—</rsa(u,p)-n>-e2 (5)

where o(u,p) = —pl+v(Du + *Du) stands for the fluid stress tensor inside Qf, with
(D ’U,)Z‘j = é)jui = Uj,j-

INRIA
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We complete the whole system with kinematic continuity conditions at the fluid-structure
interface I'y :

u=V =dey, on 2°(V) (6)
To summarize, we get the following coupled system :
Ou+Du-u—vAu+Vp=0, QT (V)
div(u) = 0, QI(V)
U = Uso, »
u=desy, 25 (V) (7)
mci—!—kdz—(/ U(u,p)-n)-eQ, (0,7)
e
[u, d, d} (t = 0) = [uo, do, d], 0f x R?
Main Result: For uy, € U, the following minimization problem,
min  j(Ueo 8
e (Uoo) (8)

where j(uoo) = Ju_ ( {u,p, d, d} (o)) with [u,p, d, d} (ueo) is a weak solution of problem (7)
and J,_ is a real functional of the following form :

T
iy @ 12 ;212 2 2
T [wpdd)) =5 [ (10— a3+ 1d = 2] + Pl ©)

admits at least a solution w’, which satisfies the following necessary first-order optimality
conditions,

Viluge) = (0(puz,, muz ) - n)lss, +7use =0 (10)

with (¢, m, b1, bs) are solutions of the following adjoint system,

—0ip—Dy-u+ (*Du)-p—vAp+Vqg=0, QF (V)
div(p) =0, QI (V)
© = by e, (V) (11)
¢ =0, =L
—by + kby =a(d—d}), (0,T)
{ bl(lT) = 02, ! (12)
—OAN—=VrA-V=Ff 35(dey)
s Pr(des) (13)

RR n°® 4611



8 Marwan Moubachir , Jean-Paul Zolésio

with f = [—db'2+V(D<,0~n)~(Du-n)— |d|? (D(p-eg)-eg} and

/mv)/\n: [—bl —mb'g—a(d'—dz)] eg+/rf(v)g(¢,w) ‘n (14)

Remark 1 We can eliminate the auziliary adjoint variables (X, b1), in order to get a system
only involving the adjoint variables (o, 7,b2) . We then replace equations (2), (13) , (14) by
the following second order ODE,

m62+kbgza(d—d;)—a(d—dz)—kat </ U(gb,ﬂ').n).ez
T (V)
' 15
+/Pf(V) DdF(D@'e?)'@_V(Dso'n)'(D“‘”)}'” (0,7) (15)
[ba.2] (1) = (0,0,

3 Well-posedness of the coupled system

We are interested in recalling global existence results for weak solutions to the initial bound-
ary value problem (7). One should expect some restrictions on the existence time for the
solutions since depending on the data, the solid may vanish outside the control volume ).
This problem was recently investigated by several authors [23], [5], [11], [15], [19], [24]. We
refer to [18] and [19] for a complete review. In our case, we only have one degree of free-
dom for the solid motion and we are dealing with two dimensional Navier-Stokes equations.
Nevertheless, we deal with non-homogeneous Dirichlet boundary conditions at the farfield
fluid boundary.

Theorem 1 Assume the following hypothesis :
i) Q3, Qo are of class C?,
i) a=dist(T'{,Q3) >0,
i)
up € (L)) use € (H™SL))? m> 2

div(ug) = 0, in Q) (16)
Uy = d162, on F(SJ

then there exists a positive real time Ty = To(uo,a, 2, Qo) such that for any T € (0,Tp),
there exists at least one weak solution to the initial-boundary value problem (7), with

de WhH(0,T; R)ync°([0,T]; R)
(uyd) € L*(0,T5 Vary) N L>(0,T; Hay)

INRIA
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with
Hawy = {(v,£) € (L*(Q))* xR, div(v) =0,

v-n=0, on F]Oco, vgfzﬁ-eg,supp(v)cﬁ,{}

and

Vai = {(v,0) € (H'())* xR, div(v) =0,

v=0, on TL, UQ§=€'€2,SUPP(U)CQ{}

and satisfies the following identity :

T
—/ / w- 0w +mdl—kdl
0 af

+/OT/Q{ [(Du-u)-v+yDu--Du}:mdle(o)+/ﬂfuo~v(0)

0

(17)

Y (v,0) € CH([0,T); Vag.)) with v(T) = {(T) =0
Remark 2 Using results from Fursikov et al [17], we can relax the regularity assumption
for us and ask :
iii)
use T € LA0,T; (H=(NL)*) N HA(0,T; (L*(TL))%)
s -m € L*(0,T; (H?(TL))?) N HE(0,T; (H'(I'L))?)

4 Inverse problem settings

As mentionned previously, we would like to perform a mathematical analysis of the Insta-
bility Tracking method [21]. More precisely, we analyse the minimization problem involved
in this method. In the sequel, we will highly use the framework introduced by Zolésio and
its collaborators concerning shape optimization tools [9], [25], [12], [13], [14].

We are interested in solving the following minimization problem :

min  j(uso) (18)
Uso € Ue

where j(uoo) = Ju, ( {u,p, d, d} (Uoo)) with [u,p, d, d} (uco) is a weak solution of problem (7)
and J,__ is a real functional of the following form :

. o T . v
Jue[up,did]) = 5 / (14— dy 2 +1d = 22| + T uccl i, (19)

RR n°® 4611
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The main difficulty in dealing with such a minimization problem is related to the dependence
of integrals on the unknown domain Q,{ which depends also on the control variable u... This
point will be solved by using the ALE map T} introduced previously.

4.1 Analysis strategy

We shall focus our efforts on the derivation of first-order optimality conditions for problem
(18). This involves the computation of the gradient with respect to the inflow condition e,
of the cost function J,__.

There exists several methods to handle such a question,

e Following [13], it is possible to handle the derivative %(u, p,d) - duo using a back
transport map into a fix domain and use the weak implicit function theorem to justify
and obtain the linearized system. Once the full linear tangent system is defined, it is
possible to define an adjoint system which solution may be involved in the computation
of the objective function gradient.

e An other possible choice is to try to pass through the obtention of a linear tangent
system and directly get the adjoint system. This may be realized using a Min-Max
formulation of the minimization problem (18) taking into account the coupled system
constraint through Lagrange multipliers.

In this report, we shall use the latter choice coupled with the introduction a transverse
map in order to handle the sensitivity analysis of the Lagrangian functional with respect to
variation of the fluid domain.

4.2 Free divergence and non-homogeneous Dirichlet boundary con-
dition constraints

We shall now describe the way to take into account inside the Lagrangian functional, several
constraints associated to the coupled system.

The divergence free condition coming from the fact that the fluid has an homogeneous
density and evolves as an incompressible flow is difficult to impose on the mathematical
and numerical point of view. We choose to include the divergence free condition directly
into the Lagrangian functional thanks to a multiplier that may play the role of the adjoint
variable associated to the primal pressure variable. This leads in a certain sense to a saddle
point formulation or mixed formulation of the Navier-Stokes subsystem. We shall use the
following identity,

_/qudivu:/mu.vq_/rfu.(qn)_/ru,(qn) 20)

s
t t Sl t

INRIA
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The coupled system (7) involves two essential non-homogeneous Dirichlet boundary condi-
tions,

U= Uso, DL (21)
u=des, DI (22)

We use a very weak formulation of the state equation, consisting in totally transposing the
laplacian operator,

/Qf—yAu-gb:/Qf—yA¢-u+/Ff Fy[u-an(b—(b-anu]dF (23)
t t Oouf

We shall substitute inside this identity the desirable boundary conditions and we will re-
cover the boundary constraints in performing an integration by parts inside the optimality
conditions corresponding to the sensitivity with respect to the multipliers. This procedure
has been already use in [25] and [8] to perform shape optimization problems for elliptic
equations using Min-Max principles.

We shall also choose to transpose the time operator inside the weak formulation. This has
to be performed very carefully, since we are dealing with a moving domain,

/OT Q{atu.v _ _/OT/Q{u.aw_/OT/BQ{(u.U) (V,n) (24)

+K;uayvaw—/jumrvm) (25)

of
Remark 3 This kind of techniques has been popularized in [20] as a systematic way to study
non-homogeneous linear partial differential equations. These formulations are usually called
very weak formulations or transposition formulations. We shall notice that these methods
are still valid in the non-linear case to obtain regularity or existence results. We refer to [2]
for a recent applications on the Navier-Stokes system.

f
T

4.3 Solid reduced order and solid weak state operator

For the sake of simplicity, we reduce the order of the solid governing equation by defining

the global solid variable,
s (diy [ d

leading to the first order ordinary differential equation,

Md+Kd=F (27)

RR n°® 4611



12 Marwan Moubachir , Jean-Paul Zolésio

with

and

()

In the case of the coupled fluid-solid system, the loads depend on the fluid state variable,

Ff(u,p)=—</rsf7(u,p)'n> c €2

We introduce the state and multiplier spaces in order to define a proper solid weak state
operator,

Xi={diec([o, 1))} (28)
X3 ={dy eC'([0,T))} (29)
vy = {b1 € C'([0,T])} (30)
Y5 = {b2 € C'([0,T])} (31)

and the load space,
L={Fec'(0,T])}
This allows us to define a solid state operator,
e’ X{ x X x L — (Y xY5)"
whose action is defined by the following identity,

T .
(€*(dy, da, F), (by, by)) = /0 [—dl by — ds bl} — d%y(0) + dy (T)by (T)

T T
+/ [—md2b2+kd1b2} —mdgb2(0)+md2(T)b2(T)—/ Fbs
0 0

INRIA
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4.4 Fluid state operator

In this section, we summarize the different options that we have chosen for the Lagrangian
framework and define the variational state operator constraint.

In order to deal with rigid displacement vector fields, we introduce the following spaces :
Rigid displacement spaces:

L {pe(H'()* Vo=0, in Q)
L {pe(H' ()% Vé=0, in Q) ¢=0, on IL)}
Lemma 2 For ¢ € H', assuming that Qf is connected, there exists C € R? such that
plog =C

In the sequel, we will need to define precise state and multiplier spaces in order to endow
our problem with a Lagrangian functional framework.
Following the existence result stated previously, we introduce the fluid state space :

X e o ()P ) )

d

z! = {pe HY(0,T;(H'(D))}

We also need test function spaces that will be useful to define Lagrange multipliers :
vi o Loe 20,1 (2 (9f)? N}
Vi {ge HY0.T:(H' (D))}

Wi = {(v,b) e Y x Y5,

S

vlrs = by - ez}
We define the fluid weak state operator,
el XTI xZI xU® — (Y x VI

whose action is defined by :

T
(el (u,p,u®),(v,q)) :/ /f [~u-0w+ Du-u) -v—vu-Av+u-Vg—pdivy]
Q

//“oo o(v.q) // ) ) — () (u*, m)]
_/0 /fv.(a(u7p).n)+/QTu(T)-U(T)_/QDuO.v(t:O)

V(v,q) € YV xV/I

RR n°® 4611
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4.5 Coupled system operator

Our mechanical system consist of a solid part and a fluid part. These subsystems have been
represented thanks to a solid and a fluid state operator. It is now possible to couple these
two operators in order to build an ad-hoc coupled system operator.

The major point here, is to notice that the fluid load F'y appears in the fluid state operator
and then can be coupled with the solid part thanks to the input load F of the solid operator.
To achieve this coupling, we need to decide whether or not the fluid and the solid multipliers
match at the fluid-solid interface. If not, we have to work with the fluid constraint tensor at
the fluid-solid boundary, what may be not convenient due to regularity requirement. Hence,
we choose to work with continuous test functions on I';. This means that we shall choose
the fluid and second solid multiplier spaces to be the space WJ. We define the coupled
system weak state operator as follows,

bun YT X Z5 X X5 x X5 — (W x VI x Y9
whose action is defined by the following identity,
<euoo (uapa d17 d?)a (’Ua q, b17 b2)> = <es (dla d27 Ff)a (b17 b2)> + <equOO (uapa d2 62)7 (U7 q, dl : 62)>

:/OT/Q{[—u-atv—i—(Du-u)-U—Vu-AU—Fu-Vq—pdiVU]
+ATZéum.w@ﬂyny+AT/;uﬂm-wwﬂ»nwwuwwwe%m1

T . T .
+/ {_dlbl_d2b1:| +/ {—md2b2+kdlb2:|
0 0
+/ u(T)-v(T)—/ ug - v(t = 0) — d? b1(0) + di(T) by (T) — mds ba(0) + m do(T) ba(T)
QT QD
Y (v,ba,q,b1) € W x VI x v

4.6 Min-Max problem

In this section, we introduce the lagrangian functional associated with problem (7) and
problem (18) :

Luoo (u’ap7 dl; d2; v, 4, bl; b2) d:ef Juoo (uap7 dla d2) - <euoo (u’ap7 dlv d2)7 (U7 q, bla b2)> (32)

with

o T 12 212 g 2
J%W%ﬁﬂﬂ=§U1W—%|ﬂ@_%|+§WMW
0

INRIA



Fluid-structure interaction control: case of a rigid body 15

Using this functional, the optimal control problem (18) can be put in the following form :

min min max L. (u,p,dy,da;v,q,b1,b2)
Uso€Ue  (u,p,d1,d2) EXFXZIXXIXXE  (0,ba,q,b1)eWS x VXY

(33)

By using the Min-Max framework, we avoid the computation of the state derivative with
respect to uso. First-order optimality conditions will furnish the gradient of the original cost
function using the solution of an adjoint problem.

We would like to apply min-max differentiability results to problem (33). The main issue is
to prove that the min-max subproblem

rnfin ¥ s s ma}}(c Euoo (uapa d17d2;v7Q7b17b2) (34)
(u,p,d1,d2)EXT X Z X X7 xX35 (v,b2,q,b1)EWI xV I XYy

admits at least one saddle point for us, € U,.

4.6.1 Reduced Gradient

We assume that the conditions to apply the Min-Max principle [6] are fullfilled so we can by-
pass the derivation with respect to the control variable u., trough the min-max subproblem
(34). It leads to the following result :

Theorem 2 For us € U, and (U, Puny s Quny s Puoy s Tuoy s us, ) the unique saddle point of
problem (34), the gradient of the cost function j at point u. € U, is given by the following
expression :

Vi) = (0(Pun s Tuo,) - n)|2£° + Y Uoo (35)

Proof : Using theorem (3) from [8], we bypass the derivation with respect to us inside the
min-max subproblem (34) :

Euac (uumvpuooadl d2 a quoo;ﬂ-uoovbl b2 )aduoo>

Uoo ! "Uoco Uoo ? " Uoo

< J (Uoo), Oting >= (5o

= min max —_—
(upd1,d2) EXTXZI XXX XS (0,by,q,01) WL x VI xyy  Dioo

T T
:/ / (v Onu, — Tu, n)-duoo+'y/ / Uoo * Moo
0o Jrl 0o Jrl

Luoo (u’ap7 dl; d2;’U7 q, bl; bQ)a 5u00>

O

5 KKT Optimality Conditions

In this section, we are interested in establishing the first order optimality condition for
problem (34), better known as Karusch-Kuhn-Tucker optimality conditions. This step is

RR n°® 4611



16 Marwan Moubachir , Jean-Paul Zolésio

crucial, because it leads to the formulation of the adjoint problem satisfied by the Lagrange
multipliers (¢u., Tu.,by_,b2_). We recall the expression of the Lagrangian,

Luoo (u’ap7 dl; d2; v, 4, bl; b2) d:ef Juoo (uap7 dla d2) - <euoo (u’ap7 dlv d2)7 (U7 q, bla b2)> (36)

The KKT system will have the following structure :

Ov,q,61,b2) Luoo (Us P, d1, d25 v, q, b1, b2) - (6v,0q,0b1,6b2) = 0,
V (6v,8ba, 8q, 6b1) € W x VI x Y — State Equations
Otu,p,dy,da) Luco (s P, d1, d2;v,q,b1,b2) - (0u,0p, ddy,dd2) = 0,
YV (6u, 6p, dd1,0ds) € XT x Z7 x X7 x X5 — Adjoint Equations

5.1 Derivatives with respect to state variables
5.1.1 Fluid adjoint system

Lemma 3 For us, € U, (p,b1,b2,v,b2,q,b1) € ZT x X§ x X5 x W x VI x Y,
Lo (u,p,dy,do;v,q,b1,bs) is differentiable with respect to u € Y/ and we have

<8u£uOO (Uapa d17 d?; v, 4, b17 b2)7 (5’U,> =

T
—/ /f[—5u-3tv—|—[D5u-u+Du-5u]-v—uéu-Av—i—&u-Vq]
o Jof

T
+/ / (du-v)(dz e2,n) — su(T)-v(T) Voue X'
0 s Qr
In order to obtain a strong formulation of the fluid adjoint problem, we perform some
integration by parts :

Lemma 4

/Q{(Dcsu-u)-v = —/Q{[Dv-u+div(u)v]-5u+/ (6u - v) (u,n)

ri,urs

It leads to the following identity :
<8ﬁ£uoo (uapa d17 d27 ©, T, bla b?)a 5U> =

- /Q 0o+ (Du) - (Dg) - u— div(u) ¢~ vAp+ V- bu— [ o(T) - su(T)

!
Qr

Lemma 5 For us € Ue, (u,b1,b2,v,ba,q,b1) € X5 x X{ x X5 x W x VI x Y,
Lo (u,p,dy,do;v,q,b1,by) is differentiable with respect to p € Z7 and we have

T
<6P‘CUOO (ﬁ7pa d17d2; SpaqablabQ)a 6p> = / /f 5}7 div ®, Vép c Zf
0 Qf

INRIA



Fluid-structure interaction control: case of a rigid body 17

This leads to the following fluid adjoint strong formulation,

~Op—Dy-u+ (*Du)-p —vAp +Vqg=0, Qf

div(e) = 0, Q'
© = by - ea, 3¢ (37)
v =0, Ego
SD(T) =0, Qgﬂ

5.2 Solid adjoint system

We recall that the ALE map is built as the flow a vector field V' that matches the solid
velocity at the fluid-solid interface and is arbitrary inside the fluid domain, i.e using the
reduced oder model,

V(xat):d2'627 er—f
V(z,t) = Ext(dy - e3), x€Qf (38)
V(x,t)-n=0, r e/

Hence, the ALE map depends on dy through V. Furthermore, the derivative with respect to
d; may be simpler since it does not involve derivative with respect to the geometry. Then,
we have the following result,

Lemma 6 For us, € U. and (u,p,dy,do,v,b2,q,b1) € X/ x ZF x X x X5 xWIxVIxYy,
the Lagrangian L, (u,p,d1,ds2;v,q,b1,bs) is differentiable with respect to di € X§{ and we
have

<80l1£uOo (uapa dla d27 ©, T, bla b?)a 6d1> =

T
/ [a (d1 — d;) 6dy — kddy by + 6dy by | — 6d1 (T) by(T)
0
From which we deduce the following adjoint ODE,

{ —bll + kby = Oé(dl - d;)v (07T) (39)

by (T) =0,

The derivative of the Lagrangian with respect to the solid velocity variable ds involves shape
derivatives of domain integrals.

This point has been investigated previously by Zolésio in [29], [28] and in [14], [12]. Then we
need to introduce the concept of Transverse Field associated to a perturbation of the solid
velocity.

We introduce a perturbation flow W associated to the perturbation ddses. For example,

W = EXt(ddg . 62)
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18 Marwan Moubachir , Jean-Paul Zolésio

This flow generates new fluid and solid domains through the ALE map, T;:(V + pW), with
p > 0. We set

Q" 1V 4 W ()
Qv W) (@)

For the sake of simplicity, we set
TP €T,V + pW)

The objective of this paragraph is to compute the following derivative :

d
(d_pﬁuoo (aap7 dla d2 + P5d27 f}7 q, b17 b2))

p=0

5.2.1 Transverse map and vector field

Since we would like to differentiate the Lagrangian functional with respect to p at point

p =0, it is convenient to work with function already defined in Q{ =0 dof Q{ as we proceed
to the limit p — 0.
To this end, we introduce a new map as in [29] :

T T 0 — of”
Qf SN Q?P

(40)
This map is actually the flow of a vector field following for p € (0, po),
Theorem 3 The Transverse map T} is the flow of a transverse field Z; defined as follow :
oT!
def _

2 2. = (G2 ) o (7 (41)

i.e is the solution of the following dynamical system :
TH(Z): Q— Q
z— xz(p,x) =T{(2)()

with
S pato). pzo0 W
xz(p=0) =z, in Q

INRIA



Fluid-structure interaction control: case of a rigid body 19

Since, we only consider derivatives at point p = 0, we set Z; def Zf;:o- We recall a result
from [13] which might be useful for the sequel,

Theorem 4 The mapping,

[0,p0] —  C([0,T]; Wr1>(Q))
p — T,(V + pW)

is continuously differentiable and

St(p, ) & 0, (T (V + p)] = /O DV + pIW) o To(V + pIW) - S7(p,.)
+WoTr(V + pW)dr] (43)

Corollary 1 S,(.) def St(p=0,.) is the unique solution of the following Cauchy problem,

(44)

atSt—(DVOTt)'StZWOTt, Q()X(O7T)
St:O :Oa QO

A fundamental result furnish the dynamical system satisfied by the vector field Z; related
to the vector fields (V, W),

Theorem 5 ([14]) The vector field Z; is the unique solution of the following Cauchy prob-
lem,

{ 8,52,5 + [Zt,V] = VV7 QQ X (O,T)

Zi—o = 0, Qo (4)

where [Z;, V] ' DZ,-V - DV - Z stands for the Lie bracket of the pair (Z;,V).

5.2.2 Shape derivatives

In the sequel, we will need general results concerning shape derivatives of integral over
domains or boundaries. We will use the framework developed in Sokolowski-Zolésio [25].

Lemma 7

d
dp < e ) d9>| L /Qtf 0,Glp) 2+ | Glp = 0)(Zs,m)db (46)

Lemma 8

d /
i ( .20 dr> (60 + Ho (Zeym) | dr (47)

where ¢% stands for the tangential shape derivative of ¢(p,.) € L*(I'{)

-,

p=0 :
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20 Marwan Moubachir , Jean-Paul Zolésio

We recall classical definitions of shape derivative functions :

Definition 1 For ¢(p,z) € C°((0,p0; C1(I'}?)), the material derivative is given by the
following expression :

d

h= — o Tt
¢ " (¢(p,-) p)p:0

then the tangential shape derivative of ¢ is given by the following expression,

/ def ;

¢r = ¢—Vro-Z
Remark 4 If ¢ is the trace of a vector field ¢ defined over Q, then we have,

7 def

or = @ |rs + 0,0 (Zy,m)

with gz~5/

rs e dip (Qg(Pv ))

p=0 rs

following this remark, we have,

d ~
d_p < pewr Qﬁ(p,ﬂ]‘)d&)

5.2.3 Derivation of the perturbed Lagrangian

Lemma 9

).

p=0 :

6+ [HO+0.6] (Zem)] ar (48)

Thanks to the introduction of the transverse map, it is now possible to work with functions
(u,v) that are defined on Q. This leads to the following perturbed Lagrangian :

£h L, (up,di,do + pdda;v,q, b, b2)

= Ju_ (u,p,di,da+pdda)—

T
/0/Qf,p[_(uoRtp)'8t(UORtp)+(DUORtP-uoRZ).UoRtp
T
_VuORZ.AUORtP—FuORZ'Vq—pdiVUoRfJ+/0 /Ff Uoo-(U(U7Q)-n)
T oo
+/ / [(d2 + pdda) e2) - (o (v 0 'R;,q) nf) —u ORtp v oRtp - ((d2 + pdda) e2) - n”]
o Jroe

T T
+/ [—dl bi — (ds + pdds) bl] +/ [—m (ds + pbds) by + k dy bg]
0 0

- v — Ug - V(T = —01 1 1 —m82
+/QTU(T) (T) /Q o - v0(t = 0) — d2b1(0) + di (T) by (T) — m 9 b2 (0)

+m (dg + pdda)(T) b2(T)] Y (v,ba,q,b1) € W x VI x v}
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Fluid-structure interaction control: case of a rigid body 21

with Rtp Lef (’Z;f)*l. We apply the previous results to the perturbed Lagrangian functional
Lo, -

a) Distributed terms:
We set,

G(p,.) = [~uoRL-d(voRL)+ D(uoR)) - (uoRL)-voR,
—v(uoR}) - AwoR)) + (uo RZ) -Vg—pdiv(vo Rtp)]

with R, < (7).
We need the following lemmas in order to derivate G(p,.) with respect to p,

Lemma 10

(%)
_r =7
dp /1,0
dR?
(7)),
dp p=0
Lemma 11
d R
<7(“O ”)> —-Du 7%
dp
p=0

Proof:
Using the chain rule we get

()

p=0

Lemma 12 Then, we have the following result

9pG(p; )|p=0 =[(Du-Zt) - 0o +u- (0(Dv- Z))
—[(D(Du-Z;))-u+Du-(Du-Z)]-v— (Du-u)- (Dv-Zy)
+v(Du-Z) - Av+vu- (ADv-Z))+pdiviDv-Z,) — (Du- Z;) - Vg
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Proof :

It comes easily using definition of G(p,.) and lemma (10)-(11).

t

Then we have an expression of the derivative of distributed terms coming from the
Lagrangian with respect to p,

d
» < o G(p)dQ)‘ . = /Q{ (Du-Z)- 0w+u-(8(Dv-Z))

—[(D(Du-Z;))-u+Du-(Du-Z)]-v— (Du-u)- (Dv-Zy)
+v(Du-Zy) - Av+vu-(ADv-Z))+pdiviDv - Z;) — (Du- Z;) - Vq]

—|—/ [—u- 0w+ (Du-u)-v—rvu-Av+u-Vg—pdiv(v)] (Zs,n)
r
Boundary terms :

We must now take into account the terms coming from the moving boundary T';"”.
Then we set,

dlp,.) = [(d2+ pdda)es) - (oc(voRy,q) —uoR, - voR. - ((da+ pddy)es)| - n°
We set V = ds es and W = dds es, then
0(p..) = (V + W) - [o(voRL.q) ~uoRL-voRL] -nf

Since ¢(p, .) is defined on the boundary I';’”, we need some extra identities correspond-
ing to boundary shape derivates of terms involved in ¢(p, .).

Lemma 13 ([10])
0P| p=0 = nlp =—-Vr(Z;-n)

Lemma 14
S )
dp Fi,p ’

Proof :

First, we use that,

_ /F<E’|p,n>+(divE)<Zt,n>

p=0 ¢

JL By = [ aivEG)

t
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Fluid-structure interaction control: case of a rigid body 23

then we derive this quantity using lemma (7),

d .
o < o div E(p))

We conclude using/ divE’:/ (E',n).
of r

;
O
Then we use,

= divE’—i—/ (div E)(Z¢,n)
of r

s
t

p=0

Lemma 15

E'lr=W:[—ql4+vDv—u-v]+V - -[-vDDv-Z;)+ Du-Z) - v+u-(Dv-Z)]
(49)

Hence, we have

d
d_p < _ é(p) dF)

—|—/ V. [-vDDv-Z)+ (Du-Z)-v+u-(Dv-Z)]-n
ry(v)

:/ W-|—¢I4+vDv—u-v]-n
pmo T

—|—/ div(V - [—¢I4+v*Dv — u - v]){Z,n)
ry(v)

Remark 5 We recall that,

/FV-(Dv-n) = /Q{div(*DU-V)

/va--DV+V~Av (50)
Qt

We use this expression in the sequel. We recall that the perturbed lagrangian has the
following form,

T T
o =Iow [ [ - [ [ o
o Jafr 0o Jry*

—/QTU(T)~U(T)—|-/QOUO~U(2?=0)
V(v,q) e Y(Qf) x VI
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Hence, its derivative with respect to p at point p = 0 has the following expression,

s - ][ (L) L4 (L)

V(v,q) e Y x v/

Furthermore we have,

Lemma 16

T
= /O a(dy —d2)es - W (51)

= ()

Using the last identities concerning the derivative of the distributed and the boundary terms
with respect to p, we get the following expression,

p=

d
d_p (£€/7W)‘ =—Az, — Bz, —Cw (52)
p=0

with

T
Az, = /0 /Q{(V) [(Du-Zt) - 0w —[(D(Du-Z)) - u

+Du-(Du-Z)]-v+v(Du-Z) - Av— (Du-Z;) - Vq|

T
+/ /f [u- (O (Dv-Z))— Du-u)- Dv-Z)+vu- (ADv-Z))+pdiv(Dv - Zy)]
o Jofw)

T
BZt:/ / [u-0w+ (Du-u)-v—rvu-Av+u-Vqg—pdiv(v)] (Z; - n)
0 (V)

+ V- -[-vD(Dv-Z)+ (Du-Z;)-v+u-Dv-Z)]-n

+div(V - [—qI+v* Dv —u - v]){(Zs,n)

T
—/ / Vs -D(Dv-Z¢) - n
o Jri

T
CW:/ W [—bleg—mblgeg—l—o(uq)-n—(uw)n—a(dg—dz)eg
o Jriwv)
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5.2.4 The shape derivative kernel identity

We shall now, assume that (u,p, ¢, 7) is a saddle point of the Lagrangian functional £,,__.
This will help us to simplify several terms involved in the derivative of £, with respect to
V.

Indeed, we would like to express the distributed term Az, as a boundary quantity defined
on the fluid moving boundary I'{ and the fixed boundary I'/_.

Theorem 6 For (u,p,p,m) saddle points of the Lagrangian functional (32), the following
identity holds,

T
/ /f [(Du-Z) 0o —[(D(Du-Zyp)) - u
0 Jal(v)

+Du-Du-Z)]-¢o+v(Du-Z)- Ap— (Du- Zy) - V]
T
w [ ] @D 2) - D) (De-Z) +vu- (AD- 2)) +p div(Dep- Z0)
o Jofwv)
T
—// V- wDDy¢-Z;))— Du-Zt)-p—u-De-Z)] - n
0 (V)
T
+/0 /S(V)[V(go—bgeg)-(D(Du~Zt)-n)+(Dgo-Zt)-(—pn+u(Du-n))}

T
—/ /f Vi - (DD Z)-n) =0, YW Y sdyes
0 I'e

Proof :

We use extremal conditions associated to variations with respect to (u,v) in the Lagrangian
functional where we have added a boundary since we consider test functions v that do not
vanish on I'/, and do not match the solid test functions at the fluid-solid interface I';(V) ,

RR n°® 4611



26 Marwan Moubachir , Jean-Paul Zolésio

ie
‘Ci (U p7d17d277} Q7b17b2) uoo(uf D, dl;dQ)

—/ /f [—u- 0w+ Du-u) - v—vu-Av+u-Vg—pdivy]
Q

T
—//uooavq // o(v,q) -n—(u-v) // (v=bgea)-(o(u,p)-n)
o Jri 1v) )
T .
—/ [—dibi - dgbl} —/ |2 b2 + kdy b
0 0

- / U(T)’U(T) + / UQU(t = 0) + d(ljbl (0) - dl (T)bl (T) + mdgbg (0) - md2 (T)bg (T)
Qr Qo
v(“?QablabQ) € Yf X Vf X Y15 X }/25

This leads to the following perturbation identity,
) L2+ (Su, 6v) / /Qf —6u - O — u - 00v + D(6u - u) - v+ D(u - 6u) - v
D) - v — v(du - Av) — v - Adv) + Su - Vg — p div(dv)] — / /Ff Vit - (D0 - 1)
/ / V(v —byes) - (Déu-n)+6v- (—pn+v(Du-n))

- / / V-[vD(v) —du-v—u-dv]-n— / [0u(T)v(T) + u(T)ov(T)]
0 $(V) Qr
Y (6u, 6v) € X (Q) x Y(Q)
We choose specific perturbation directions, i.e
ou=Du-Z; dv=Dwv-Z;
with du(T") = dv(T) = du(0) = év(0) = 0, where (u,v) are saddle points of the lagrangian,
i.e solutions of respectively the primal and adjoint fluid problem. We recognize immediately

the distributed and boundary terms involved in the shape derivative kernel identity.
O
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5.2.5 Solid and ALE adjoint problem

Using the shape derivative kernel identity, we simplify the Lagrangian derivative at the
saddle point (u,p,ds,da, @, b1,b2). We set (u,v) = (u, ) and we get,

T
Ag, :/0 /rfmv'[VD(Dw-Zt)—(Du-Zt)'sa—u-(D@'Ztﬂ'”

T
~[ [ be-ber) - ODuZ)m)+ (D2 (~prtvDusn)
o Jriwv)

+/OT/F£OVum-(D(D<p-Zt)-n)

We use that ¢ = by ez, on I'j (V') and the following identities,

(D¢ Zi) - (pn) = (p dive)(Zt,n) (53)
D¢ -Z)-(Du-n)=(Dy-n) (Du-n)(Z,n) (54)

then,
T
Azt:/ / V-vDMDy¢-Z)—Du-Zt) - o —u-Dy-Z)]-n
0 JT(V)

T
—/ / [-pdivp+v(De-n)- (Du-n)|{Z,n)
o Jri(v)

+/OT/F£OVum-(D(D<p-Zt)-n)

Using the following identity,

div(V-[-7I4v"D¢p—u-¢]) = —ndivV =V -Va+vDp--DV
+rvVAp— ([divV)u- -V -V(u-p) (55)
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T
By, =/ / [—u-Op+ (Du-u) - o —vu-Ap+u-Vr—p div(e)] (Zi, n)
0 rs(v)

+V.[-vDDy-Z)+Du-Z;)-o+u-De-Z)]-n

[-mdivV -V -Va4+vDe--DV4+vVAp
—(divV)u-p =V -V(u-9)](Z,n)

T
—/ / Vi DD - Zy) - n
o Jri

then we get,

Az, + By, :/OT/S(V) [vDe-n) - DV —u)-n)—u-0p+ (Du-u) - p—7mdivV
t —(divV)u-o =V - -V(u-9)]{Z,n)
We use the following identity,
V-Vu-p)=¢-Du-V4+V -Dp-u

and the boundary conditions, u = dz ez on I'{, ¢ = ba eg on I'j. This leads to,

T
Azt—l—th:/ / {V(Dgp-n)-(D(V—u)-n)—dgb.g—wdiVV—(divV)uwp
0 $(V)
—d2 €g - D(p . d2 62] <Zt, n>
We choose the velocity field V' = Ext(ds e3) o p, then
DV -n)-nlr: =0
and

divV

r;s = d1VpV+(DVn)n
= 0

Finally, we have

T
Az + Bz = // [~d2b2+v (D) - (Du-n) = |dof (Do €2) - €] (Z2,m)
0 JTi(V)
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and
T .
Cw = / W . {—bl ea —mboes+ (o, m)-n— a(dy —dz) e (56)
0 Jryv)

where we have used that,

/ d2€2'b262'n=0
r:(v)

t

We introduce the adjoint field A solution of the following system,

CON—VeA-V-AdiveV =f, (0,T)
L 2o ) Or(V) o7
with
f= |:—d2b.2+l/(D(p'n) -(Du-n) —|d2]?* (Dg-ez) e (58)

Remark 6 In our case divprV =0
We recall the following property,
Lemma 17 ([14],[12],[21]) For any E(V) € L*(25(V)) and (V,W) € Uyq, the following

identity holds,
T T
[ [ ez == [ xww (59)
0 s(V) 0 (V)

where A € C°([0,T]; HY(T'{)) is the unique solution of problem (57) with f = E.

Then we have,

T
AZt +BZt = / / f<Zt7n>
0 JTi(V)

T
—// (An, W)
o Jryv)

However, using the optimality condition for the Lagrangian functional, we obtain

—(Az, + Bz,) =Cw

this leads to,

T T
/ / )\n-W:/ / [—bleg—mb262+a(¢,w)-n—a(dg—dg)eg W,
0 JTy(V) 0 JTi(V)

VYW déf 5d2 €9

(60)
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From which we deduce the following identity,

/r;m An = [—bl —mbs — alds — dg)} e +/ o(¢,7) - (61)

ry(v)
We now use the following lemma,

Lemma 18

O </ /\n>=/ [OA+VrA-V]n (62)
r5(v) rs(v)

t

We get,

B, <[—b1 —mbs — alds —dé)} es +/FS(V) o (¢, ) n) _
/ |:—d2b.2+l/(D<p'n)'(DU'TL)—|d2|2(D<p'€2)'€2 n
ri(v)

This can be written as,

51+m52:—a(d2—d§)+6t </ J(¢,W)-n>-€2+
T

i)
/ [ld2]? D es)-ea—v(Dp-n)-(Du-n)|-n
3 (v)

and we recall the other solid adjoint equation,

{ _61 + kb2 = a(d — d;); (07 T) (63)

bl(T) =0,

Let us inject by inside the first one,

mby + kby = a(d — d}) — afdy — d2) + 0 </
r:(v)

(g, m) n) ceg +
/ [|d2|2(D<p-eg)-eg—u(Dga-n)-(Du-n)]-n
r;(v)

This concludes the proof of the main result.
O
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6 Conclusion

In this report, we have investigated sensitivity analysis for a simple 2-D coupled fluid-
structure system. This analysis was performed using a Lagrangian functional and non-
cylindrical shape derivative tools to handle pertubation with respect to the velocity of the
solid. This led to the derivation of first-order optimality conditions for an optimal control
problem related to a tracking functionnal. This optimality system can be numerically ap-
proximated and included inside a gradient based optimization procedure. This point is under
investigation following the strategy adopted for Navier-Stokes optimal control problems as
in [16].

The methodology used in this report can be generalized to more complex fluid-structure
interaction problems. We can either change the fluid model and handle compressibility as
in [4], or change the solid equations and use a real 3D non-linear elastic model [22] or a shell
model [3].

References

[1] P. Acquistapace, F. Flandoli, and B. Terreni. Initial boundary value problems and
optimal control for nonautonomous parabolic systems. SIAM J. Control Optimization,
29(1):89-118, 1991.

[2] H. Amann. Nonhomogeneous Navier-Stokes equations in spaces of low regularity.
Quaderni di matematica, IX(In print), 2002.

[3] J. Cagnol, M. Moubachir, and J-P. Zolésio. Optimal control of coupled fluid-shell
system. To appear, 2003.

[4] S.S Collis, K. Ghayour, M. Heinkenschloss, M. Ulbrich, and S. Ulbrich. Numerical
solution of optimal control problems governed by the compressible Navier-Stokes equa-
tions. Optimal Control of Complex Structures; K.-H. Hoffmann and I. Lasiecka, G.
Leugering, J. Sprekels, F. Troltzsch (eds.), Birkhiuser Verlag, International Series of
Numerical Mathematics, 139:43-55, 2001.

[5] C. Conca, J.A. San Martin, and M. Tucsnak. Existence of solutions for the equations
modelling the motion of a rigid body in a viscous fluid. Commun. Partial Differ.
Equations, 25(5-6):1019-1042, 2000.

[6] R. Correa and A. Seeger. Directional derivative of a minimax function. Nonlinear Anal.,
Theory Methods Appl., 9:13-22, 1985.

[7] G. Da Prato and J-P. Zolésio. An optimal control problem for a parabolic equation in
non-cylindrical domains. Syst. Control Lett., 11(1):73-77, 1988.

RR n® 4611



32 Marwan Moubachir , Jean-Paul Zolésio

[8] M.C. Delfour and J-P. Zolésio. Further developments in the application of min-max
differentiability to shape sensitivity analysis. Control of partial differential equations,
Lect. Notes Control Inf. Sci. , 114:108-119, 1989.

[9] M.C. Delfour and J-P. Zolésio. Shapes and Geometries - Analysis, Differential Calculus
and Optimization. Advances in Design and Control - STAM, 2001.

[10] F.R. Desaint and J-P. Zolésio. Manifold derivative in the Laplace-Beltrami equation.
J. Funct. Anal., 151(1):234-269, 1997.

[11] B. Desjardins and M.J Esteban. Existence of solutions for a model of fluid-rigid struc-
ture interaction. Arch. for Rat. Mech. Anal., 146, 1999.

[12] R. Dziri, M. Moubachir, and J-P. Zolésio. Navier-Stokes dynamical shape control: from
state derivative to Min-Max principle. Technical report, INRIA, to appear, 2002.

[13] R. Dziri and J-P. Zolésio. Dynamical shape control in non-cylindrical Navier-Stokes
equations. J. Conver Anal., 6(2):293-318, 1999.

[14] R. Dziri and J-P. Zolésio. Eulerian derivative for non-cylindrical functionals. Cagnol,
John et al., Shape optimization and optimal design. Lect. Notes Pure Appl. Math,
216:87-107, 2001.

[15] F. Flori and P. Orenga. Analysis of a nonlinear fluid-structure interaction problem in
velocity-displacement formulation. Nonlinear Analysis, 35:561-587, 1999.

[16] G. Fourestey and M. Moubachir. Optimal control of Navier-Stokes equations using
Lagrange-Galerkin methods. Technical report, INRIA, to appear, 2002.

[17] A.V. Fursikov, M.D. Gunzburger, and L.S. Hou. Boundary value problems and optimal
boundary control for the Navier-Stokes system: The two-dimensional case. SIAM J.
Control Optimization, 36(3):852-894, 1998.

[18] C. Grandmont and Y. Maday. Fluid-structure interaction: A theoretical point of view.
Rev. Européenne Elém. Finis, 9(6-7):633-653, 2001.

[19] M.D Gunzburger, L. Hou, and T.P Svobodny. Boundary velocity control of incom-
pressible flow with application to viscous drag reduction . SIAM Journal of Control
and Optimization, 30(1):167-181, 1992.

[20] J-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applica-
tions. Vol. I, Vol. II. Die Grundlehren der mathematischen Wissenschaften. Band 182.
Springer-Verlag., 1972.

[21] M. Moubachir. Control of fluid-structure interaction phenomena, application to the
aeroelastic stability. PhD thesis, Ecole Nationale des Ponts et Chaussées, 2002.

INRIA



Fluid-structure interaction control: case of a rigid body 33

[22] M. Moubachir and J-P. Zolésio. Optimal control of fluid-structure interaction systems
under large deformations. Technical report, INRIA, to appear, 2002.

[23] J.A. San Martin, V. Starovoitov, and M. Tucsnak. Global weak solutions for the two-
dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch.
Ration. Mech. Anal., 161(2):113-147, 2002.

[24] D. Serre. Chute libre d’un solide dans un fluide visqueux incompressible. Existence.
(Free falling body in a viscous incompressible fluid. Existence). Japan J. Appl. Math.,
4:99-110, 1987.

[25] J. Sokolowski and J-P. Zolésio. Introduction to shape optimization: shape sensitivity
analysis., volume 16. Springer Series in Computational Mathematics., 1992.

[26] P.K.C Wang. Stabilization and control of distributed systems with time-dependent
spatial domains. J. Optimization Theory Appl., 65(2):331-362, 1990.

[27] J-P. Zolésio. Identification de domaines par déformations. PhD thesis, Université de
Nice - Doctorat d’Etat en Mathématiques, 1979.

[28] J-P. Zolésio. Shape analysis and weak flow. Lect. Notes Math., 1740:157-341, 2000.

[29] J-P. Zolésio. Weak set evolution and variational applications. Lect. Notes Pure Appl.
Math., 216:415-439, 2001.

RR n°® 4611



/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399



