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Controle dynamique de forme pour le systéme de
Nayvier-Stokes : de la dérivée de I’état au principe du
Min-Max

Résumé : Dans ce rapport nous présentons de récents progrés dans ’analyse des problémes
d’optimisation de forme dans le cas ot le domaine spatial est mobile. L’accent est mis sur le
cas des fluides visqueux newtoniens en écoulement incompressible modélisés par le systéme
de Navier-Stokes en domaine mobile. Nous proposons trois approches afin de résoudre un
probléme de controle optimal sur la forme qui utilisent :

1. la différentiabilité de ’état par rapport & la forme et un passage & ’adjoint,

2. le principe du Min-Max avec une paramétrisation de ’espace d’état et des multiplica-
teurs,

3. le principe du Min-Max avec une inclusion de domaine des espaces d’états et de mul-
tiplicateurs.

Mots-clés : équations de Navier-Stokes, formulation ALE, analyse de sensibilité, champ
transverse, optimisation de forme, controle optimal, principe du Min-Max
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1 Introduction

This article deals with the analysis of an inverse dynamical shape problem involving a fluid
inside a moving domain. This type of inverse problem happens frequently in the design and
the control of many industrial devices such as aircraft wings, cable-stayed bridges, auto-
mobile shapes, satellite reservoir tanks and more generally of systems involving fluid-solid
interactions.

The control variable is the shape of the moving domain, and the objective is to minimize a
given cost functional that may be chosen by the designer.

On the theoretical level, early works concerning optimal control problems for general parabolic
equations written in non-cylindrical domains have been considered in [8], [5], [6], [25], [2]-
In [24], [27], [28], the stabilization of structures using the variation of the domain has been
addressed. The basic principle is to define a map sending the non-cylindrical domain into a
cylindrical one. This process leads to the mathematical analysis of non-autonomous PDE’s
systems.

Recently, a new methodology to obtain eulerian derivative for non-cylindrical functionals
has been introduced in [30], [29], [13]. This methodology was applied in [14] to perform
dynamical shape control of the non-cylindrical Navier-Stokes equations where the evolution
of the domain is the control variable. Hence the classical optimal shape optimization theory
has been extended to deal with systems set in non-cylindrical domains.

The aim of this article is to review several results on the dynamical shape control of the
Navier-Stokes system and suggest an alternative treatment using the Min-Max principle [9].
Despite its lack of rigorous mathematical justification in case where the Lagrangian func-
tional is not convex, we shall show how this principle allows, at least formally, to bypass
the tedious obtention of the state differentiability with respect to the shape of the moving
domain.

2 Problem statement

Let us consider a moving domain Q; € R?. We introduce a diffeomorphic map sending a fix
reference domain )y into the physical configuration €; at time ¢ > 0.

Without loss of generality, we choose the reference configuration to be the physical config-
uration at initial time (¢ = 0).

Hence we define a map T € C' () such that

Qt = Tt (QO),

Iy = Ty

~

We set ¥ = U ({t} xTy), Q = U ({t} x Q). The map T; can be actually defined as

0<t<T 0<t<T
the flow of a particular vector field, as described in the following lemma :

INRIA
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Theorem 1 ([26])

Qt - Tt(V)
Ft - Tt(V)

E

.
—
~

0
where Ty(V) is solution of the following dynamical system :

T,(V): Qy— Q
xo—  z(t,z0) = T (V) (o)

with
4% yira(r), e[0,T]
3, = Vmat), rel, o
x(r = 0) = xp, in Qo

The fluid inside Q; is assumed to be a viscous incompressible newtonian fluid. Its evolution
is described by its velocity w and its pressure p. The couple (u,p) satisfies the classical
Navier-Stokes equations written in non-conservative form,

Ou+Du-u—vAu+Vp=0, Q(V)

div(u) =0, Q(V)
W=V, (V) 2)
u(t = 0) = Uo, QO

where v stands for the kinematic viscosity.

The quantity o(u,p) = —pI+v(Du+*Du) stands for the fluid stress tensor inside €, with
(Du)ij = Ojui = ui ;.

We are interested in solving the following minimization problem :

Jain j (V) (3)

where j(V) = Jy(u(V),p(V)) with (u(V),p(V)) is a weak solution of problem (2) and
Jv (u,p) is a real functional of the following form :

Q Y
Jv(u,p) = §||BU||é(V) + 5”’C V||22(V) (4)

where is B € L(H,H*) is a general linear differential operator satisfying the following iden-
tity,

(Bu,v) + (u, B*v) = (B u,v) 12(x) (5)

where H = {v € L?(0,T; (Hg(div,Q2(V)))")} and K € L(Uaq, L*(3(V))) is a general linear
differential operator satisfying the following identity,

<IC u, 'U>L2(E) + <u, IC*U>L2(E) = <ICE u, 'U>L2(E) (6)

RR n° 4610
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The main difficulty in dealing with such a minimization problem is related to the fact that
integrals over the domain Q;(V) depend on the control variable V. This point will be solved
by using the Arbitrary Lagrange-Euler ( ALE ) map T3(V) introduced previously. The pur-
pose of this article is to prove using several methods the following result,

Main Result: For V € U,y and Qg of class C?, the functional j (V') possesses a gradi-
ent Vj (V) which is supported on the moving boundary I';(V) and can be represented by
the following expression,

ViV)=-An—o(p,m) - n+aBsBu+v [-K'KV + KK V] (N
where (¢, 7) stands for the adjoint fluid state solution of the following system,

—0p—Dyp-u+"Du-p—vAp+Vr=—-aB*Bu, Q)

div(¢) =0, Q(V) (8)
¢ =0, (V)
(p(T) =0, Qr

and A is the adjoint transverse boundary field, solution of the tangential dynamical system,

—OA—VrA-V—(divV)A=f, (0,T) 9
{ NT) =0, I'r(V) ©)

with

f= [—(U(g@ﬂr)%)—k@BZBu]-(DV-n—Du-n)—&—%[a|Bu|2+7H|ICV|2] (10)

Example 1 We set,

(B,B*.Bs) = (L—1,0)
(IC,K:*JCE) = (17_L 0)

This means, that we consider the cost functional,
a ¥
Jv(u,p) = 5”“”%2@(\/)) + §||V||2L2(E(V)) (11)
then its gradient is given by,

Vi(V)=-An—o(e,7) -n+vV (12)

INRIA



Dynamical shape control 7

where (p, ) stands for the adjoint fluid state solution of the following system,
—0p—Dyp-u+*Du-¢—vAp+Vr=au, Q(V)

div(p) =0, Q(V)
o0, (V) (13)
QO(T) =0, Qr

and \ is the adjoint transverse boundary field, solution of the tangential dynamical system,

—OA—=VrA-V—-WivV)A=f, (0,7) (14)
A(T) =0, (V)
with
1
f:—V(D<p-n)-(DV-n—Du~n)—|—§(a—|—’yH)|V|2 (15)
Example 2 We set,
(B,B*,Bx) = (curl,curl, An)
(’C7IC*7ICE) = (Ia_L 0)
Jv(w,p) = S ewrlulFa gy + 3 IV (16)
viLp) =75 L) T g lViiLzzwvy)
then its gradient is given by,
Vi(V)==-An—o(p,m) -n+a(culu) An+~V (17)
where (p, ) stands for the adjoint fluid state solution of the following system,
—0ip—Dp-u+*Du-p—vAp+Vr=—-alAu, Q(V)
div(p) =0, Q)
=0, S(V) (%)
SD(T) =0, Qr

and ) is the adjoint transverse boundary field, solution of the tangential dynamical system,

{ —OA—VrA-V—(divV)A=f, (0,7)

A(T) =0, Ir(V) (19)

with

f= [—VDap-n—&—a(curlu)/\n]-(DV-n—Du-n)—&—%[a|curl ul? + v H|V|?] (20)

RR n° 4610
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In the next section, we introduce several concepts closely related to shape optimization tools
for moving domain problems. We also recall elements of tangential calculus that will be used
through this article. Then we treat sequentially the following points,

1. In section (4), we choose to prove the differentiability of the fluid state (u,p) with

respect to the design variable V. The directional shape derivative (u',p’)(V) - W
is then used to compute the directional derivative j'(V) - W of the cost functional
j(V). Using the adjoint state (¢, 7)(V') associated to (v',p')(V) and the adjoint field
A associated to the transverse field Z; introduced in section (3), we are able to furnish
an expression of the gradient Vj(V') which is a distribution supported by the moving
boundary I';(V).

. In section (5), we choose to bypass the obtention of the state shape derivative (u’, p’)(V)-
W, by using a Min-Max formulation of problem (3). The state and multiplier spaces
are chosen in order to be independent on the perturbation parameter used in the ob-
tention of the derivative of the lagrangian functional with respect to V. This leads to
the direct obtention of the fluid state and transverse field adjoints and consequently
to the gradient Vj(V).

. In section (6), we again use a Min-Max strategy coupled with a state and multiplier
functional space embedding. This means that the state and multiplier variables live in
the hold-all domain D. Hence the derivative of the lagrangian functional with respect
to V only involves terms coming from the flux variation trough the moving boundary
I't(V). This again leads to the direct obtention of the fluid state and transverse field
adjoints and consequently to the gradient Vj(V).

Elements of non-cylindrical shape and tangential cal-
culus

This section introduce several concepts that will be intensively used through this report. It
concerns the differential calculus of integrals defined on moving domains or boundaries with
respect to their support and basic tools for intrinsic tangential calculus using the oriented
distance function and tangential operators.

3.1 Non-cylindrical speed method

In this paragraph, we are interested in differentiability properties of integrals defined in
moving configuration,

J1(%) = ; F(£)dQ

Jz(rt):/F g(I'y)dl’

INRIA
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The behaviour J; and Jy while perturbing their moving support highly depends on the
regularity in space and time of the domains. In this work, we choose to work with domains
Q, that are images of a fixed domain € trough an ALE map T;(V) as introduced in the
first section. Hence, the design parameter is no more the support €2; but rather the velocity

field V € Uyg < €O([0, T]; (W*>°(D))4) that builds the support. This technique has the

advantage to transform shape calculus into classical differential calculus on a vector space
[30],[14]. For an other choice based on the non-cylindrical identity perturbation, the reader
is referred to [4],[19]. Before stating the main result of this section, we recall the notion of
transverse field.

3.1.1 Transverse applications

Definition 1 The transverse map ’Z;f associated to two vector fields (V,W) € Unq is defined
as follows,

7;;3Q_t — Q_tpdéth(V-i-PW)
x = TV +pW)oTy(V)™?

Remark 1 The transverse map allows us to perform pertubations analysis on functions
defined on the unperturbed domain Q:(V).

The following result states that the transverse map ’Z;f has itself the structure of a dynamical
flow with respect to the perturbation variable p,

Theorem 2 ([29]) The Transverse map 7, is the flow of a transverse field Z}, defined as
follow :

oT!
def _
2 2. = (G2 ) (T (21)
i.e is the solution of the following dynamical system :
Ttp(z,ﬁ) D9 — Q_f
x—  a(p,x) =T (2)) ()

with
z(p=0) ==z, in Q (V)

Since, we will mainly consider derivatives of perturbed functions at point p = 0, we set

Zy def Z,t;:o- A fundamental result lies in the fact that Z; can be obtained as the solution of

linear time dynamical system depending on the vector fields (V, W) € Uyq,

RR n° 4610
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Theorem 3 ([14]) The vector field Z; is the unique solution of the following Cauchy prob-
lem,

{ OZy + 2,V =W, Dx(0,T) (23)

Zieo =0, D
where [Z;, V) ' pz,.V - DV . Z, stands for the Lie bracket of the pair (Z;,V).

3.1.2 Shape derivative of non-cylindrical functionals
The main theorem of this section uses the notion of non-cylindrical material derivative that

we recall here,

Definition 2 A function f(V) € H(Q(V)) admits a non-cylindrical material derivative

f(V; W) at point V € Uyq in the direction W € Uyq if the following composed function,
fP:00,p0] —  H(Qu(V))
p = f(V+pW)oT;

is differentiable at point p =0, a.e (t,x) € Q(V) and f(V)-W = f(V; W) = dipfp
p=0

With the above definition, we can state the differentiability properties of non-cylindrical
integrals with respect to their moving support,

Theorem 4 ([14],[19]) For a bounded measurable domain Qo with boundary Ty, let us
assume that for any direction W € U the following hypothesis holds,

i) f(V) admits a non-cylindrical material derivative f(V)- W

then J1(.) is Gateaux differentiable at point V. € U,q and its derivative is given by the
following expression,

(V)W = FOV)-W + £(V) div zt} dQ (24)

(V) {
Futhermore, if
ii) f(V) admits a non-cylindrical shape derivative given by the following expression,
f'V)-W=f(V) W=VFV) Z (25)
then

J(V)-W = [f'(V)- W+ div(f(V) Z¢)] dO2 (26)
Q: (V)

Furthermore, if Qg is an open domain with a Lipschitzian boundary Ty, then

J(V) W= (V) - wd +/ F(V)(Z,n)dl (27)
(V) ry(V)

INRIA
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Remark 2 The last identity will be of great interest while trying to prove a gradient struc-
ture result for general non-cylindrical functionals.

It is also possible to establish a similar result for integrals over moving boundaries. For that
purpose, we need to define the non-cylindrical tangential material derivative,

Definition 3 A function g(V) € H(I+(V)) admits a non-cylindrical material derivative
g(V; W) at point V€ Unq in the direction W € Uyq if the following composed function,

g”:10,p0] — H(I(V))
p = g(V+pW)oT]

is differentiable at point p =0, a.e (t,z) € X(V) and g(V; W) = d%gp o
p:

This concept is involved in the differentiability property of boundary integrals,

Theorem 5 ([19]) For a bounded measurable domain Qo with boundary Ty, let us assume
that for any direction W € U the following hypothesis holds,

i) g(V) admits a non-cylindrical material derivative (V) - W

then Ja(.) is Gdteaux differentiable at point V. € U,q and its derivative is given by the
following expression,

(V)W = [g(V) - W + (V) divrp Z;] dT (28)
Ly(V)

Futhermore, if

1) g(V') admits a non-cylindrical shape derivative given by the following expression,

gV) W=g(V)-W-—Vrg(V)-Z (29)
then

(V) - W = lg'(V)- W + H g(V){Zs,n)] dT (30)
(V)

where H stands for the additive curvature (Def. (4)). Furthermore, if g(V) = g(V)|r,(v)
with g € H(Q(V)), then

Jo(V)- W = ) lg'(V)- W+ (Vg(V) - n+ Hg(V)) (Z¢,n)] dT (31)

RR n° 4610
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3.1.3 Adjoint transverse field

It is possible to define the solution of the adjoint transverse system,

Theorem 6 ([13]) For F € L*(0,T;(H'(D))%), there exists a unique field
A € C°([0,T; (L*(D))?)

solution of the backward dynamical system,

{ —O%A—DA-V—*DV-A—(divV)A=F, (0,T)

A(T) =0, (32)

Remark 3 The field A is the dual variable associated to the transverse field Z, and is
solution of the adjoint problem associated to the transverse dynamical system.

In this article, we shall deal with a specific right-hand side F' of the form F'(t) = *yp, v (f(t)n).
Then the adjoint field A is supported on the moving boundary I';(V') and has the following
structure,

Theorem 7 ([14]) For F(t) = *yr,)(f(t)n), with f € L?(0,T;L*(T+(V)), the unique
solution A of problem is given by the following identity,

A= (Xop)V xa,v) € CO([0,T]; (H'(T))%) (33)

where X € C°([0,T]; HY(T';)) is the unique solution of the following boundary dynamical
system,

{ —OA—VrA-V = (divV)A=f, (0,T)

ANT) =0, T, (V) (34)

p is the canonical projection on I't(V) and xq,(v) is the characteristic function of (V)
inside D.

3.1.4 Gradient of non-cylindrical functionals

In the next sections, we will often deal with boundary integrals of the following forms,

K = /OT /Ft(V)E(V) (Z¢,m)

with E(V) € L?(0,7;T4(V)). The following result allows us to eliminate the auxilliary
variable Z; inside the functional K,

Theorem 8 ([14],[19]) For any E(V) € L*(0,T;T4(V)) and (V,W) € U,a, the following

identity holds,
T T
/ / E(V)(Zi,n) = / / AW, ) (35)
0 Ft(V) 0 Ft(V)

where \ € C°([0,T); H'(T';)) is the unique solution of problem (84) with f = E.

INRIA
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3.2 Elements of tangential calculus

In this paragraph, we review basic elements of differential calculus on a C*- submanifold
with k > 2 of codimension one in R%. The following approach avoids the use of local bases
and coordinates by using the intrinsic tangential derivative.

3.2.1 Oriented distance function

Let Q be an open domain of class C* in R? with compact boundary I'. We define the oriented
distance function to be as follows,

[ dr(z), z eR*\Q
bQ(l’) - { _de(x)’ z e

here d = min |y — /.
where dr(z) Iyne18|y x|
Proposition 1 ([10]) Let Q be an open domain of class C* for k > 2 in R with compact

boundary T'. There exists a neighbourhood U(T') of T', such that b € C*(U(T')). Furthermore,
we have the following properties,

i) Vblr = n, where n stands for the unit exterior normal on T,
i) D*b: Tp)I' = Ty(o)l' coincides with the second fondamental form on I', where
p:UT) — T
x — x—b(x) Vb(x)
stands for the projection mapping and T, \I" stands for the tangent plane.

i) (0,01,...,B84-1) are the eigenvalues of Db associated to the eigenfunctions

(n, p1y .oy fha—1)
where (5, i)1<i<d—1 are the mean curvatures and principal direction of curvatures of
.
Proposition 2 ([10]) For I of class C?, the projection mapping p is differentiable and its
derivative has the following properties,
*Dp=Dp=1-Vb-*Vb—bD?b
Dp-7=7, onT,
Dp-n=0, onT (36)
Definition 4 ([10]) For T of class C%, the additive curvature H of I is defined as the trace
of the second order fondamental form :
H=TrD?b=Ab=(d—1)H, onT (37)

and H stands for the mean curvature of T

RR n° 4610
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3.2.2 Intrinsic tangential calculus

Using arbitrary smooth extension of functions defined on T to Q € R, is the most classical
way of defining tangential operators. Hence the differential calculus on manifolds can be
reduced to classical differential calculus in R%. In this section we recall, standard formulas for
differential tangential operators using arbitrary extensions. We also emphasize the particular
case where the extension is of the canonical type (f o p). This is the basis of a simple
differential calculus in the neighbourhood of I'.

Definition 5 For I' of class C?, given any extension F € CY(U(T)) of f € CY(I), the
tangential gradient of f is defined as,

Vi f ¥Vl - (0.F)n (38)

where 0,F = VF -n.

Proposition 3 ([10]) Assume that T’ of class C* is compact and f € C*(T), then
i)
Vr f=(PVF)|r
n-foZVb'VerO (39)

where P 1-Vb*Vb is the orthogonal projection operator onto the tangent plane
Tyl
V(fop)=[I-bD?b] Vr fop
V(fop)lr=Vrf (40)

Hence (f op) plays the role of a canonical extension in the neigborhood U(T") and its gradient
is tangent to the level sets of b. Consequently, we can define in an intrinsic way the tangential
gradient,

Definition 6 For I' of class C?> and f € C*(T), the tangential gradient of f is defined as,

Ve f=V(fep)lr (41)

In the sequel, we shall use the above definition for the tangential gradient whenever the
function under derivation is intrinsically defined on I'. We now define the other classical
tangential operators,

Definition 7 For T of class C2,

INRIA
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i) for v e (CHI))?, and v € (CY(U(T)))? an arbitrary extension, the tangential jacobian
is defined as follows,

= Dor—Do-(n®n) (42)
Furthermore,
D(vop)=Drvop[I-bD*b]
Drov=D(vop)|r (43)

i) forv e (CY(I'))9, and & € (C*(U(T)))?* an arbitrary extension, the tangential divergence
is defined as follows,

divrv & divelr — (Do-n) - n (44)
Furthermore,
divr v = div(v o p)|r = Tr(Drv) (45)

iti) for f € C3(I'), and F € C*(U(T)) an arbitrary extension, the tangential Laplace-
Beltrami operator is defined as follows,

Arf = AF|pr — HO,F — O2F (46)
with 02F = (D? F - n) - n. Furthermore,

Arf =divp(Vr f) = A(fop)lr (47)

In some cases, it may be interesting to use a splitting of the function v onto a normal and
a tangential component,

Definition 8 For v € (C1(I"))¢, we define the tangential component vr € (C1(I'))? and the
normal component v, € C1(T") such that,

v =vr +v,n (48)
Using this definition, we obtain the following identities,

Proposition 4 For v € (CY(T"))?, we have

Drv=Drur+uv,-D*b+n-*Vr5u, (49)
Vi, = *Dron+ D?bor (50)
divrv = divrvr + Hv,, (51)
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3.2.3 Tangential Stokes formula

In order to perform integration by parts on I', we will use the following tangential Stokes
identity,

Proposition 5 Let I' be a C2-submanifold in RY, for E € H'(I;RY) and «» € H'(T;R) the
following identity holds

/F (B, Vi ) g + /F (dive B)o = /F H(E, n)g (52)

4 State derivative strategy

In this section, we shall prove the main theorem using an approach based on the differentia-
bility of the solution of the Navier-Stokes system (Eq. (2)) with respect to the velocity field
V. First we introduce a weak formulation for Eq. (2) and recall associated classical solvabil-
ity results. Then, using the weak implicit function theorem, we will prove the existence of a
weak material derivative. Finally, introducing adjoint equations associated to the linearized
fluid and transverse systems, we will be able to express the gradient of the functional j(V').
For the sake of simplicity, we shall only prove the main theorem in the case of example (1)
and with free divergence control velocity fields.

4.1 Weak formulation and solvability

In order to take into account the non-homogeneous Dirichlet boundary condition on T';(V'),
we use the following change of variable & = u—V, where @ satisfies the following homogeneous
Dirichlet Navier-Stokes system,

Qiu+Du-a+Da-V+DV-a—vAi+Vp=F(V), Q)
div(@) = 0, Q(V)
i=0, (V)
ﬂ(O) = Uug — V(0)7 QO

with F(V) = -0,V — DV -V + vAV.
We consider the following classical functional spaces [17], [23],
H(D) = {ve (L*(D))% divv=0,inD, v-n=00ondD}
H}(div, D) = {v € (Hj(D))?, divv=0, in D}
H = {v e L*0,T; (Hg(div, (V) }
V={veH, oweL*0,T;H)V))"}

In the sequel, we shall use the notation u instead of @, keeping in mind that the original
variable is obtained by translation.
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Dynamical shape control 17

Definition 9 The function uw € V is called a weak solution of problem (53), if it satisfies
the following identity,

(ev(u),v) = ([ev(u), ef, (w)],v) =[0,0], VveH (54)

with

T
(eb(u),v)z/ / [(Oiu+Du-u+Du-V+DV-u)-v+vDu--Dv—F(V)- v
0 JQu(V)
(55)

We set,
Upa = {V € H(0,T; (H™(D))?), divV=0inD, V-n=0ondD}
with m > 5/2.

Theorem 9 ([13]) We assume the domain Qq to be of class C'. For V € Uyq and ugy €
H(D) such that uo|q, € H(Qo),

1. it exists at least a weak solution of problem (53) with w € H U L*°(0,T; H),

2. ifug € (H*(D))? U Hi(div, D) and v is large or uq is a small data, then the uniqueness
of a weak solution is guaranted, and we have Oyu € H U L*>°(0,T; H(S)),

3. if Q is of class C?, u € L>=(0,T; (H?*(Q:))? U Hi(div,Q)).
4.2 Weak implicit function theorem and the Piola material deriva-
tive

We are interested in solving the following minimization problem :

2in, 1) e
with
T T
. a y
=5 [ [ wepsd [ v (58)
0o Ja.v) 0 Ja.v)

Theorem 10 ([14]) Problem (57) admits at least one solution V* € Uyq.
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In order to derive first-order optimality conditions for problem (57), we need to analyse the
derivability of the state u(V') with respect to V € U,4. There exist at least two methods in
order to establish such a differentiability result :

e Limit analysis of the differential quotient,

W(V5 W) = lim %(u(V + W) o To(V + pW) — u(V) o To(V))

¢ Application of the weak implicit function theorem and deduction of the local differen-
tiability of the solution u(V") associated to the implicit equation e(u,v) =0, Vv e H.

We recall here how the second method can be applied to our problem, following the result
obtained in [14].

In order to work with divergence free functions, we need to introduce the Piola transform
that preserves the free divergence condition.

Lemma 1 ([4]) The Piola transform,
Pt : H} (div, (V) — H(div, Q)

v - (DT -v)o (T

s an isomorphism.

We consider the solution u, = u(V + pW) defined on Qf of the implicit equation,
(evtpwy (u),v) =0, VveH’

and we introduce i, = (DT})~" - (u, o T) defined on Q;(V).

Lemma 2 The element u, is solution of the equation:
(ev4pwy (u),v) =0, VveH’

if and only if U, is solution of the following equation,

(eP(1,),0) =0, YieH
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with

(ef (v),w) =
/OT /W) (0D} -v))- (DT - w) — (D(DT, -v) - (DT)) "' (AT})) - (DT -w)
(DT -v)-0) - (DT - w) + (DD T -0)- (DT}~ - ((V + pW) o T))) - (DT} - w)
HD(V + pW) o T1) ) - (DT} - w)
(DD} v)-(DTH™) (DD T} - w) - (DT )

—(F(V+pW)oT})- (DT} - w)]

with

FV)=-0,V-DV .-V 4+vAV
and

HT) =(V+pW)oT/ -DT}-V
Proof :

We consider the solution u, of the perturbed state equation ey ,w) = 0, with

T
(e (W0) = [ [ @+ Dusut Dus (v pW) DV 4 o) ) 0
o Jar
+vDu--Dv—F(V + pW) - v]

with v € H”.
We introduce the variables (i, 0) defined in (V') such that,

[u,v] = [(DT, @) o (T,)~", (DT} - ) o (T,) 7]
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We replace this new representation inside the state equation and we use a back transport in
Q.(V), this leads to the following identity,

(ef(@),0) =/(V) [(0((DT, @) o (T,)™") +D(D T, @) o (T;)"") - (DT, -a) o (T,)

+D((DTy @) o (T))™1) - (V +pW) +D(V +pW) - (DT, i) o (Z,)"") 0T, - (DT, - )

+uD((DT} @) o (T) ™) o T} - -(D(D T - 8) o (T}) 1)) o T}

P
—F(V+pW)oT} (DT} - 0)]

Lemma 3
D((7)) 1)o7, =(DT)" (59)
0:((7,) ) oI, =-(DT) ™" 0T, (60)

(DT} -a)o(T)) ) oT!=0,(DT}ot)—DDT ot) (DT} 0T} (61)

p

Proof :
Using the identity,

-1
(T) o1l =1
we get
-1
D((T;) o T,)) = 1
-1
D((7;)™") e T, - DT}

[
—

by differentiation with respect to time t, we also get,

515((7?&)7107;5) =0
0 (7)) o T, +D((T)) ) o T, - 0T, =
0:((7,)"") 0T, +(DT,) " -0, = 0
Using the chain rule, we deduce
[0:((DT, - @)o (7)) )]oT, = [0(DT, a)o (7))
+D(D T, - a) o (T)™ - 3 ((T)) ] o T,

= (DT} i)+ DT i) (T}) ") o T
— ODTY 1) - DIDT ) (DT T

O
In order to get the correct state operator, we need also the following identities,
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Lemma 4

D(po(Z,) ") o T =D(¢)- (DT (62)

p

D(V +pW) o T! - (DT}) = D((V + pW) o T) (63)

We shall apply the first identity with ¢ = (D7} - ). Finally, using all the identities proven
above, we deduce the expression of e})(a, 0). Now, we simply need to prove the following
lemma in order to conclude the proof,

Lemma 5
HT) =(V+pW)oT! -DT} -V (64)

Proof :
We use the definition of the Transverse map,

(1)) = O(Te(V +pW)oTy(V)™H)
= 0TV +pW) o To(V) "  + D(TL(V + pW)) o T, (V)" - (T (V) ™)
= (V4 pW)oTy(V + pW)) o Ty(V)~!
—D(T{(V + pW)) o T,(V) - (DT, (V) - 0(T3(V)) o T, 1 (V)
= (V4+pW)oT! —D(Ty(V + pW)o T,(V)™) - 0u(Te(V)) o T, (V)
= (V+pW)oT/-D(T,)-V
O

O
We now consider the application,

[0,p0] XV — H*x Hj(div, Qo)

(p,v) — €’(v) (65)
and
[Ova] - H
p o iy = (DTN (o T)) (66)

where 4, € V is solution of the state equation,

(e’ (v),w) =0, VweH (67)
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Lemma 6 ([22]) For any F' € H*(D), with s > 1,

1 -
;(Fo’TPt—F)p—?VF-Zt (68)

strongly in H*~1(D). In the case s < 1, the convergence only holds weakly in H*~1(D).

In order to prove the differentiability of 4, with respect to p in a neighbourhood of p = 0, we
cannot use the classical implicit function theorem, since it requires strong differentiability
results in H~! for our application. Then we shall use the weak implicit function theorem,
recalled below,

Theorem 11 ([26]) Let X,Y™* be two Banach spaces, I an open bounded set in R, and
consider the following mapping,

e:IxX — Y~
(px) — elp,x)
Let us assume the following hypothesis,

a) p— (e(p,x),y) is continuously differentiable for anyy € Y and (p,z) — (9pe(p, x),y)
18 CONLINUOUS.

b) It exists u € X such that,

u € CONI; X)

e(p,ulp)) =0, Vpel
¢) x— e(p,x) is differentiable and (p, ) — Oze(p,x) is continuous.
d) It exists po € I such that 0ze(p, x)|(py,x(pe)) € ISOM(X,Y™).

then the mapping
ul): I — X
p — u(p)

is differentiable at point p = po for the weak topology in X and its weak derivative (p) is
solution of the following linearized equation,

(9ze(po,u(po)) - w(po), y) + (9pe(po, u(po)),y) =0, VyeY (69)
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In order to apply the above theorem to Eq. (67), we need to state the following properties,

Lemma 7 The mapping,

is C1 for any (v,w) € V x 'H and its derivative is given by the following expression,

(Opel (v), w) =
/Q(V) [(0:(D(2; - T;) -v)) + (D(D(Z;, - T,) - v) - V + (D(D(Z; - 7)) - v) - v)

+D[(D(V+pW) - Z)) o T} + WoTf|-v—08,(F(V+pW)oT))]- (DT} w)
+ [(0:(DT}-v))+ (DDT}-v) - V+DDT) v)-v)
+D((V +pW) o T)) -v) = (F(V + pW) o T,] - (D(Z, - T)) - w)
+v(D(D(Z;07;)v)- (DT,)"") (DD T -w)- (DT,)7")
~v(DMDI, ) (DT)™") D(Z;07))-(DT,)"")--(D(DT) - w) - (DT;)™)
+v(DMDT, -v)- (DT)™) (DD(Z;07,) w)- (DT,)"")
~v(DMDZ, -v) - (DT;)"") (DT, -w)- (DT))™")-D(Z,07,) (DT;)7")

Proof :
We first simplify the expression of the weak state operator, using that

HT) =(V+pW)oT/ -DT}-V
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and we get,

(e1(v),w) =
T
/ / [(G:(DT!-v)) + (DD v)-V + (DD ) -)
0 JO(V)
+D((V +pW) 0 T)) -v) = (F(V + pW) o T;] - (DT} - w)
+v(D(MD7T)-v)-(DT))Y) (DT, w) (DT;)"")
We use the expression of the weak state operator and the following identities,

0T, = 2,07,

9,(DT)~' =-(DT,;)""-D(Z,07,) - (DT,)~"

O

Lemma 8 The mapping,

0,00] XV — H*
(p,v) = Ope’(v) (71)

is weakly continuous

Proof :

We can prove that for (V,W) € V), the associated flow T, € C*([0, po[;C*(D,R?)), and the
weak continuity follows easily.

U

In order to apply the implicit function derivative identity, we need to express the derivative
0pe”(v) at point p =0,
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Lemma 9

(Dpel]p=0(v),w) =
Q(V)

+[0w+Dv-V+Dv-v+DV-v]-DZ,-w)+vDDZ,-v)--Dw
—v(Dv-DZ;)--Dw+vDv--D(DZ;-w) —vDv--(Dw-D Z)
+ O W+DW - V4+DV-W —vAW]-w+ (D[0;V+DV -V —vAV]-Z;)-w

+[0,V+DV-V—-vAV]- (D Z; - w)

Proof :
We set p = 0 in the expression of (J,e”(v), w) and we use the following identities,

Ty =1
def
Z;|p:0 = Z;
O
Lemma 10 The mapping,
y — H*
v — e(v) (72)

is differentiable for any p € [0, po] and its derivative is given by the following expression,

(Ovet(v) - ov,w) =
T
/ / [(0:(DT}-6v))+D(DT}-6v)-V+DDI} 6v)-v+DDT}-v)-dv
o Ja.v)

+(D((V +pW) o T))-6v)] +v(DD T} - 6v)- (DT))™) - (DDT} -w) - (DT))™")
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and the mapping,
0,p0] XV — L(V;H)

(pv) > Oyef(v) (73)
18 continuous.
Lemma 11 The mapping,
Vv — F
v = 0,e’70(v) - v (74)

is an isomorphism and its expression is furnished by the following identity,
(8,7 (v) - dv,w) =
/(V) [(0tov) w4+ (Dév-v) - w+ Dv-dv) - w+ (Ddv-V) - -w
’ +(DV-6v)-w+vDdv--Duw

Proof :

This result follows from the uniqueness result for the Navier-Stokes system under regularity
and smallness assumptions (see Th. (9) and [23]). Indeed, for u; and us solutions of the
Navier-Stokes equations, it is proven that the element y = u; — uo satisfying the following
identity,

/ [(Ory) - w+ Dy -w) - w+Duz-y) w+Dy-V) - w+DV-y) w
Q(V)
+vDy--Dw]=0, YVweH

exists and is identically equal to the null function. Similar a-priori estimates holds for dv
and the unique solvability of the linearized system is established.
O

Lemma 12 The solution 1, € V of the implicit equation,
(e’(v),w)y =0, VweH (75)
is Lipschitz with respect to p.

Proof :
We need the identity satisfied by ,, — i,, and we shall follow the same steps described in

[12] (pp- 31).
O

Hence the hypothesis of Th. (11) are satisfied by the Eq. (67) and we can state the following
differentiability result,

INRIA



Dynamical shape control 27

Theorem 12 The Piola material derivative i = 0,(1i,)|,—0 exists and is characterized by
the linear tangent equation,

Dy (W) - P, ) + (D ()] pm0,w) = 0, Vw € H (76)
which possesses the following structure,
/ [(0") w+ Da” - u)-w+ (Du-”) w+ Da" V) w
Q)
+DV-4") - w+vDa” - -Dw] = (L(u, Z, V, W), w)
with

<L(U7Zt7‘/7W)vw> =
Q)

—[iu+Du-V+Du-u+DV . -ul-(DZ;-w)—vDDZ,-u)--Dw
+u(Du-DZ) -Dw—vDu--D(DZ - w) +vDu--(Dw-DZ)
Y [-OW —DW -V -DV-W +vAW]-w— (D[&V +DV -V —vAV] - Z,) - w
[0V +DV -V —vAV]- (D Z, - w)

4.3 Shape derivative

In the last section, we have proven that the solution u(V') of the moving Navier-Stokes
system is differentiable with respect to the velocity V. We have also characterized the
linearized system satisfied by the Piola material derivative 4" (V) - W. In this paragraph,
we will identify the shape derivative v'(V) - W under some regularity assumptions.

Let us consider the weak solution @ of Eq. (53), i.e

(ev (@), v) = (ley (u), e (w)],v) = [0,0], VveH (77)
with
T
<e%,(11),v> :/0 /Q » (i +Da-a+Da-V+DV-a) v+ 2ve(a)--e(v) — F(V) - v]
(78)
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(€2 (@), v) = / (@(0) — o) - v(0) (79)

where £(v) = 3(Dv + * D) stands for the symmetrical deviation tensor. This definition is
motivated by the following lemma,

Lemma 13

=2v u) - -e(v) — 2v u) - n,v v L(div, Q
v [ duwv= /th() e(v) — 2 /Ft<s() W), Vuee H'div, Q) (80)

Theorem 13 For Qq of class C2, the shape derivative @/ = 4 — D - Z; exists and is
characterized as the solution of the following linearized system,

3t11/—|/—D11/-11+D1]-1]/+D11/-V—|—DV-1]/—VA11/—|—Vp/=L(V,W), Q
E}VZ(UJ(ZD o n)(Ze,m), S
@' (0) =0, Qo
with
LWV,W)=-0W-DW-V-DV - W+vAW —Da-W -DW -4 (82)
Proof :

In order to state such a result, we use Th. (4) and we get,

d S )
e (/Qt(v)G(V)dx> .W:/Qt(V)G(V) wd +/n<v>G<Z“ > (83)

where G'(V) - W stands for non-cylindrical shape derivative of G and Z, is the transverse
vector field solution of the Transverse Equation (Eq. (23)) with

G=[0a+Da-a+Dua-V+DV-a) -v+ve(a)- -e(v)—FV)- v
We assume that v has a compact support, then G|p, ) = 0.
Lemma 14

GWV) W = [6u'+Di u+Da-o'+Da"-V+Da-W
+DW - -a+DV- @) -v+wve@)--elv)—F (V) W -]

with

F'(V)W=-8W—-DW.-V—-DV-W +vAW
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Finally we obtain,

d
—(er(u) - W,wv) = / (i +D@ -a+Dau-a'+Da’-V+Du- W
av Q)

+DW - a+DV - @) -v+wve@)--elw)—F(V) W -]
for any v € ‘H with compact support.

Using integration by parts for the term ve(i') - -e(v), we recover the correct strong

Q)
formulation of the linearized equation (Eq. (81)) satisfied by the shape derivative u'(V')-W.
The boundary condition comes from the fact that the shape derivative of the condition
@ =0, on I'y(V) is given by

@ =—Du-Zy, onTy(V)
Since u = 0 on I';(V), we have Du|r, = Du - (n ® n) which gives
@ = —(Du-n){(Zyn), on Ty(V)

U
The shape derivative «'(V') - W of the solution u of the original non-homogeneous Dirichlet
boundary problem (Eq. (2)) is given by the expression

V)W =T (V) W+W (84)

Corollary 1 The shape derivative v’ (V') -W of the solution u of Eq. (2) exists and satisfies
the following linearized problem,

o/ + D -u+Du-uv —vAYW +Vp =0, Q
div(u') =0, Q

W =W+ DV -n—-Du-n){Zn), b (85)
@/ (0) = 0, Qo

Proof :

We simply set in Eq. (81), %' =« — W and t =u— V.

O

Remark 4 If we choose V = (V o p) the canonical extension of V in Eq. (85), then we get
the simpler boundary condition,

w =W —Du-n)(Zyn), onTy(V) (86)
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4.4 Extractor Identity

In the last section, we have established the structure of the system satisfied by the non-
cylindrical shape derivative w' (V') - W of the solution u(V) of the Navier-Stokes problem
in the moving domain ,(V). This linearized system has been obtained independently of

P
the system satisfied by the non-cylindrical material derivative w (V') - W. However, there

exists an explicit relation between the original shape v’ and the Piola material derivative
P
@ (V) -W of the shift state & =u — V.

Lemma 15 Let u(V) stands for the weak solution of the non-homogeneous Navier-Stokes
equations (Eq. (2)) in moving domain, u'(V)-W stands for its shape derivative and ﬁP(V)'W
stands for the Piola material derivative of the shift flow & = uw(V) — V in the direction W.
Then the following identity holds,

w (V)-W = @(V)-W+[u(V),Z] (87)
= (V) WHuV),Z] =V, Ze] - W (88)

where [X,Y]=DX .Y -DY - X.

This relation can be fruitful in order to obtain an identity concerning the solution (V)
inside Q;(V).

Proposition 6 We consider Qq of class C2, for all (V,W) € Uyaq, @ solution of the homoge-
neous Navier-Stokes equations (Eq. (53)) and Z; solution of Eq. (23), the following identity
holds,

/ [0:(Dii- Z)+DDa-Z) a+Da-(Di-Z)+DDa-Z) V
Q)

+DV-(Dﬂ~Zt)]-w—/Q(V)[Da~(DZt-11)+DV~(DZt-ﬂ)—D(DV-Zt)-fL]-w

+0u+Du-V+Da-au+DV-4]-(DZ,-w)—Da-W-w
+vDDa-Z;) - -Dw—v(Da-DZ;) - -Dw+vDa--D(DZ;-w) —vDa--(Dw-DZy)
+D[V+DV -V —-vAV]-Z) - w+[0;V+DV-V-vAV]-(DZ;-w) =0, YweH

Proof :
We recall that the shape derivative @’ satisfies the following identity,

/ 0w +Da -a+Da-a +Da - V4DV @] -w+vDd - -Dw= ({1,w)
Q)
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with

<él,w>:/ W —DW -V -DV -W +vAW —Da-W —DW -] - w
Q)

P

Then we set @'(V) = - [, Z:] = ﬁp — D - Zy + DZ; - . This leads to the following

identity,

/V [(0") w+ Da” u)-w+ Du-o”) w+ Da” V) w
o +DV-4") - w+vDa” - -Dw] = (l2,w)
with
(b2, w) =
/Q(V) [0;(D@-Z;) +D(Di-Z;)-i+Da-(Da-Z) +DDa-Z;) -V
+DV-(Dﬂ-Zt)]-w—/@(v)[8t(DZt-ﬂ)+D(DZt-ﬂ)-11+D11-(DZt~11)

+D(DZt~a)-V+DV-(DZt~ﬂ)]-w+/ [vDDi-Z) -Dw—vDDZ i) Du

Qv)
+/ [~W —DW -V =DV -W +vAW —Da-W —DW - @] - w
Q)

Using Theorem (12), we deduce that,
<€27w> :<L7w>7 YweH (89)

—/ 0D Z @) +D(DZ @) a+DMDZ-a)-V+DDV-Z) - a+DW-il] -w
Q)

—[0wi+Da-V+Da-a+DV-4]-(DZ;-w)—vDDZ,-4)--Dw
+v(Da-DZ) - -Dw—vDa--DDZ;-w)+vDa--(Dw-DZ)
+[-0W-DW.-V-DV-W+vAW] - w—-D[0,V+DV -V —-vAV]|-Z;) -w

—[0V+DV-V—-vAV]-(DZ; - w)
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The sequence

[~0:(DZ @) —D(DZ @) iu—DMDZ i) - V-DW-ii]-w—vDDZ i) -Dw
+[-OW —DW -V -DV-W +vAW] - w

cancels and it remains the following terms,
/ 0Du-Z)+DDa-Z) - a+Da-(Da-Z)+DDa-2Z,) -V
Q)
+DV~(D11-Zt)]-w—/ [Da-(DZ;-a)+DV-(DZ;-a)—DDV - Z) -] -w
Q)
+0u+Du-V+Da-a+DV-4]-(DZ,-w)—Da-W-w
+vDDa-Z;) - -Dw—v(Da-DZ;) - -Dw+vDa--D(DZ;-w) —vDa--(Dw-DZy)

+(D[BV +DV -V —vAV]-Z) - w+ [0,V +DV -V —vAV]- (D Z; - w) =0
O

Remark 5 If we set 4t = u — V, we can obtain an identity only involving (u, Z;, V,W).

4.5 Adjoint system and cost function shape derivative

We are now coming back to the original problem of computing the gradient of the cost
function j(V'). Let us first state a differentiability property,

Proposition 7 For Qg of class C2, the functional j(V) is Gdteauz differentiable at point
V € Uyq and its directional derivative has the following expression,

1
GO = [ ey )W [ s BV
Q(V) =(V)
VW € Uuaq
(90)
where u' (V) - W is solution of the shape derivative system (Eq. (85)).
Proof :
We recall that,
T T
. o ¥
=5 [ [ ey [ v (91)
0o Ja.v) o Jryv)
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The differentiability property is an easy consequence of the differentiability of Jy (u) with
respect to (u, V) and the shape differentiability of «(V") with respect to V. The expression
of the directional derivative is a direct consequence of Th. (4) and Th. (5).

g

Using the fluid adjoint state and the adjoint transverse field, it is possible to identify the
gradient distribution associated to the functional j(V'),

Theorem 14 For V € U,q and Qg of class C?, the functional j(V) possesses a gradient
Vj(V) which is supported on the moving boundary Ty(V) and can be represented by the
following expression,

Vi(V)=-An—o(p,m) - n+~V (92)
where (p, ) stands for the adjoint fluid state solution of the following system,
—0p—Dyp-u+*Du-p—vAp+Vr=au, Q(V)

div(i) = 0, Q)
o= 0, (V) (93)
QO(T) =0, Qr

and \ is the adjoint transverse boundary field, solution of the tangential dynamical system,

“ON—VrA-V=F (0,T) (04
A(T) =0, Lr(V)
with f = —(o(p,7)-n)- (DV-n—Du-n)+ i(a+vH)|V|>.
Proof :
We need the following identity,
T T
/ / [6tu’—|—Du’-u—l—Du-u’—l/Au’—i—Vp’]v—/ / gdivu’
o Ja,v) o Ja,v)
T T
z/ / [—8tv—Dv-u—|—*Du-v—VAU+Vq]u’—/ / p'divo
o Ja,v) o Ja,v)
T
+/ / p'n-v—vv- O +vu -0y —u' - qn] (95)
0 JIy(V)

We define (¢, 7), to be the solution of the adjoint system (Eq. (93)), and we set (v, q) = (¢, 7)

in Eq. (95), we get
T T
/ / au-u = —/ / (o(p,m) - n,u) (96)
0o Ja.v) o Jruv)

We use the boundary condition on T';(V') for the linearized state u’, i.e

W =W+ DV -n—Du-n){Z,n), onl(V) (97)
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Thus,

T
(j’(V),W>:/O /Ft(v) [—(a(gp,ﬁ)-n)-(DV-n—Du-n)+%(oz+*yH)|V|2 (Zy,n)

+/0T/Ft(V) [—o(e,m) - n+~V]-W

Then we use Th. (8) with E = —(o(¢,7) -n)- (DV-n—Du-n)+ i(a+~H)|V|?, and we
get the correct result.
]

Remark 6 Actually, we have 71(D(V —u) - n) -n = ndivV|p, using the formula,
DV —u)-n)-n=div(V —u)|r, — divp(V —u)

and the fact that V —u =0 on I';. Furthermore, we have considered free divergence field V,
then this term is null and we get that

f:—V(Dap-n)-(DV~n—Du-n)+%(a+7H)|V|2

5 Min-Max and function space parametrization

In the previous section, we have been using the differentiability of the fluid state with
respect to the eulerian velocity V' as a sufficient condition in order to derive first-order
optimality conditions, involving the adjoint of the linearized state. Actually, the tedious
obtention of the state differentiability is not necessary in many cases, and even if the state
is not differentiable, it can happen that first-order optimality conditions still hold. This is
a consequence of a fundamental result in optimal control theory, the so-called Maximum
Principle.

Avoiding the differentiation of the state equations with respect to the design variable V, is of
great interest for shape optimization problems, especially if we deal with a moving domain
system.

In this section, we are concerned with the function space parametrization, which consists
in transporting the different quantities defined in the perturbed moving domain back into
the reference moving domain that does not depend on the perturbation parameter. Thus,
differential calculus can be performed since the functions involved are defined in a fix domain
with respect to the pertubations.

In the first part, we define the saddle point formulation of the fluid state equations and
the Lagrangian functional associated to the cost functional. Then, we perform a sensitivity
analysis of the Lagrangian thanks to the transverse field and the fundamental Min-Max
principle. This allows us to derive the expression of the cost function gradient involving the
fluid and transverse field adjoints.
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5.1 Saddle point formulation of the fluid state system

In the next paragraphs, we shall describe how to build an appropriate Lagrangian functional
that can take into account all the constraints imposed by the mechanical problem, such as
the divergence free condition or the non-homogeneous Dirichlet boundary conditions.

5.1.1 Null divergence condition

The divergence free condition coming from the fact that the fluid has an homogeneous
density and evolves as an incompressible flow is difficult to impose on the mathematical and
numerical point of view. We suggest at least 3 possible choices to handle this condition in
our Min-Max formulation,

1. It can be taken into account in the state and multipliers spaces. In this case, the
divergence free condition must be invariant with respect to the use of transport map
during the derivation of optimality condition for the Lagrangian functional. This
reduces the choice of appropriate maps and indeed the ALE map T; does not satisfy
this invariance condition.

It is well known that the Piola transform does preserve the divergence quantity. Indeed
we have, the following property :

Lemma 16 ([4]) The Piola transform

P, . Hi(div,Qo) — H}(div,)
p = ((J)'DTy-g)oTy!

is an isomorphism.

This new transform introduces additional mathematical and computational efforts,
but it seems to be the best approach in order to get rigorous mathematical justifica-
tions of the Lagrangian framework in the context of non-cylindrical and free boundary
problems.

2. One way to avoid the use of this transform is the penalization of the divergence free
condition inside the Navier-Stokes system. Let ¢ > 0 be a small parameter, we may
consider the new penalized system :

8tu—|—Du~u—1/Au—1V(divu):0, Q

€
u=1V, % (99)
u(t = 0) = uo, Qo x R?

with 0°(u) = L div(u) I+v(Du+ *Du).

We may work with such a modified system, derive the optimality conditions of the
penalized Lagrangian functional and finally perform an asymptotic analysis on the
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adjoint and primal system. For the time being, it is not clear if such a procedure may
actually work, since even for non-moving Navier-Stokes problem, the convergence of
the penalized adjoint is not established.

. A third choice is to include the divergence free condition directly into the Lagrangian

functional thanks to a multiplier that may play the role of the adjoint variable asso-
ciated to the primal pressure variable. This leads in a certain sense to a saddle point
formulation or mixed formulation of the Navier-Stokes system. It is well known that
the well-posedness of such formulations is only established for the Stokes system, and
that the Navier-Stokes suffers from a lack of convexity while taken into account in
the Lagrangian functional. But still, it seems to be the easiest way, at least on the
mathematical computation point of view, to deal with divergence free condition in a
sensitivity analysis of the moving system. In the sequel, we adopt such a strategy,
keeping in mind, its lack of rigorous mathematical justification.

5.1.2 Non-homogeneous boundary conditions

The Navier-Stokes system (Eq. (2)) involves an essential non-homogeneous Dirichlet bound-
ary condition,

w=V, onTyV) (100)

Again, there exists different methods to take into account this boundary condition in a
Min-Max formulation,

1. We can use a lifting of the boundary conditions inside the fluid domain and define

a change of variable inside the coupled system, as done in Section (4). It has the
drawback to put additionnal terms inside the Lagrangian functionals and to impose
more regularity on the boundary conditions.

. We can use a very weak formulation of the state equation, consisting in totally trans-

posing the laplacian operator,
/ —VvAu - ¢ = —VAqb-u—i—/ viu- ¢ — ¢ Opuldl’ (101)
Q Q r,

Then we shall substitute inside this identity the desirable boundary conditions. We
recover the boundary constraints in performing an integration by parts in the optimal-
ity conditions corresponding to the sensitivity with respect to the multipliers. This
procedure has been already used in [22] to perform shape optimization problems for
elliptic equations using Min-Max principles.

Remark 7 This method has been popularized in [18] as a systematic way to study
non-homogeneous linear partial differential equations. These formulations are usually
called very weak formulations or transposed formulations. We shall notice that these
methods are still valid in the non-linear case to obtain regularity or existence results.
We refer to [3] for a recent applications to the Navier-Stokes system.
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5.1.3 Fluid state operator

In this section we shall summarize the different options that we have chosen for the La-
grangian framework and define the variationnal state operator constraint. In the sequel, we
will need to define precise state and multiplier spaces in order to endow our problem with a
Lagrangian functional framework.

Following the existence result stated previously, we introduce the fluid state spaces:

X(Q) € {ue HX0,T; (H Q) N (H ()N}

z = {pe H'0.T;(H' (D))}
we also need test function spaces that will be useful to define Lagrange multipliers:
Y ()
Q

{v e L*(0,T; (H*(2))* N (Hy ()}
{g€ H'(0,T;(H'(D))*)}

Iz Iz
- -

We define the fluid weak state operator,
ey : X xZ— (Y xQ)*

whose action is defined by :
T
<ev(u,p)7(v7q)>:/ / [—u- 0w+ Du-u)-v—vu-Av+u-Vg—pdivy
0 Qi (V)

+/OT/w)v-<o<u7q>~n>+/QTu<T>-v<T>—/Qouo-v(t=0>
V(v,g) € Y xQ

5.1.4 Min-Max problem

In this section, we introduce the lagrangian functional associated with Eq. (2) and Eq. (3)

Ly (u, piv,q) = Ty (u,p) — {ev (u, p), (v,q)) (102)

T T
«
wwp =5 [ [ ey [ v (103
2 Jo Ja,v) 2Jo Jruv

with
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Using this functional, the optimal control problem (Eq. (3)) can be put in the following
form:

Vs e X x 2 g ey g TPnO 10

By using the Min-Max framework, we avoid the computation of the state derivative with
respect to V. First-order optimality conditions will furnish the gradient of the original cost
functional using the solution of an adjoint problem.

Let us first study the saddle point problem,

i Ly (u, p; v, 105
(peXxZ () xQ v(wpiv,g) (105)

5.1.5 Optimality Conditions

In this section, we are interested in establishing the first order optimality condition for
problem ((105)), better known as Karusch-Kuhn-Tucker optimality conditions. This step is
crucial, because it leads to the formulation of the adjoint problem satisfied by the Lagrange
multipliers (¢(V), n(V)). The KKT system will have the following structure :

o) Lv (U, p;0,q) - (6v,6g) = 0,
V(év,0g) € Y xQ — State Equations
Otu,p)Lv (u,p;v,q) - (6u,dp) = 0,
Y (du,0p) € X X Z — Adjoint Equations

Lemma 17 For V € Uug, (p,v,q) € Z XY X Q, Ly (u,p;v,q) is differentiable with respect
tou € X and we have

<8U‘CV(U’7p7 v, q)a 5U> =

T
/ / [@u-du+du-0v—[Doéu-u+Du-du] v+ véu- Av—du- V]
0 Q. (V)

+ ou(T)-v(T), Voue X
Qr

In order to obtain a strong formulation of the fluid adjoint problem, we perform some
integration by parts :

Lemma 18

/QW)(D(SU'U)'U - _/Qw)[Dv'u“LdiV(u)'v}-6u+/ (6u-v)(u-n)

(V)
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It leads to the following identity :

<8ﬁ£V(uap; ®, 7T)7 6’U,> =

- / [~0wp+ (*Du) - — (Dp) - u —div(u) - ¢ — vAp + Vr — au] - du
(V)

—v / CEORES /Q olm) - u(r)

Lemma 19 For V € Uug, (u,v,q) € X XY X Q, Lv(u,p;v,q) is differentiable with respect
to p € Z and we have

T
(DL (u, ps o, ), Op) = / / (op)dive, Vope Z (106)
0 Q

This leads to the following fluid adjoint strong formulation,

—0p—Dy-u+ (*Du) - —vAp+Vqg=au, Q)
v

div(p) =0, Q(V)
5 :%7 V) (107)
QO(T) =0, Qr

Remark 8 FExistence and regularity results for the linearized Navier-Stokes adjoint problem
can be found in [1, 16] for the 2D case. These results can be easily adapted for the moving
domain case. There is a lack of results for the 3D case.

5.2 Function space parametrization

To compute the first-order derivative of j(V'), we perturbe the moving domain Q,(V) by a

velocity field W which generates the family of transformation T ef T:(V+pW), with p >0
and the family of domains and their boundaries,

def

QF = TV 4 pW) ()
7 € TV + pW)(To)
We set,
g(p) =iV + pW) = in max L ow) (U, p;0,9) (108)

m
(u,p)EX(Q)xZ  (v,0)€EY(27)XQ
The objective of this section is to compute the following derivative :

1
[{1{% ;(g(p) - 9(0)) (109)
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We need a theorem that would give the derivative of a Min-Max function with respect to
a real parameter p > 0. In our case, it is not trivial since the state and multiplier spaces
X (QF) x Y(QF) depend on the perturbation parameter p. This point can be solved using
particular parametrization of the functional spaces. To this aim, we use the transverse map
introduced in Section (3),

x = TV +pW)oTy(V)™?

and we define the following parametrization,

X(Q)) ={uo(T))™", ue X))} (110)
Y(Q)) ={vo(Tf)™", uweY((V))} (111)

This parametrization does not affect the value of the saddle point functional g(p), but
changes the parametrization of the Lagrangian functional,

glp) =4(V+pW) = min max L uo R, p;vo Rl q
PV =y Xl x 2 () eVl x g SV fer e fid)
(112)

with R, < (7).
We set,

£€/7W(u7p7 v, q) = JV+pW(u © Rf)ap)

T
[ | e By oo R+ (Duo Ry -uo RY) - vo By —vuo By - Ao RY)
—|—uoRt Vaq-— ple’UOR //pV—FpW (UORZJI)'TLP)
r

—/QTu(T)-v(TH-/ ug - v(t = 0)

Qo

V(v,q) € Y(2:(V)) x @

where n” stands for unit exterior normal of the perturbed boundary I'}.

5.3 Differentiability of the saddle point problem

In this section, we first state a general theorem concerning the differentiability of a Min-Max
problem with respect to a scalar parameter. Then we apply it to our case of study. Finally,
using a fundamental identity, we are able to express the gradient V j(V') as stated in the
main theorem of this article.
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5.3.1 General theorem
We a consider a functional,
G:[0,p] x XxY — R (113)
with po > 0 and two topological spaces (X,Y). For each p € I def [0, po], we define
g(p) = inf  sup G(p,z,y) (114)
zeX  yey
and the sets,
X ={a e X, sy Gloat) =00} (115)
yey
Vi) ={wrev. Gloann)=swp Glpan) (116)
yey
In a similar way, we define dual functions and sets,
h(p) =sup inf G(p,7,y) (117)
yey zeX
and the sets,
Vo) = {rev. il Gl -] (118)
X(py) = {x” €X, Glpaf,y)= inf G(mm;)} (119)
Finally we define the sets of saddle points,
S(p) ={(z,y) e X xY, g(p) =G(p,z,y) = h(p)} (120)

Theorem 15 ([7]) Assume that the following hypothesis hold,
(H1) The set S(p) #0, pe I.
(H2) The partial derivative 0,G(p,x,y) exists in I for all

(z,y) € [U X(p) x Y(O)] U [X(O) x JY ()

pel pel
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(H3) There exists a topology Tx on X such that,
for any sequence (pp)n>0 € I with li/m pn = 0, there exists 2° € X(0) and a subse-
n o0

quence py,, and for each k > 1, there exists x,,, € X (pn,) such that,

i) li/m &, = a° for the Tx topology,
i)

liminf  9,G(p, zn, ,y) > 8,G(0, 2°,
(o k)N (0,00) © (pr o y) 2 8,G( v)

Vy e Y(0).

(H4) There exists a topology Ty on'Y such that,
for any sequence (pp)n>0 € I with li/m pn = 0, there exists y° € Y(0) and a subse-

quence py, and for each k > 1, there exists y,, € Y (pn,) such that,
i) lim y,, = y° for the Ty topology,
n_/co
i)

lim inf 8G sy Ly Yny, SaGO,CE, 0
(o) (0,00) © (0,2, 9m,) < 8,G(0,2,7)

Ve X(0).
Then there exists (2°,y°) € X(0) x Y(0) such that

. g(p) —g(0) . 0,0
dg(0) = lim —=————~ = inf su 0,G(0, x, = 0,G(0,z",
9(0) 5 P oolto) erF()O) bG (0,2, y) LG ( y)

= su inf 0,G(0, x,
sorio) wex) bG(0,2,9)

(121)
This means that (z°,y°) € X(0) x Y(0) is a saddle point of 8,G(0,x,y).

5.3.2 Derivative of the perturbed Lagrangian

Following Th. (15), we need to differentiate the perturbed Lagrangian functional £(p). We
shall successively differentiate the distributed and the boundary integrals involved in the
perturbed Lagrangian:

a) Distributed terms:
We set,

G(p,.)=[-uoR, -9 (voR,)+DuoR)) (uoR)) -voR,
—v(uo RZ) -A(woRY) + (uo RZ) -Vqg—pdiv(vo Rtp)]
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with RY, € (7).

We shall need the following lemmas in order to derivate G(p,.) with respect to p,

Lemma 20

(%)
Zr =7,
dp =0
dR?
G
dp p=0
Lemma 21
d R
(M) Cbu.z
dp
p=0

Proof :
Using the chain rule we get

(s

p=0

I
I
o
<
N

Lemma 22 Then, we have the following result

9,G(p. Nlpmo = [(Du-Z) - 0o + u - (B(Dv - Z,))

—[(D(Du-Z;))-u+Du-(Du-Z)]-v— (Du-u)- (Dv-Z)
+v(Du-Zy) - Av+vu- (ADv-Zy))+pdiviDv- Z) — (Du- Zy) - V|

Proof :
It comes easily using definition of G(p,.) and Lem. (20)-(21).
(]

Then we have an expression of the derivative of distributed terms coming from the
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Lagrangian with respect to p,

d
— G(p,x)dx
dp < Qf ( ) ) p=0

—[(DMDu-Z)) - u+Du-Du-2Z)]-v—(Du-u) - (Dv-Z)
+v(Du-Z;) - Av+vu- (ADwv- 7))+ pdiv(Dv- Z;) — (Du- Z;) - V¢

:/Q [(DU'Zt)'3tv+u'(8t(D”'Zt))

—|—/ [—u- 0w+ (Du-u)-v—rvu-Av+u-Vqg—pdiv(v)] (Z;,n)
Iy

b) Boundary terms :
We must now take into account the terms coming from the moving boundary I'Y. Then
we set,

#(p,.) = (V+pW): [~qI+vD(voR})] - n”
= E(p) (122)

Since ¢(p, .) is defined on the boundary I'?, we need some extra identities corresponding
to boundary shape derivates of terms involved in ¢(p, .).

Lemma 23 ([11])

0P| p=0 = nlp =—-Vr(Z;-n)

Lemma 24

= [ (B + @ E) )

/F (Efn)+ (dive E)Zen)  (123)

Proof :
First, we use that,

/ AB().n) = | divEG)

t

then we derive this quantity using Th. (4),

4 div E(p) = divE’—i—/ (div E){(Z¢,m)
dp Qf p=0 Q¢ Iy
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We conclude using [ divE = / (E’,n). For the second identity, using the Th. (5),
Q4 Iy

we have

d t
- ( / REZAE Rp»dr)

using Lem. (23), we get

d t
- ( / REDRG oR,,>>dr>

then using the tangential Stokes identity from Lem. (5), we obtain the correct result.
O

Hence, we only need to compute the quantity Ef.. To this end, we need the following
identities,

= [ Bt} B + BB ) )
p=0 !

= /F (Ef,n) — (E,Vr(Zi-n)) + H(E,n)(Z:,n)
p=0 ‘

Lemma 25

(voRL)

= — DF (N Zt
p=0
Proof : Since (vo R,to)"p:o =0, (vo Rl o ’Z;f) ‘p:O = 0pvlp=0 = 0.
t

Lemma 26

,=-Dv:DZ — (Dr(Dv))- Z
p:

(D (voRL)),

Proof : By definition we have,

(Do) | , = (Do) - Dr(DwoR;): p\po
= 0, (D(veR))oT])|, _,— (Dr(Dv))-Z
= 0,[((Dv)oR}- DRt)oTt]\p o (DF(DU)) Z
= 0,[(Dv)- DRtoTt” — (Dr(Dw)) - Z;
= —-Dv-DZ + [Dv- (D )a,,(T,})HpO (Dr(Dw)) - Z,

= —Duv-DZ;— (Dr(Dv))- Z

Using these results, we can state the following :
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Lemma 27

Ef =W [—q14vDv]+vV - [-Dv-DZ; — Dr(Dv) - Z] (124)

This means that we have,

d
d_p < T (b(p,l‘)dF) -
+vV-[-(Dv-DZ) -n— (Dr(Dv)-Z)-n]+divp(V - [—qI4+v Dv]){Z:, n)

= W .[-gn+vDwv-n]
Ie(V)

We have also,
Lemma 28
E'lr =W [—ql+vDv]—vV - [D(Dv) - Z] (125)

Hence, we have

dip< Ff¢(p7x)d1"> = W |—¢gn+vDwv-n]

Ir'e(V)

—vV - [D(Dv)-Z -n]+div(V - [—qI+v* Dv]){(Z, n)

p=0

Remark 9 We recall that,

V.-Dv-n) = /Qdiv(*DU-V)

Iy

/ Duv--DV 4V - A (126)
Q

We shall use this expression in the sequel. We recall that the perturbed lagrangian has the
following form,

L0 = T — /OT [ - /OT/M o(0)
u(T

—/QT )-U(T)+/quo~v(t:0)
V(v,q) € Y(U) xQ
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Hence its derivative with respect to p at point p = 0 has the following expression,

T T
3 er)| = A wa)| gp(fgfa(m)’p_o— / %(/Ffap))‘p_o

V(v,q) € V() xQ

p=0

Furthermore we have,

T T
:—a/ / u-(Du-Zt)—i—/ / NV W
=0 0 Ju(V) 0 JTy(V)

T
« Y 2
+// 2+ 2EWVE] (Zn)
0 mm[? 2 } !

Using the last identities concerning the derivative of the distributed and the boundary terms
with respect to p, we shall get the following expression,

()

Lemma 29

= (%)

= —Azt — th — CW (127)
p=0

with

T
Ay, :/O /Qt(v) o (Du-Z,) + (Du-Z4) - 0o — [(D(Du- Z0)) -
+Du-Du-Z)]-v+v(Du-Z;) - Av— (Du-Z;) - Vq|

T
—|—/ / [u-(0,(Dv-Z))— Du-u)- Dv-Z) +vu-(ADwv-Z))+ pdiv(Dv - Z})]
0 JQu(V)

T
th:/ / [~u- 0w+ (Du-u)-v—vu-Av+u-Vg—pdiv(v)] (Z; - n)
0o Jruv)

— vV - [(D(Dv) - Z0) -] + div(V - [~qT+vDu])(Ze,n) = | Slul® + SHIVE] (Z2m)

T
CW:/ / W-[-gn+vDov-n]—yV W]
0 JT(V)
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5.3.3 The shape derivative kernel identity

We shall now, assume that (u,p,v,q) = (u,p,p,m) is a saddle point of the Lagrangian
functional £y . This will help us to simplify several terms involved in the derivative of Ly
with respect to V.

Indeed, we would like to express the distributed term Az, as a boundary quantity defined
on the moving boundary I';.

Theorem 16 For (u,p,p,m) saddle points of the Lagrangian functional (Eq. (102)), the
following identity holds,

T
// law- (Du-Z) + (Du-Z0) - o — (DD u- Z)) - u
0o Jo.v)

+Du-Du-Z)]-v+v(Du-Z;) - Av— (Du-Z;) - Vq|

T
—|—/ / [u- (O Dv-2Z))— Du-u)- Dv-Z) +vu- (ADwv-Z))+ pdiv(Dv - Z;))
0 JQu(V)

T
—/ / V- -DDe-Z) - n)—De-Z) - (—pn+v(Du-n))] =0, VW €U
0 JI(V)

Proof :

We shall use extremal conditions associated to variations with respect to (u,v) in the La-
grangian functional where we add a boundary integral since we consider test functions v
that do not vanish on the boundary I';(V), i.e

T
ﬁ%,(u,p;v,q):Jv(u,p)—/ / [~u-0w+ Du-u)-v—vu-Av+u-Vg—pdivy]
0 JO(V)

_ /OT /Ft(V) V-(o(v,q)-n)+ /oT /Ft(V) v (o(u,p)-n)— /QT ()T + /Qo rorelt=0)
V(v,g) € Y xQ

This leads to the following perturbation identity,

) L3 - (6u, 0v) = — / [—ou - du — du - 0w —u- Opdv + D(du - w) - v+ D(u - du) - v
Q(V)
T
+D(U'U)'5U_V(5U'AU)_V(U'A5U)+(5U-Vq—pdiv(5q;)}—/ / vV - (Dév-n)
o Jr.v)
T
—1—/0 /F W [vv-(Dou-n)+dév-(—pn+vDu-n))] — / [6u(T)o(T) + u(T)ov(T)]

Qr
Y (du, dv) € X () X V()
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We choose specific perturbation directions, i.e
ou=Du-2Z; dv=Dv-Z;

with du(T) = év(T') = éu(0) = dv(0) = 0, where (u,v) are saddle points of the lagrangian,
i.e solutions of respectively the primal and adjoint fluid problem. We recognize immediately

the distributed and boundary terms involved in the shape derivative kernel identity.
O

5.3.4 Cost functional gradient

Now, we set (u,v) = (u,p) and we use the fact that u = V, on T'; and ¢ = 0, on I'; to
simplify the remaining terms.

T
Az, = /0 /rtm vV -(DMD¢-Z) n)~v(Dy-Z)- (Du-n)) (128)

Remark 10 We have used, that (Dy-Z;)- (pn) =Dy -(n®@n)-Z¢)-(pn) =p((Dy¢-n) -
n) - (Zy,mn) = (pdiv)(Z;,n) = 0.

T
1
Ba= [ [ VeV ) - Ly VP
0 JIy(V) 2

— vV -[(DDyp) - Zi) -n|+[-7divV =V -Va+vDe--DV +vV - Ap|){Z:,n)

T
CW:/ / W-[-mn+vDp-n]—~V- W]
0 JT(V)

We need to establish the following identity,

Lemma 30

/(D‘P'Zt)'(D“'”)Z/(Dw-n)-(Du-n)<Zt,n> (129)
T, I,
Then

_dip(%vw) p—o:/zw)yv'(D(D‘p'Zt)'”H[—V(Dw-n)-(Du-n)—uVAeo

+V -V (Zyyn) + [-7ndivV =V - Vo 4+vDe--DV +vV - Ap])(Z:,n)

—VV-[(D(D(p)'Zt)'TL]—%[OZ+’YH]|V|2<Zt7n>+[W' [-mrn+vDp-n]—qV W]

This allows us to derive the expression of the cost function directional derivative,
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Proposition 8

dg(()):/E(V) {—V(D(p-n)-(DV-n—Du~n)—|—7rdivV—|—%(04+7H)|V|2 (Zy,n)

+/ [=o(p,q) - n+AV]-W
(V)

(130)
Then we use Th. (8) with,

E:—V(Dap-n)-(DV~n—Du-n)+7rdivV+%(a+7H)|V|2

and we get the correct result.

6 Min-Max and function space embedding

In the previous section, we have used a function space parametrization in order to get the
gradient of a given functional related to the solution of the Navier-Stokes system in moving
domain, with respect to the speed of the moving domain. In this section, we use a different
method based on function space embedding particulary suited for non-homogeneous Dirichlet
boundary problems. It means that the state and multiplier variables are defined in a hold-all
domain D that contains the moving domain (V') for t € (0,T) and VV € Uyq.

6.1 Saddle point formulation of the fluid state system

We recall that we are dealing with the Navier-Stokes in a moving domain €2;(V') which is
driven by an eulerian velocity field V' € U,q4,

Ou+Du-u—vAu+Vp=0, Q(V)

ey ) (131)
u(t = 0) = uo, Qo
and
Ua ={V € H'(0,T;(H™(D))?), divV =0inD, V-n=0on0dD} (132)
with m > 5/2.

We introduce a Lagrange multiplier p and a functional,

T T
Ev(u,p;v,q,,u):/ / [3tu+Du-u—1/Au+Vp}-v—/ / gdivu
0 Q (V) 0 Qi (V)

—/OT/Ww—m-u
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for (u,p) € X x P, (v,q) €Y x Q and p € M with

X €y € g0, T; HA(D))

P QS HY(0,T: H'(D))

M = HY0,T; H3*(T,))
We are interested in the following Min-Max problem,

min max By (u,p;v,q, 133
heRer (oo oxar DY (WP 0 H) (133)

The solution (y, p, ¢, 7, A) of this problem is characterized by the following optimality system,
e The primal state (y,p) is solution of the Navier-Stokes system,

dy+Dy-y—vAy+Vp=0, Q)

div(y) =0, Q)
. (V) (134)
y(t = 0) = yo, Qo

e The dual state (¢, ) is solution of the fluid adjoint system,
—Oip—Dy-u+("Du) - o —vAp+Vr =0, Q)

div(p) =0, QW)
o0, (V) (135)
(p(t = T) = 07 QT

e The multiplier satisfies the following identity,
p=—qn+v(Dp-n), onlyV) (136)

Then we can choose the above particular representation of the boundary Lagrange multiplier
w. This yields to the following functional,

T T
Ev(u,p;v,q):/ / [8tu+Du-u—1/Au+Vp]-v—/ / gdivu
0 JQu(V) 0 JQuV)

—AT/Ft(V)(u—V)~J(U7q)-n

o(v,q) - n=—gn+v(De-n), onTlyV)

for (u,p) € X x P, (v,q) € Y x Q, with

The following identities hold true,
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Lemma 31

/ (u—=V)-(Dv-n)
Iy (V)

ve(u=V)

/ div [
div [q

/ (u—V)-gn = /
I'y(V) Q.(V)

= / [(u—V)-Vqg+qdiv(u—V)]
Q:(V)

{O

t

~Dv+ (u—=V)- Av)

{O

and

-V

Using this identity, we may get the final expression of our saddle functional,

T T
V(u,p;v,q):/ / [8tu+Du-u—1/Au+Vp]-v—/ / gdivu
0 JQu(V) 0 JQuV)

T
—|—/ /Qt [(u=V)-Vg+qdiviu—V)=vD(u—-V)--Dv—v(u—V)- A

for (u,p) € X x P, (v,q) €Y x Q.

Remark 11 The above expression of the Lagrange functional has the advantage to include
only distributed terms. This will be useful for its differentiation with respect to V.

6.2 Lagrange functional and non-cylindrical shape derivative
We are interested in the following minimization problem,

g, 1) (17

where j(V) = Jy(u(V),p(V)) with (u(V),p(V)) is a weak solution of problem (2) and
Jv (u,p) is a real functional of the following form :

T T
a v
p) = —/ / IUI2+—/ / V|2 (138)
2Jo Ja,v 2Jo Jr,ov

We may solve this problem by the studying the equivalent Min-Max problem,

min min ma,; Ly (u,p;v, 139
VeUua (u,p)eXXP (v,q)eli(xQ V( p q) ( )

with

»CV(u?p;’UaQ) = JV(U,p) - EV(uvp;’an) (140)
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Our main concern is the differentiation of the above functional with respect to V' € U,q. As
in the previous section we perturbe the tubes using a vector field W € U, 4 with an increment
parameter p > 0. Since the functions are embedded in the hold-all domain D, the perturbed
Lagrangian has the following form,

L (u, p;v,q) = Jvipw (u,p) = Evipow (u, v, q) (141)
The set of saddle points,

Sp)=X(P)xPxY(p)xQeXxPxY xQ
is not a singleton since,

X(p) = {ue X, ulor = y(p)}

Y(p) = {veY,vg =)}

We make the conjecture that we can bypass the min-max, and state

d
= min max — L (u,p;v,q) (142)

d
(V4 pW
dp]( e ) (u,p)EXXP  (v,9)EY XQ dp

p=0 p=0

Using non-cylindrical shape derivative framework, we can state

Lemma 32

T
5V£V(u,p;u7q)-W:—/ / [((Oiu+Du-u—vAu+Vp) -v—qdivu
0 JT(V)
+u—-V)-Vg+qdiviu—V)—vD(u—-V)--Dv—vu—-V) Av— %|u|2

T
—H1|V|2}<Zt,n>—// [-W-Vq—qdiviW +vDW --Dv+vW - Av)
2 0 Qi (V)

T
+/ / YV -Ww
0 JIy(V)

—0p—Dyp-u+*Du-p—vAp+Vr=au, Q(V)

Then we set (u,p) = (y,p) and (v, q) = (p, ) with

div(yp) =0, QV)
- :‘67 (V) (143)
QO(T) =0, Qr
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and we use that

(y,0) = (V,0) on I'¢(V)

and
/ [-W -Vqg—qdivW +vDW - -Do+vW - Av] = W-o(v,q)-n
Qe (V) re(V)
Then,
ovj(V / / (—wdivy+ndiviy—V)—vD(@y—V) --Dy
Ty (V

5@t HIVE) (Zunh + (olm) n = 4¥) W

Using regularity assumptions on y and the free divergence condition on y, we may state that
divy|r, = 0.

Lemma 33
Dy--Dolr,vy=(Dy-n) - (Dy-n) (144)

Proof :
Using that ¢ = 0 on T'4(V), yields to

D(ph‘t = D<p (n®n)‘rt

then, we get

Dy--Dy = Dy--(De¢-(n®n))
= (Dy-n)-(De-n)
O
Consequently we get,
/ / v(Dp-n)-(DV-n—Du-n)+ndivV
ry(V
1
+§(a+7H)|V|2} Zin / / )on4AV] W
ry(V

(145)
We then use theorem (8) with

E:—V(Dcp-n)-(DV-n—Du-n)+7rdivV+%(a+7H)|V|2

and we get the correct result.
O
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7 Conclusion

In this article, we have been dealing with a particular shape optimization problem involving
the Navier-Stokes equations. Its originality lies in the fact that the domain containing the
fluid is moving. We have introduced an open loop control problem based on the velocity of
the moving domain with the goal of reaching a given objective related to the behaviour of
the fluid. Our main concern was to show how the gradient of the cost functional involved
in the optimal control problem can be obtained by using non-cylindrical shape optimization
concepts. In addition to the classical method based on the state derivative with respect to
shape motions, we have introduced two different methods based on the Min-Max principle.
Even if for the time being these methods lacks from a rigorous mathematical framework,
they allow more flexible computations which can be very useful for pratical purpose. On
the numerical point of view, an implementation of the open loop control is under study in
the 2D case [15]. We believe that the concepts introduced in this article, will prove large
efficiency for coupled problems involving a moving boundary, as it will be shown in [20],
[21].
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