N

N

Fault Confinement Mechanisms of the CAN Protocol:
Analysis and Improvements

Bruno Gaujal, Nicolas Navet

» To cite this version:

Bruno Gaujal, Nicolas Navet. Fault Confinement Mechanisms of the CAN Protocol: Analysis and
Improvements. [Research Report] RR-4603, INRIA. 2002. inria-00071982

HAL 1d: inria-00071982
https://inria.hal.science/inria-00071982
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00071982
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4603--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Fault Confinement Mechanisms of the CAN
Protocol : Analysis and Improvements

Bruno Gauja , Nicolas Navet

No 4603
October 30, 2002

THEME 1

apport
derecherche

%I INRIA

LORRAINE

Fault Confinement Mechanisms of the CAN Protocol :
Analysis and Improvements

Bruno Gaujal * , Nicolas Navet

Théme 1 — Réseaux et systémes
Projet TRIO

Rapport de recherche n °4603 — October 30, 2002 — 26 pages

Abstract: CAN (Controller Area Network) is a broadcast bus with priority based
access to the medium which has become a de-facto standard for data transmission
in automotive applications. To prevent a defective node from perturbing the func-
tioning of the whole system, for instance by repetitively sending error frames, the
CAN protocol includes fault confinement mechanisms whose objectives are to detect
permanent hardware dysfunctioning and to switch off defective nodes. In this study,
we derive a Markovian analysis of these mechanisms and identify several shortages.
New mechanisms that address theses problems are then proposed and we provide
the algorithms for their implementation.

Key-words: Real-Time Systems, In-Vehicle Network, Controller Area Network,
Fault Tolerance.

(Résumé : tsup)

* ENS Lyon - LIP, 46 Allée d’Italie, 69007 Lyon, France. Email: Bruno.Gaujal@ens-lyon.fr
f LORIA, Ensem, 2 avenue de la Forét de la Haye, 54516 Vandoeuvre, France. Email: Nico-
las.Navet@Iloria.fr

Unité de recherche INRIA Lorraine
Technopdle de Nancy-Brabois, Campus scientifique,

615 rue de Jardin Botanique, BP 101, 54600 VILLERS LES NANCY (France)
Téléphone : 03 83 59 30 30 - International : +33 3 3 83 59 30 30
Teélécopie : 03 83 27 83 19 - International : +33 3 83 27 83 19
Antenne de Metz, technopble de Metz 2000, 4 rue Marconi, 55070 METZ
Téléphone : 03 87 20 35 00 - International: +33 3 87 20 35 00
Télécopie : 0387 76 39 77 - International : +33 3 87 76 39 77

Mécanismes de confinement d’erreurs du protocole
CAN : analyse et améliorations

Résumé : CAN (Controller Area Network) est un bus & diffusion avec acces au
médium priorisé qui est devenu un standard de fait dans l'industrie automobile.
Pour empécher une station devenue défectueuse de perturber le fonctionnement de
I’ensemble du réseau, par exemple en émettant continuellement des trames d’erreurs,
CAN posséde des mécanismes de confinement d’erreurs dont 1’objectif est de dé-
tecter des erreurs matérielles permanentes et de déconnecter les stations identifiées
défectueuses. Dans cette étude, nous faisons une analyse Markovienne de ces mé-
canismes et identifions plusieurs limitations. De nouveaux mécanismes qui résolvent
ces problémes sont proposés ainsi que les algorithmes pour leur implémentation.

Mots-clé : Systémes Temps Réel, Réseau Embarqué, Controller Area Network,
Tolérance aux Fautes.

Fault Confinement Mechanisms of the CAN Protocol 3

1 CAN’s fault confinement mechanisms

CAN (Controller Area Network) is a broadcast bus with priority based access to the
medium which has become a de-facto standard for data transmission in automotive
applications. On a CAN network nodes do not possess an address and no single node
plays a preponderant role in the protocol. Each message has an identifier, unique to
the whole system, that serves two purposes : assigning a priority for the transmission
(the lower the numerical value, the greater the priority) and allowing message filtering
upon reception. Data, possibly segmented in several frames, may be transmitted
periodically, sporadically or on-demand. A minimal CAN communication profile
consists of a three-layered architecture : physical layer, Data-Link Layer (DLL) and
application layer. The DLL is implanted in an electronic component called a CAN
controller. The ISO standards ([6] and [5]) only define the physical layer and DLL,
but proposals have been made for the application layer (CAN Application Layer
- CAL see [3]) or for complete profiles based on the two normalized layers (Smart
Distributed Systems - SDS see [2], DeviceNet see [1] or CANopen which uses a subset
of CAL see [4]).

CAN has very efficient error detection mechanisms. In [10], the authors have

shown the probability of undetected transmission errors during the lifetime of a ve-
hicle to be extremely low, that is why we will further assume that all errors are
correctly detected. Each station which detects an error sends an "error flag" which
is a particular frame composed of 6 consecutive dominant bits (in CAN’s terminol-
ogy, the dominant bit value is "0" while "1" is said the recessive bit value) that
enables all the stations on the bus to be aware of the transmission error. The cor-
rupted frame automatically re-enters into the next arbitration phase, which can lead
to missed deadlines. The error recovery time, defined as the time from detecting an
error until the possible start of a new frame, is 17 to 31 bit times (where the bit time
is the time between the emission of two successive bits of the same frame).
To prevent a defective node from perturbing the functioning of the whole system,
for instance by repetitively sending error frames, the CAN protocol includes fault
confinement mechanisms whose objectives are (1) to detect permanent hardware dys-
functioning and (2) to switch off defective nodes. For this purpose, a CAN controller
possesses two distinct error counters :

e the Transmit Error Counter (TEC) which counts the number of transmission
errors detected on the frames that the station sends,

e the Receive Error Counter (REC) which counts the number of transmission
errors detected on the frames that the station receives.

RR n~° 4603

4 B. Gaujal, N. Navet

Each time a frame is correctly received or transmitted by a station, the value of the
corresponding counter is decreased (except when the value is already zero). Similarly,
each time a transmission error is detected, the value of the corresponding counter is
increased. Depending on the value of both counters, the station will be in one of the
3 states defined by the protocol :

e Error Active (REC<128 and TEC<128) : this is the normal operating mode,
the station can normally send and receive frames. This is the default state at
controller initialization.

e Error Passive (REC>127 or TEC>127) and TEC<255) : the station may emit
but it must wait 8 supplementary bits after the end of the last transmitted
frame. Furthermore, the station is not allowed to send an active error flag
upon the detection of a transmission error, instead it will send a passive error
flag which is made of 6 recessive bits and has thus no influence on the electric
level of the bus. In this state, because of the 8 supplementary bits before
sending, the frames sent by the station are no longer certain to respect the
worst-case response times computed through schedulability analysis.

e Bus-off (TEC>255) : The station is automatically switched off from the bus.
In this state, the station can neither send or receive frames. A node can leave
the bus-off state after a hardware or software reset (normal mode request) and
after having successfully monitored 128 occurrences of 11 consecutive recessive
bits (a sequence of 11 consecutive recessive bits corresponding to the ACK,
EOF and the intermission field of a data frame that has not been corrupted).

The rules for increasing and decreasing the TEC and the REC of a station are
somewhat complex, see [6] pp 48-49. In the rest of the article, we will assume that
no errors occur during the signalling of an error (no bit error in an active error flag).
Furthermore, we will not consider three exceptions to the general rules listed below
(see [6] pp 48-49, exceptions listed in points b) and c)), two of them are only useful
during the initialization phase of the system where only one node may be on-line.
Given these assumptions, the rules for modifying the counter value of the stations
are :

1. Frame transmission successful. The node is not the sending node : if the REC
is between 1 and 127, then it is decreased by one. If the REC’s value is nil, it
stays unchanged. Finally, if its value is greater than 127, it randomly takes a
value between 119 and 127. The node is the sending node : if the TEC is not
nil, this is decreased by one, otherwise it remains unchanged.

INRIA

Fault Confinement Mechanisms of the CAN Protocol 5

2. Unsuccessful transmission (transmission error detected). The node is not the
sending node : The REC is increased by one. The node is the sending node:
the TEC is increased by 8.

Whatever the result of transmission, there is no more than one counter whose value
is modified on a given station.

2 Bus-off hitting time

CAN fault confinement mechanisms are conceived to disconnect defective nodes from
the network and prevent them from perturbing the whole network. However, under
severe electro-magnetic interference conditions, one or several nodes can reach the
bus-off state just because of transmission errors. It is thus important to estimate
the probability of such events which can be achieved through the knowledge of the
average hitting time of the bus-off state and of the variance of the bus-off hitting
times. For this purpose, one model the Transmit Error Counter (TEC) with a Markov
chain in continuous time (also called a Markov process).

2.1 Modeling

Under the assumptions that state changes are exponentially distributed, the evo-
lution of the TEC can be modeled by a Markov process. Let Af be the rate of
transmission of non-corrupted messages for station k and)\’f be its rate of corrupted
messages.

The general rule is that the TEC value is increased by 8 on the transmitting node
if a frame is corrupted and that the TEC is decreased by 1 if the transmission is
successful. Nevertheless, different cases have to be distinguished. The infinitesimal
generator of the Markov process for the different possible values of the TEC (denoted
by) is given by the following graphs :

e ;1 =0:

(5

o ic{1.248} :

RR n~° 4603

6 B. Gaujal, N. Navet

Ag

Y

G ©

o i€ {249.255} :
AS

Af

@ G

o i =256 :

The computation of)\’5 and A¥ is detailed in Appendix A. The state 256, which
corresponds to the bus-off state, is a so-called absorbing state from which it is im-
possible to escape and that stops the process. This is exactly the functioning scheme
of the CAN protocol. When a station becomes "bus-off", it can neither send nor re-
ceive frames. With the previously exposed rules, one obtains the following generator
matrix of size 257 % 257 (the Markov chain having 257 states) :

0 1 2 8 9 .. 253 254 255 256
0 [=AF o0 0 ... A o . 0 o0 0 0
LA =2 o .. 0 X . 0 0 0 0
2 0 X =X . 0 0 . 0 0 0 0

Q=

254 | 0 0 0 ... 0 0 .. A =X 0 X
255 | 0 0 0 ... 0 0 .. 0 X X)
256 | 0 0 0O .. 0 0 . 0 O 0 0

with M = (AE 4+ %) (the row sums of Q is 0).

For convenience, this Markov process will be transformed in the stochastically
equivalent discrete time Markov chain termed the wuniformized chain. Let ¢; =
Z#i Qi,; the total rate out of state ¢ and gmaz = SupP;>0 ¢ Since gmez < 00

INRIA

Fault Confinement Mechanisms of the CAN Protocol 7

we can uniformize the Markov process so that it is equivalent to a Markov chain
denoted by P which has the following entries :

_ Qi,j/Qmaza '57é Js
P, = . . 1
I { 1- Qi/Qmaza =] ()

The matrix P under its "canonical form" is :

P:[‘g?] @)

where Z is the original matrix without the 257" line and the 257" row. All states
in Z are transient : starting from such a state, there exists a positive probability
that the process may not eventually return to this state. The vector R is the 257"
column vector of P without the 257" element (this latter element being the absorbing
state that models the "bus-off" state). One denotes by 7 the set of transient states
and N; the random variable which gives the time needed to reach for the first time
the absorbing state 256 starting from a given state i. Using a classical "one-step"
analysis, one obtains :

N =J 7 + N;, with probability ZjeT P, -
' Yis with probability P; 256

with «; = 1 if 4 # 256 and 0 otherwise. Taking expectations, we get :

E[Ni] = PascElv]+ Z P, jE[v; + Nj]
JET
= %+ PyE[N])
JET
This set of 257 linear equations can easily be solved using any numerical or symbolical
computation program such as Maple. E[Ny] is the mean hitting times of the bus-off
state for the considered station.

In a similar way, one can compute the variance of the bus-off hitting time which
is per definition equal to V[N;] = E[N?] — E[N;]?. One has

N2 — { (v + Nj)*, with probability 2]67- P, (5)

i %’2’ with probability P; 256

RR n~° 4603

8 B. Gaujal, N. Navet

Taking expectations :

E[N}] Y PER1+) PigEl(vi + N;)?]

JETC JeT
= W+ PE[(N;+ %))
JET
= %+ Y P E[N]|+2Y PE[Njly, (6)
JET JET

After having solved this set of 257 linear equations, the variance of the first hitting
time of the bus-off state is V[Ng] = E[NZ] — E[No]?.

2.2 Numerical applications

To illustrate this analysis, one will consider two CAN nodes part of an experimental
embedded CAN-based application proposed by PSA (Peugeot-Citréen) Automobiles
Company and described in [7]. Six devices exchange messages on a 250kbit/s net-
work : the engine controller, the wheel angle sensor, the AGB (Automatic Gear Box),
the ABS (Anti-Blocking System), the bodywork gateway and a device y (the name
of this device cannot be communicated because of confidentiality). The two consid-
ered nodes are the "engine controller" and the "bodywork network gateway" which
respectively send the frames of priority {1, 3,10} and {8} of periods {10, 20,100} ms
and {50} ms respectively. The average size of the frames for the engine controller is
118.75 bits while being 105 bits for the bodywork network gateway. The character-
istics of the 12 frames composing the application is given in Appendix A.

On Figure 1, one can observe that the average hitting time greatly varies de-
pending on the Bit Error Rate (BER). For instance, it takes in average only about
40 seconds for the engine controller to reach the bus-off state with a BER of 0.001
(corresponding to a frame error rate of 11.17% for the engine controller) and more
than 43360 hours with a BER of 0.0007 (to be compared to the expected cumulated
utilization time of a vehicle which is about 5000 hours). In addition, the curves on
Figure 1 suggest that the more important the load induced by a station, the faster
the station will reach the bus-off state. For instance, the average hitting time of the
bodywork network gateway (which generates a nominal load of 0.84% versus 7.6%
for the engine controller) is more than 4.3 hours with a BER of 0.001. It is also
noteworthy that the standard deviation of the hitting times is very important, it
is of the same order of magnitude than the average hitting times which in practice
means that there will be a high variability among the observed hitting times.

INRIA

Fault Confinement Mechanisms of the CAN Protocol 9

le+16 T I I .

r i Engine controller —+— -1
le+14 I ~Bodywork network gateway - 7]
le+12 g

le+10 L
1e+08 |
1e+06 |
10000 |-

100 |
l £ .
0.01 +

0.001 0.0009 0.0008 0.0007 0.0006 0.0005
Bit Error Rate

Time (hours)

Figure 1: Average hitting times of the bus-off state for the engine controller and the
bodywork network gateway with the Bit Error Rate (BER) varying from 0.0005 to
0.001 .

3 Error-passive hitting time

An error passive node is not disconnected from the bus. However, it must wait 8
supplementary bits after the end of the last transmitted frame before sending a frame.
This may increase the worst-case response times computed through schedulability
analysis. It is thus important for the application designer to assess the probability
of such an event.

A station becomes error-passive if the REC is greater than 127 or if the TEC
is equal to 128. The modeling through a Markov chain is straightforward : each
state of the process can be identified through 2 coordinates (7,) where for instance
1 is the value of the TEC and j the value of the REC. In order to evaluate the
probability of being error passive, one just has to compute the time spent in a state
such that ¢ > 127 or j = 128 before the occurrence of "bus-off". The number of
states of states of the Markov chain being 257 - 128, the probability transition matrix
is of size (257 - 128)%2 ~ 1,09 - 10° which is too big to obtain numerical results on
desktop workstations. However we can actually estimate separately the time spent
in error passive due to the reception (REC= 128) and the time due to the emission
(REC> 127).

RR n -~ 4603

10 B. Gaujal, N. Navet

3.1 Error-passive due to reception

Under the assumption of exponentially distributed state changes, one can model the
evolution of the REC through a Markov process. The general rule is that the REC is
increased by 1 on the receiving nodes if the frame is corrupted and it is decreased by
1 if the transmission is successful. The infinitesimal generator of the Markov process
for the different possible values of the REC (denoted by j) is given by the following
graphs :

e j=0:
(O
e je{1..127}:
e
)
N 0
o 7 =128:

>
e

Although the CAN standard [6] permits the REC to exceed 128, it is equivalent to
consider its maximum value to be 128. Indeed, if the REC is greater or equal than
127 and a frame is successfully received then the REC is set to a "value between 119
and 127". For the latter value, we have chosen 127 which is the choice leading to the
most pessimistic results from the point of view of the time spent in error-passive.
One denotes A\X the rate of frames successfully received by station k :

M= N (7)
i#k
while /\’§ is the rate of corrupted frames received by station k :

A=A (8)
ik

INRIA

Fault Confinement Mechanisms of the CAN Protocol 11

The Markov process corresponding to the above transitions is then transformed using
the uniformization technique described in paragraph 2.1 in its stochastically equiva-
lent Markov chain whose transition probability matrix is denoted by W . The Markov
chain being ergodic (all states are positive recurrent, aperiodic and there exists only
one communication class in the transition matrix), the stationary probability vector
7w can be computed :

T=n-W 9)

e (ith component of the vector 7) gives us the proportion of time the Markov chain
spends in state ¢. The time spent in error-passive due to receptions is thus given
by mi98. With a BER equal to 0.001, we obtain for the engine controller 798 =
6.65- 107131 with a BER equal to 0.0005 on has 798 = 1.02- 107170, The expected
number of steps between successive visits to state 128 is 1/m19g or (1/m12g) - (A5 + %)
seconds. In our example, with a BER of 0.001, the expected time between two
occurrences of the error-passive state due to reception is more than 10'?* years for
the engine controller. Furthermore the probability of being in a state larger than 8 is
about 710719 in the same example. This is consistent with simulation results were
such a state was never reached (see paragraph 3.2). These results shows that under
realistic bus perturbation level, the time spent in error-passive due to reception is
almost nil.

3.2 Error-passive due to emission

Using the Markov chain that models the evolution of the TEC and whose transition
probabilities are given by the matrix P (see (1)), one can compute the time spent
in a state greater than 127. Let M; be the random variable which gives the number
of step spent in error-passive due to the TEC before the station enters the bus-off
state. Its expectation is :

E[M;] =i+ Y P E[Mj), (10)

with «v; = 1if¢ > 128 and 0 otherwise. As can been seen on Figure 3.2 the proportion
of time spent in error passive might be very important for high BER. For instance,
the engine controller spends on average 26.2% of the time in error passive with a
BER of 0.001 and 4.1% for a BER of 0.0009. Logically, the less important the load
induced by a station, the less important the fraction of time spent in error-passive
(e.g. only 2.7% of the time in error-passive for the bodywork network gateway
with BER= 0.001). The results of paragraph 3.1 induce to think that a controller

RR n° 4603

12 B. Gaujal, N. Navet

100 T T T T

— Engine controller —+— ;
S 10 - % -
2 1p :
g 0.1 .
T 001 -
g
5 0.001
£ 0.0001 N
T le-05 .
@
GE) 1le—06 | : : : : =
= 1@=07 |

1le-08 ‘ ‘ ‘ ‘

0.0005 0.0006 0.0007 0.0008 0.0009 0.001

Bit Error Rate

Figure 2: Average time spent in the error passive state due to transmission for the
engine controller and the bodywork network gateway with the Bit Error Rate (BER)
varying from 0.0005 to 0.001 .

almost never reaches error-passive due to reception and thus the time spent in error-
passive can be estimated only considering the TEC. To verify the correctness of
this statement, we simulated the evolution of the two error counters. During all
simulations, the maximum value of the REC never exceeded 8 before reaching bus-
off. In addition, if we compare analytical results (given by equation (10)) that do
not consider the REC and simulation results, the difference between simulation and
exact analysis is always less than 3.3%. The results of the comparison for various
BERs are shown on Figure 3.

3.3 Conclusion on existing mechanisms

Experiments and computations performed under realistic assumptions on the bus
perturbation level were all nodes are functioning perfectly (no hardware failure)
make us think that the bus-off is reached too easily (eg. 40 seconds with BER=
0.001). Regarding error-passive, the REC is only useful for nodes that do not emit
any messages. As for emitting nodes, as shown in paragraph 3.2, error-passive is
almost always reached because of the TEC. Thus, the time spent in error-passive
can be estimated by computing the evolution of the TEC. In a strongly disturbed
environment, the time spent in error-passive can be very important and therefore

INRIA

Fault Confinement Mechanisms of the CAN Protocol 13

T T T
Simulation results VS analytic results

Difference (%)

0.0008 0.00085 0.0009 0.00095 0.001
Bit Error Rate

Figure 3: Difference in percentage between analytical and simulation results regard-
ing the time spent in error-passive. The considered node is the engine controller and
the BER ranges from 0.0008 to 0.001 .

the application designers should take into account the degraded temporal behavior
of the nodes in this mode.

4 TImproved fault confinement mechanisms

If one analyses the current fault confinement mechanisms, then two issues raise one’s

attention : first, all transmission errors are assumed to be independent of each other

and second, the information given by correct transmissions is barely taken into ac-

count for deciding the current state. In this section, we will provide a new proposal

for deciding bus-off under more realistic assumptions :

Assumption H1) : transmission errors can be correlated. This point is crucial since

the arrival process of errors is often bursty especially in the context of in-vehicle

embedded applications.

Assumption H2.a) : faulty nodes cannot send correct frames.

Assumption H2.b) : faulty nodes may send correct frames (according to an iid pro-

cess).

Of course H2.a and H2.b are mutually exclusive and will be studied independently.
A station is said faulty if it has a hardware problem (e.g. defective wires). We

denote by pg, the probability for the non-faulty station & to emit a frame that will

RR n -~ 4603

14 B. Gaujal, N. Navet

be corrupted given that the last i — 1 messages (sent by station k) were corrupted.
The value of py, can be estimated according to statistic measures taken on monitored
existing systems as detailed in Section 5.

In the following, the distribution of the burst size will be identical for all stations
(and pg; will be denoted by p; when no confusion is possible) and given by the
modified geometric distribution proposed in [7] :

Plerror burst length on k > i] = a(r® (i — r*)i + 1) (11)

with the typical parameters @ = 0.1 and r = 0.5.

4.1 When to decide "bus-off"?

The actual problem we want to solve is to detect if a node is faulty only by looking
at the correctness of the transmitted frames. This raises immediately another issue :
when should one take a decision 7 We believe that the decision can be delayed until
the suspected node may jeopardize the real-time behavior of the other stations. We
denote by Nj the maximum number of retransmission of a frame of station k such
that the deadlines of all frames of other stations is still respected. It seems natural
that our mechanism should decide "bus-oft" after Ny consecutive faulty messages.
Unfortunately it is not satisfactory because on highly loaded systems where frames
have a small laxity, Ny can be very small, for instance lower than 5, and with so
little information the decision to put a node in bus-off might be wrong. We propose
to decide "bus-off" after Fj, consecutive faulty messages where

Fy = max{ Ny, min{®| [[p; <e€}} (12)
j=1..®

with € is small enough to be considered neglectable (e.g. 107'2). On highly loaded
systems, where messages have a small laxity, N might be very small and € should
be large enough such as to keep the number of missed deadlines (of other stations)
low. On such systems, transmission errors will necessarily lead frames not to respect
their deadline whatever the mechanisms involved. On less constraint systems, N
will generally be larger than ® and thus no deadline will be missed.

A frame m; may be delayed by the retransmission of a frame m; only if m; has
a higher priority (denoted m; > m;). If station k emits the lowest priority frames
of the application, it will not delay any other frame and Nj is set to a maximum
value that we chose to be 50. The algorithm for computing N is given in Figure 4
where D; is the deadline of frame m; and R;(n, C) its worst-case response time with

INRIA

Fault Confinement Mechanisms of the CAN Protocol 15

funct INTEGER compute Ny, (set of task 7))
INTEGER Ny, := 50, tmp;
fori:=1to #7 do
if m; ¢ My A highestPrio{m; € My} > m;
then
tmp = 0;
while (R;(tmp, max C;) < D;) A (tmp—1 < Ny)
J k

do tmp + +; od
if (tmp — 1 < N) then Ny :=tmp —1; fi
fi
return Ny;
end

Figure 4: Function computing the value of Ny.

n retransmissions of a frame of size C bits :

where J; is the maximal jitter of m;, and I;(n, C) is the limit when m goes to infinity
of :

(n,C) =0, I"(n,C)=&(n,C)+ max (C;)

m;<mg

Im_1+J'+Tbit
+ > {"’C TJ_J o (14)

mj >mg

where &£ is the function that counts the overhead induced by n retransmissions of a
frame of size C bits :
E(n,C) =n- (7 +C), (15)

with 23 bits being the maximum size of an error frame.

4.2 Case H2.a : defect nodes cannot send correct frames

This assumption implies that whenever a station emits a correct message, then we
know for sure that the node is not faulty.

RR n° 4603

16 B. Gaujal, N. Navet

4.2.1 Proposal

With the variable ¢ that identifies the state of the system, the algorithm for deciding
bus-off after a transmission is given in Figure 5.

if sent message = corrupted

then i :=i + 1;
if i = F}, then BUS-OFF fi
else i := (;

fi

Figure 5: Deciding bus-off after a transmission.

4.2.2 Markovian analysis

This mechanism can be analysed under a Markovian model of the dynamics of the sys-
tem (interarrivals are exponentially distributed). The corresponding Markov chain
(after uniformization) is defined by the following transition probabilities P[i+ 1|i] =
pi, P[0li] = 1 — p;, P[Fy|Fyx] = 1 and represented on Figure 6.

Figure 6: Markov chain modeling mechanisms of case H2.a with Fj, = 4.

The average hitting time of bus-off is shown on figure 7 for various BERs with a
bursty error arrival process defined by equation (11) with @ = 0.1 and r = 0.5. With
our proposal, the hitting times are much longer for high values of the BER even
though the error model is now considered to be bursty. For instance, with a BER of
0.001 the hitting time for the engine controller is 221 hours versus 40 seconds with
the existing mechanisms. In addition, the hitting times are less sensitive to the value
of the BER which will enable the application designer to assess the risk of bus-off

INRIA

Fault Confinement Mechanisms of the CAN Protocol 17

in a satisfactory manner without an exact knowledge of the BER. On the contrary,
the hitting time is very sensitive to the priority of the messages (due to Nj). If the
application designer is ready to accept some missed deadlines, he has the possibility
to increase the value of N.

1le+09 F T T T T 3
L : Engine controller —+—]
18+08 o Bodywork network gateway ---<---
A . R i
B 100000 [ttt
< [: : : : i
Q10000 F]
E [s s s ;]
0000 [
] ‘ | | —
100 []
Lk i i i i 1

0.001 0.0009 0.0008 0.0007 0.0006 0.0005

Bit Error Rate

Figure 7: Average hitting time of the bus-off state for the engine controller and the
bodywork network gateway with the BER varying from 0.0005 to 0.001 and Fj = 31
for the bodywork network gateway and Fj = 18 for the engine controller (smallest
value of Fy for the 6 nodes of the application).

4.3 Case B : defect nodes can send correct frames

Here, we denote by g, the probability that station k emits a correct frame while being
faulty. It seems natural to assume that emitting two consecutive correct frames while
faulty are two independent events and thus has probability (gx)2.

4.3.1 Proposal

The idea is to weight the progression towards bus-off by the quantity of information
given by the last transmission. The state of the system is given by two counters (4, j)
where 7 indicates the proximity of bus-off and j is the current number of consecutive
transmission errors. The initial state is (1,0) and the counters evolve according to
the following rules :

e on the occurrence of an error (i,5) — ([i/pg,;],J + 1),

RR n~° 4603

18 B. Gaujal, N. Navet

e on a successful transmission (7,7) — ([4.gx],0)
e the bus-off state is reached when i > 1/T[,_; r Pk;-

Imagine that the probability to emit a corrupted message is large (bursts of errors
are likely), if the next transmission is unsuccessful, then the quantity of information
brought by this event is small, therefore one should not approach bus-off too much.
This is the same for a good transmission, imagine that a successful transmission of
a faulty node is very unlikely (g is small), then the quantity of information is very
important and it is natural to make a big step away from bus-off. It is noteworthy
that when g goes to zero then this approaches becomes more and more similar
to case H2.a (the state is very close to zero on a correct message). On the other
hand, when the error probabilities are independent (py, are all equal to py), then
this mechanism is similar to the existing scheme when one consider the logarithm of
the state with steps - log(pg) (with log(pr < 0) instead of +8 on errors and + log(qx)
(with log(gx < 0) instead of -1 on success. If one wants to mimic the existing scheme,
one just has to take q,% = py, (for instance py, = 1078 and ¢ = 10™!). The underlying
assumption in CAN current mechanisms is thus that 8 consecutive correct messages
sent by a faulty node (q,%) has the same probability has one faulty message sent by
a non-faulty node (pg). The validity of such an hypothesis is questionable especially
under heavily perturbed environments where p; may be large. Our proposal possesses
two advantages over the existing scheme : the errors are not necessarily independent
and second, the parameters p; and ¢ can be set according to the system and its
environment.

4.3.2 Markovian analysis

As for the previous cases, one can make a Markovian analysis of this mechanism
using Poisson arrival for the frames and assuming that o; = logpy, and 8 = log gi,
are integer values. The Markov chain has the following transition probabilities :
Pl(i+ «j,7)|(4,7)] = pj+1, P[(—B,0)|(,7)] = 1 —pj41. The corresponding Markov
chain is displayed in Figure 8.

As can be seen on Figure 9, an interesting property of the proposal is that the
average time to bus-off is roughly linear in gi (because only log(g) is involved in the
dynamics).

INRIA

Fault Confinement Mechanisms of the CAN Protocol 19

Figure 8: Markov chain where f = 1, oy = 2 and ap = 1. The value of Gi is

Zj:l,---,kal Q.

i 1710 ——]
E q= E
g=1/100 —-—
,_—//”/<_>>\\\\~‘
7 1e+06 ¢ R— S
= S I
o
£
(4]
£
F 100000
E //
10000

0.001 0.0009 0.0008 0.0007 0.0006 0.0005
Bit Error Rate

Figure 9: Average hitting time of the bus-off state for the bodywork network gateway
with the BER varying from 0.0005 to 0.001 and for ¢ = 1/10 and 1/100.

5 Implementation issues

The implementation of our proposal at the communication controller level is easily
feasible but it requires to redesign some parts of an existing controllers. A low-cost

RR n~° 4603

20 B. Gaujal, N. Navet

alternative is to bypass the existing CAN fault confinement mechanisms implemented
in silicon and to take the bus-off decision at the application level. The easiest way
to achieve this is to allow write access to the TEC located in the communication
controller and to clear the TEC to 0 before it reaches 255. To the best of our
knowledge, no such a controller with write access to the TEC is available yet but
depending on the controller, there may exist other way to clear the TEC. For instance,
the popular NEC’s DCAN module clears the error counters to 0 when it is switched
to sleep mode ([8] pp 253). It also enables an automatic software reset (and thus a
clearing of the error counters) after the occurrence of bus-off ([8] pp 234). Although
these solutions are not convenient, they provide a way to implement our proposal on
existing controllers.

In the rest of this section, we will discuss how to set the values of the p;, which
are the parameters of the error model involved in our proposal. The setting of the
pk; can be done using measurements carried out on a prototype or even at run-time.
Some CAN controllers such as the NEC DCAN module or the Philips STA1000 ([9])
have interesting error-signalling features such as readable error counters or interrupt-
triggering on transmission occurrence. Those features will enable the determination
of an error model parameter-setting procedure that will dynamically change the
parameter’s values when these become improper in the light of the current bus per-
turbation level. Such an on-line adaptive parameter-setting procedure would be well
suited for systems within which the bus perturbation level may vary greatly over
time, such as automotive communication systems.

5.1 Off-line parameters setting

One recalls that py, is the probability for the non-faulty station k to emit at least a
corrupted frame given that the last ¢ — 1 messages sent by station k& were corrupted
with pg, the probability to emit at least one corrupted frame given that the previous
frame was correct. The Figure 10 represents a sample measurement taken on a
prototype. On this short fragment of trajectory there exists 6 elementary events that
give us information to assess the value of pg,. These events are the results of the
transmission in the interval [tg,tg[, [t4,t5[, [tﬁ,t7[, [t7,t8[, [tg,tlo[and [t13,t14[(they
all have in common that the transmission in the preceeding interval was successful).
On this sample trajectory, pg, can be estimated to 1/3 since 2 frames out of the 6
transmitted were corrupted.

One denotes by Ry[i] the outcome of the i transmission (either successfull or
corrupted frame) of station k and #Rj the number of frames of the sample. The
array badOutcomeli] stores the number of frames that were corrupted given that

INRIA

Fault Confinement Mechanisms of the CAN Protocol 21

I — I I — I
th tats ta t5 tgitr tg totipli1t12 t13 t14
——— successful transmission

= COrrupted frame
—— busidle

Figure 10: A sample measurement of the frames sent by a given station k.

(i — 1) successive transmission errors occurred previously while allOutcome][i] stores
the total number of cases where (i — 1) successive errors occurred. The algorithm
for computing the pg, values is given on Figure 11 where maz is the maximum size
of all bursts of the sample.

5.2 On-line Parameters setting

Two main design goals of the parameter setting scheme are to keep the complexity
low and to be robust to FER variation. Since on a fixed time interval the number of
errors might be arbitrary small, we propose to set the parameters using the last n
bursts of errors. The value of n should be chosen such that the parameters actually
reflects the current bus perturbation level while keeping the results statistically valid.
In practice, we suggest values of n greater than 100. We consider two parameter
setting procedures : one using the sample made of the last n bursts of errors and
the second with a sliding-window of size n. Whatever the technique, the initial
parameters should be set to “reasonnable” values chosen according to measures or
from the experience gained on similar systems.

5.3 Sampling

The parameters are estimated every n bursts of errors. The new set of py,’s is
computed with the algorithm described in Figure 11. It may replace the older p,’s
values but influence of the past can also be taken into account for instance using
the exponential smoothing technique which assigns exponentially decreasing weights
as the observation get older. In the latter case, if we denote py, the value of py,
computed on the last n bursts of errors, the new value of py, is given by :

Pr; = (1 —a) - pr; + - py,

RR n~° 4603

22 B. Gaujal, N. Navet

INTEGER burstSize = 0;
INTEGER badOutcome[maz] = {0,0,0,..,0};
INTEGER allOutcome[maz] = {0,0,0,..,0};
fori:=1to #R; do
if Ry[i] = corrupted
then
burstSize++;
if i #1 /* the past is not known */
then badOutcomelburstSize]++;
allOutcome[burstSize]++;
fi
else
ifi#1
then allOutcomelburstSize + 1]++;
fi
burstSize := 0;
fi
od
for i := 1 to max do
if allOutcome[i] # 0
then
Pr; = badOutcomeli]/allOutcomeli];
fi
od

Figure 11: Algorithm for computing the value of py,.

where the smoothing constant « can be determined on samples of measurements such
as to minimize the squared errors between the forecasts and the actual observations.
Two important advantages of this strategy are the low complexity of the computation
and the unfrequent update of the parameters.

5.4 Sliding window

Another strategy is to update the parameters after the each burst of errors. The
oldest bursts of our sample is simply replaced by the new observation according to
the algorithm given on Figure 12.

INRIA

Fault Confinement Mechanisms of the CAN Protocol

23

if size(newBurst) > size(oldBurst)
then
for i := size(oldBurst) + 1 to size(newBurst)
do
badOutcomel[i]++;
allOutcome[i]++;
od
else
if size(newBurst) < size(oldBurst)
then
for i := size(oldBurst) downto size(newBurst) + 1
do
badOutcomeli]- -;
allOutcomeli]--;
od
fi
fi
for i := 1 to max do
if allOutcome[i] # 0
then
Pr; = badOutcomeli]/allOutcomeli;
fi
od

Figure 12: Updating the value the py,’s values after the end of a burst.

This technique should provide a better adaptation to the current bus perturbation
than the sampling of size n bursts, its drawback being a more frequent update of the

parameter.

6 Conclusion

In this study, we proposed a Markovian analysis of the existing fault-confinement
mechanisms of the CAN protocol. These results may help the application designer
to assess the risk of reaching bus-off and error-passive. It also provides some evidence
that the existing mechanisms has several shortages : bus-off state is reached too fast
for non-faulty nodes under high perturbation, the REC is useless in nearly all cases

and the parameters cannot be tuned (for instance to consider bursty errors).

RR n~° 4603

24 B. Gaujal, N. Navet

We have proposed two new mechanisms that address these drawbacks. These
mechanisms can mimic the original ones with adequate parameters but also show
the interest of considering bursty-errors : the hitting time of bus-off for non-faulty
nodes increases hugely while faulty systems reach bus-off in the same amount of time.
The same scheme can be adapted easily for deciding error-passive.

The implementation issues raised by our proposals have been addressed in Sec-
tion 5. Different algorithms for setting the error model parameters have been pro-
vided : this can be done off-line, using measurements carried out on a prototype, or
at run-time with two strategies that induce different overheads.

A Complements to Section 2

The application considered from Section 2 is composed of 12 frames (e.g. speed and
torque from the engine controller) listed in figure 13. The transmission rate of the
CAN bus is 250kbit/s. The Data Length Code (DLC) denotes the number of bytes
of each frame and deadlines equal periods. One denotes by pj the load induced by

Priority (Id) | Transmitter node | DLC | Period
1 | engine controller 8 10 ms
2 | wheel angle sensor 3 14 ms
3 | engine controller 3 20 ms
4 AGB 2 15 ms
5 ABS 5 20 ms
6 ABS 5 40 ms
7 ABS 4 15 ms
8 | bodywork gateway 5 50 ms
9 device y 4 20 ms

10 | engine controller 7 100 ms
11 AGB 5 50 ms
12 ABS 1 100 ms

Figure 13: Message set of the application

station k. One has to take account of the surcharge generated by transmission errors.
To each transmission error corresponds a retransmission which can be, in its turn,

INRIA

Fault Confinement Mechanisms of the CAN Protocol 25

corrupted (and so on). One has :

C; C;
= > = |+| X 7 |FER
m;EMyp ¢ m;EMy ¢
+ Z T Ry +
m; EMyp
Ci
= = |/ (1~ FERy), (16)
m; EMyp, t

where My, is the subset of messages sent by station k, m; is the message of identifier
1 and FERy is the Frame Error Rate for station & which can be estimated with the
Bit Error Rate (BER) common to all the stations of the network :

(1 - BER)®: 1

FER,=1— - 7 —
Re=1- 3" AU B E (17)

m;EMyp, ijMk.

with C; = S; - Tp;s where 7p;; is the bit time (i.e. the time between two successive
bits) and S; is the maximal size of the message m; (having d; data bytes) :

34 +8d; — 1
— |

One notes the average size of the frames transmitted by station & :

5= 2/ X 7). (19)

m;EMyp ¢ m;EMy

S; = AT + 8d; + { (18)

A¥ is the rate of unsuccessful transmissions (i.e. corrupted frames), one has :

N = pr FERy/(Sk - Thit)

= X %/ (1- FERy) | FER/Sk, (20)
m; EMy ¢
while Ak, the rate of successful transmissions is :
N S -
X =pr- (1= FERy)/(Skmoir) = Y = /Sk- (21)

T;
mi;EMy

RR n~° 4603

26

B. Gaujal, N. Navet

References

1]
2]

Allen-Bradley. Devicenet specification, 1994. vol. 1 & 2.

European Committee for Electrotechnical Standardization CENELEC. Low
voltage switchgear and controlgear - part 5: Control circuit devices and
switching elements - smart distributed systems (SDS), 1997. document
CLC/TC(SEC)146 Smart Distributed Systems.

CAN in Automation International Users and Manufacturers Group (CiA). CAN
application layer (CAL), 1995. Cia/DS201-207.

CAN in Automation International Users and Manufacturers Group (CiA).
CANopen communication profile for industrial systems, 1996. CiA /DS301 (Ver-
sion 3.0).

International Standard Organization ISO. Road Vehicles - Interchange of Digital
Information - Controller Area Network for high-speed Communication. ISO,
1994. ISO 11898.

International Standard Organization ISO. Road Vehicles - Low Speed serial data
communication - Part 2: Low Speed Controller Area Network. 1SO, 1994. ISO
11519-2.

N. Navet, Y.-Q. Song, and F. Simonot. Worst-case deadline failure probability in
real-time applications distributed over CAN (controller area network). Journal
of Systems Architecture, 46(7):607-618, 2000.

NEC Corporation. upd789850 subseries - preliminary user’s manual, April 2000.
Document No. U144035J2V0UMO00 (2nd edition).

Philips Semiconductors. SJA 1000 stand-alone CAN controller data sheet, Jan-
uary 2000.

J. Unruh, H.-J. Mathony, and K.-H. Kaiser. Error detection analysis of auto-
motive communication protocols. Technical report, Robert Bosch GmbH, 1989.

INRIA

/<

Unite de recherche INRIA Lorraine, Technop ©le de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rh™®ne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

