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Abstract:  We consider the Voronoi tessellation of Euclidian space that is generated by
an inhomogeneous Poisson point process whose intensity takes different constant values on
sets of some finite partition of the space. Considering the Voronoi cells as marks associated
to points of the point process, we prove that the intensity measure (mean measure) of the
marked Poisson point process admits an approximate decomposition formula. The true value
is approximated by a mixture of respective intensity measures for homogeneous models, while
the explicit upper bound for the remaining term can be computed numerically for a large class
of practical examples. By the Campbell formula, analogous approximate decomposition are
deduced for the Palm distributions of individual cells. This approach makes possible the analysis
of a wide class of non-homogeneous-Poisson Voronoi tessellations, by means of formulae and
estimates already established for homogeneous cases. Our analysis applies also to the Poisson
process modulated by an independent stationary random partition, in which case the error
of the approximation of the double-stochastic-Poisson Voronoi tessellation depends on some
integrated linear contact distribution functions of the boundaries of the partition elements.
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Décomposition approchée de mosaiques de Voronoi
correspondant & des processus de Poisson modulés

Résumé : Dans 'espace euclidien, nous considérons la mosaique de Voronoi générée par
un processus de Poisson non‘homogéne dont I'intensité prend différentes valeurs constantes sur
les ensembles d’une certaine partition finie de I’espace. Considérant les cellules de Voronoi
comme des marques associées a des points du processus ponctuel, nous montrons que la mesure
intensité (mesure moyenne) du processus de Poisson ponctuel marqué admet une représentation
par une formule de décomposition approchée. La valeur exacte est approximée par un mélange
de mesures d’intensité correspondant & des modéles homogénes, tandis que la borne supérieure
explicite du reste peut étre calculée numériquement pour une large classe d’exemples pratiques.
Des approximations du méme type sont obtenues pour les distributions de Palm grace a la
formule de Campbell. IL’analyse d’une large classe de mosaiques de Voronoi correspondant
a des processus de Poisson ponctuels non-homogénes est possible grace a des formules et des
estimations déja établies pour le cas homogéne. Notre analyse s’applique aussi au processus
de Poisson modulé par une partition aléatoire indépendante et stationnaire. Dans ce cas le
terme d’erreur dépend de certaines formes intégrales définies sur les bords des éléments de la
partition.

Mots-clés :  Mosaique de Voronoi, processus de Poisson ponctuel non-homogéne, processus
de Poisson ponctuel doublement stochastique, modéle booléen, approximations, décomposabi-
lité.



1 Introduction

Voronoi tessellation (VT) is a frequently used model of tessellation of the space (an extensive
list of areas of applications can be found in [13, 12]). For a given locally finite system of points
in the Euclidian space, VT is a division of the space into polyhedra (into polygons in the case
of the plane) “about” the points of the system. Precisely, the Voronoi polygon (cell in common
terminology) about a chosen point of the system is the subset of points of the space that lie
closer to the chosen point than to any other point of the system. If the underlying system of
points is a Poisson point process we call the resulting random tessellation the Poisson Vorono:
tessellation (PVT).

In order to study statistical properties of random V'T’s one introduces the so called typical
cell of the tessellation. Very roughly speaking, in stationary case, it can be seen as “randomly
chosen” from the set of cells. In non-stationary case its distribution depends on the location and
is interpreted as conditional, given the underlying process has its point at this location (formal
definitions require Palm theory; see Section 2). Known formulae for distributional properties
of the typical cell of PVT’s are almost entirely confined to the stationary (homogeneous) case.
Even then, formulae are very complicated and mainly approximations are known (see a review
in Section 10.6 of [13], and [9, 8, 6, 4] for some new results).

In this paper we study an approximation technique for the distribution of the typical cell of
VT’s generated by some class of modulated-Poisson point processes. The idea is to approximate
the unknown distribution in the non-homogeneous case by a mixture of the known distributions
for homogeneous Poisson cases. We are able to give analytically tractable bounds for the error
of the approximation in total variation. This approach makes possible the analysis of a wide
class of nonhomogeneous PV'T’s by means of the formulae and estimates already established
for homogeneous cases.

Specifically, we consider the Poisson point process whose intensity takes different constant
values on sets of some finite partition of the space. Note that the cell of the VT about a
given point is fully shaped by the neighbors of that point in the system of generating points.
Thus, provided the partition of the space is not very “fine” with respect to the intensities of the
points, the resulting modulated-Poisson Voronoi tessellation (mPVT) is “locally homogeneous”
PVT. Consequently, the “typical cell of a given partitioning set” is highly probably identical
to the typical cell of the homogeneous scenario and a “randomly chosen cell from the whole
mPVT” should have a distribution close to the mixture of the homogeneous cases. The error
of such approximation comes from existence of cells that cross the boundaries between the
partitioning sets. In the paper we formalize the above intuitive approximations and quantify the
errors. Our analysis applies also to the Poisson process modulated by an independent stationary
random partition, in which case the error of the approximation of the double-stochastic-Poisson
VT depends on some integrated linear contact distribution functions of the boundaries of the
partition elements.

One of the motivations for the study in question is modeling of modern communication
networks, where application of the PVT has already proven to give some interesting results
(see eg. |1, 2, 3, 7]). Generally speaking, within this setting points of the Poisson process
represent various communication devices (concentrators, routers, base stations, etc.) and the
associated cells represent the regions of the plane or space served by these devices. Adopting
homogeneous scenarios in such models is often to simplistic, since it ignores spatial fluctuations
of the traffic (large cities versus rural areas etc). On the other hand, more adequate, non-
homogeneous models rapidly become to difficult to analyze. A possible attitude to take if we
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want to improve upon this situation is to find a general framework, in which already available
results concerning homogeneous cases could be integrated as “local solutions” into a “global”
non-homogeneous model. We shall indicate that the paper demonstrates only very basic results
for this approach, that could, however, help in working out of such a framework.

One can find in our approach yet another incarnation of a general idea of decomposability.
This technique, that has been productive in analysis of economic, queueing and computer sys-
tem models, relies on clustering of a large system of all variables into a small number of groups
so that: (i) the interactions among the variables of each single group may be studied as if inter-
actions among groups did not exit, and (ii) interactions among groups may be studied without
reference to the interactions within groups. The system in this case is completely decompos-
able. When the interactions between groups of variables are non-null, but weak compared
with interactions within groups, the system is said to be near-completely decomposable (see the
monograph [5]). Using this terminology, our mPVT is near-completely decomposable model
(more precisely: “near-completely decomposable in mean”) and a modulated-Poisson Voronoi
quasi-tessellation introduced in Example 3.3 is its completely decomposable approximation.

The rest of the paper is organized as follows. In Section 2 we introduce the modulated
Poisson Voronoi tessellation and recall notions and facts concerning point processes, random
closed sets and Palm theory that are our main tools. A general modulated marked point process,
being our generic completely decomposable model, is introduced in Section 3; two basic results
concerning the decomposability of its intensity and the distribution of its typical mark are given
there too. The main results concerning the approximation decomposition of the modulated-
Poisson Voronoi tessellation with deterministic and random modulation are given in Sections 4
and 5 respectively.

2 Preliminaries

In this section we introduce modulated Poisson Voronoi tessellation and recall notions and facts
concerning point processes, random closed sets and Palm theory that are used throughout the

paper.

2.1 Modulated-Poisson Voronoi tessellation — formulation of the prob-

lem
Let &, = >, ex», w = 1,...,£ be independent stationary Poisson point processes on R,
with intensities, respectively A, > 0; here and throughout ¢, is the atom measure at z. Let
a measurable partition x = {x, : u = 1,... ,£} of R be given (the basic measure theoretic

details concerning the considered objects are given below). We call the inhomogeneous Poisson

point process
‘
O =) ) (X} € xu)ex
u=1 1

the x-modulated Poisson process (x-mod PP). Obviously xy-mod PP is an (in general) inhomo-
geneous Poisson point process with intensity measure A, (-) given by

Ay(dz) =E [/Rd I(y € dx) @X(dy)} = Z I(z € xu)Ayd. (2.1)

u=1

INRIA
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Denote by V (X;, ®,) the subset of points of R? that lie closer to X; than to any other point
of ®,. The Voronoi tessellation

V((bX) = Z E(Xi,V(Xi,‘I)X)—Xi)a (22)

Xi€<I>X

generated by ®, (the formal definition is given below) will be called the x-modulated-Poisson
Voronoi tessellation (x-mod PVT). Note that we consider the Voronoi tessellation as a marked
point process, with marks being cells translated to the origin (C —z = {y —x € R : y € C}),
and as such, it has its intensity measure

A;(dx xL)=E [/ I(y € dz)I(V(0,®, — z) € L) ®,(dy) |,

where L is an appropriately measurable subset of the space of closed subsets of R? (see the
details bellow) and ) . €, + 2 =), €440

Note at this stage, that this intensity does not admit any exact decomposition analogous
0 (2.1). A reason for this is that the Voronoi cell V(z, ®,) of a given point z of the x-mod PP
®, depends on its neighboring points, which might be in different sets of the partition x.
However, sometimes such decomposition might be a good approximation. In order to make
this idea precise we need to recall some notions and introduce the notation.

2.2 Measure-theoretic settings

We consider the Euclidian space R? with its Borel o-algebra B(R?). A generic space of marks M
is a separable, complete metric space (polish space) with its Borel o-algebra B(M). A specific
example of this space of marks, considered throughout this paper, is the space F of all closed
subsets of R?. The topology on F is generated by the base of subsets {F € F : FN K =
0,FNO # 0} for all K,O, respectively, compact and open subsets of R¢. The space F is
compact, Hausdorf, and separable (see Theorem 1-2-1, p. 3 in [10]) and we consider its Borel
o-algebra B(F). Let N denote the space of counting measures on R* x M that are bounded
on B x M for bounded B € B(R?), with the o-algebra o on N generated by the mappings
N 3 ¢+— ¢(B x L) for all B € B(R?), L € B(M). A marked point process ® is a measurable
mapping from a given probabilty space to N. A non-marked point process ® can be seen as ®
with a trivial one-element space of marks M. A random closed set X is a measurable mapping
from a given probability space to F. For more details on measure-theoretic background of
random closed sets see [10].

2.3 Campbell formula

Consider marked point processes ® = Y, &(x;,m;) With points @, = Y, ex, located in R? and
with marks M; in a measurable polish space M. We denote the intensity measure of ® by

A(d(z, m))
A(B,L)=E [/R /M I(z € B)I(m € L) ®(d(x, m))

and by A(dzr) = A(dz x M) the respective intensity measure of points. Note that for fixed

A
L € B(M), A(-x L) is absolutely continuous with respect to A(-) and thus we have the following

RR n’° 4585
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disintegration called the Campbell formula
Mmezjnfn@emﬂmemAammmmmy (2.3)
R¢ JM

For fixed z, a (regular version) of the Radon-Nikodym derivative M(z; ) is called the (local)
Palm distribution of the mark of the point at x, or, more loosely speaking, the distribution
of the typical mark associated with the point located at z. (see e.g. [13]). If ® is stationary
(motion invariant); i.e, when the distribution of ), £(x;ta,um;) is the same as this of ), e(x; m;)
for all z € R%, it is also true that

AwxL%:A%&MxemﬂmeLﬁMMmmmm. (2.4)

where ) is called the intensity (constant) of the point process, and M is the so called distribution
of the typical mark.

We say that @ is independently marked if (for any ordering of points that depends only
on their locations) marks {M;} constitute a sequence of independent, identically distributed
random elements. Then the distribution of the typical mark M coincides with the distribution
of any M,;.

2.4 Voronoi tessellation

For a given non-marked point process ® = ) . ex;, the Voronoi tessellation (VT) generated by
® is the marked point process
®=2 crnviex
i

where marks are shifted to the origin random closed sets V;(®) = V(X;,®) (called cells) of
points in R? that lie closer to the given point X; than to any other point of ®; i.e.,

Viz,d) ={yeR?: |y —z| < inf |y— 2|},
(z,0) ={y ly x\_¢;rzl¢w\y z|}

where |z| is the Euclidian norm in R?.

If the underlying point process ® is Poisson we will call ® the Poisson- Voronoi tessellation
(PVT). By the Slinyak’s theorem, the distribution of the typical cell M"(x;-) of a point located
at x in a general PVT coincides with the distribution of the set V' (z, ®+¢,)—z = V(0, P—z+¢y);
i.e., with the distribution of the shifted to the origin cell created by an extra point at x added
to the original realization of ®. For more details on the Voronoi tessellation see [11, 12].

2.5 Random closed set

For any random closed set X in R? let T(K) = P(XNK # 0) (K C R?, compact) be the
capacity functional of X. For a stationary (motion invariant) random closed set X let p denote
its volume fraction; p =P (0 € X) =T({0}).

A random closed set X is a (stationary) Boolean model (BM) if

X=JC+V; (2.5)

INRIA
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where } . e(y; ¢,) is an independently marked (stationary) Poisson point process (of germs) on

R?, with marks C’ (called grains) being random closed sets (subsets of R?). Let ® be stationary
with intensity of germs (3. Then, the capacity functional of the stationary BM X is

T(K)=1— exp [—ﬁ / UC + K) M(dC)| | (2.6)

where M(:) = P(Cy € -) is the distribution of the so called typical grain of the BM, C =
0—-C ={-2:2¢€ C}, and v(-) denotes the Lebesgue measure in R?. The volume fraction p
of the BM X is equal to 1 — e™#¢ where ¢ = [ v(C) M(dC) is the mean volume of the typical
grain. Fore more details on the Boolean model and its applications see [13].

2.6 Minor notation

Let v4 denote the volume of the d-dimensional unit ball. For (zy,...,%41) € R? not lying
on a common hyper-plane of dimension d — 1, by B(z1,...,Z411) we denote the open ball
circumscribed on them. Let B,(r) be the d-dimensional ball centered at z and with radius 7.
For A C R¢, we denote by A° = R? \ A the complement of A and #A is the cardinal number
of A. Throughout the paper ¢, is the atom measure ,(A) =1 if x € A and 0 otherwise.

3 Modulated marked point process

In this section we define a general modulated marked point process and give two basic results
concerning the decomposability of its intensity measure and the distribution of its typical
mark. In view of these results we see it as our generic completely decomposable model. As
an incarnation of the generic modulated marked point process, in Example 3.3 we introduce a
modulated-Poisson Voronoi quasi-tessellation that can be seen as the completely decomposable
approximation of the modulated-Poisson Voronoi tessellation.

We construct the following x-modulated marked point process @ out of (possibly de-
pendent) stationary marked point process Pv = > Exemy), u = 1,...,¢ and a partition
X={xu:u=1,...,0} of R?

¢
u=1 1

2

Lemma 3.1 The intensity measure ]\X of &)x s given by

(B x L) ZAVBHXU (L) (3.2)

where A, are intensities of points and M, distributions of typical marks of the component
processes ®, and B and L are measurable subsets of R? and M, respectively.

RR n’ 4585
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Proof:
A(BxL) = [/ / (x € B)I(m € L) &, (d(x, ))}
R4
¢
- ZE[/ / I(z € BN ) I(m € L) @u(d(x,m))}
—y Ré JM
‘
= ) A(B N xu)My(L)
since ®,, u =1,...,{ are stationary. [ |
Of course &)x in general is not a stationary point process. Lets now suppose that the partition
X is a realization of a motion invariant, random partition = ={Z, : 1,... ,Z},Nindependent of
®,, u=1,...,¢ For each realization Z = x we construct the point process @, as described

before and denote the resulting stationary-modulated marked pomt process by (I> Obviously,
the point process @z is stationary, hence its intensity measure A is of the form Az)dz X

Mz)(dm) (V).

Lemma 3.2 The distribution of the typical mark of the stationary-modulated marked point
process Pz 1s given by

where p, s the volume fraction of =, and the constant intensity is
¢
5= Aubu- (3.4)
u=1

Proof: Using Lemma 3.1 we have the intensity measure /~\(E) of =

Ag(Bx L) =Y MNE[(BNE,)My(L). (3.5)

u=1

Now, for each stationary set =,
E(BNZ,)] = / E[I(z € Z,)] dz
B

- /E[][(() € =) do
B
= v(B)py-
Applying this to (3.5) and normalizing we get (3.3) and (3.4). |

Note that our xy-mod PVT (2.2) is not a x-modulated marked point process in the sense of
the definition (3.1). The difference will be clear in view of the following example.

'We use (Z) as the subscript to emphasize that the respective expectations are taken with respect to the
distribution of Z too. Thus, Mg is equal to conditional Mz) given the realization =.

INRIA
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Example 3.3 [A x-modulated-Poisson Voronoi quasi-tessellation|
Let V(®,) = >, e(x»,ve—xv) be PVT’s generated by independent homogeneous Poisson point

processes ®, with intensities A\, u =1,...,£. We will call the following marked point process
¢
VI(®y) = Z Z (X3 € Xu)e(xu,ve - xv) (3.6)
u=1 1

the xy-modulated-Poisson Voronoi quasi-tessellation (x-mod PVqT). Note that the x-mod PVqT
VI(®,) is a modulated marked point process in the sense of the definition (3.1) thus properties
of its cells can be established by means of Lemmas 3.1 and 3.2. On the other hand, the cells
of our quasi-tessellation, unlike cells of a “true tessellation”, might not be disjoint and their
union might not cover the whole space. Obviously the phenomena of “overlapping” cells and
“wholes” are more likely to occur close to the boundary of each y, where some points of ®,
have neighbors among the points of ®,, v # u. It would be a true tessellation, namely the
x-mod PVT, if all the cells were generated by the common pattern ®, of points and not out
of the component point processes ®,. However, we might expect, that at least in some cases,
the existence of the cells intersecting boundaries of x, is negligible and the distribution of the
“true” xy-mod PVT can be approximated by xy-mod PVqT. This idea will be developed in the
remaining part of the paper.

4 Decomposition approximation of the modulated-Poisson
Voronoi tessellation

In this section we show how the intensity measure of the modulated-Poisson Voronoi tessella-
tion can be approximated by the intensity measure of the modulated-Poisson Voronoi quasi-
tessellation of Example 3.3 that admits the complete decomposition given in Lemma 3.1. In
Proposition 4.2, that is our main result concerning approximations of the model with the de-
terministic modulation x, we give the upper bound for the error of the approximation. As a
corollary we obtain an approximate decomposition of the distribution of the typicall cell located
at a given point. The quality of the approximation depends on some integrated distance of this
point to the boundary of the element of the partition it belongs to.

Lets denote by /~\;’< the intensity measure of the x-mod PVT V(®,) and let M? by the
distribution of the typical mark (cel) of the homogeneous PVT V(®,), u=1,... ,£.

For each u =1,...,/ lets define an auxiliary dominating process
or= N N I(XF € X )€ xur + YD I(XE € xw)exe
u A >Ay u" A<ty 4

For a given point z € R? and a realization ¢ of a point process on R? let A'(z, ¢) denote
the subset of points of ¢, which in the Voronoi tesselation V(¢ + ;) have cells sharing an edge
with the cell V(z, ¢ + ¢,). Formally

N(z,¢) = {y € qb(B(x,y,zl, .. ,zd,1)> = 0 for some 2;,...,24_1 € ¢}.
Finally, let
¢
¢ o) = J{z € xu 1 N(z,¢) N xS # 0}
u=1

RR n’ 4585
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The following lemma gives an approximate decomposition of the intensity measure of -
mod PVT. Note that the sum 22:1 in (4.1) bellow is the intensity measure of the y-modulated-
Poisson Voronoi quasi-tessellation from Example 3.3.

Lemma 4.1 The intensity measure /N\; of x-mod PVT V(Ci)X) admits the following decomposi-
tion

AY(Bx L) =Y Ay(BNxy)ML(L)+R(B x L), (4.1)

u=1

where B and L are measurable subsets of RY and M respectively, and the remaining term is
equal to

R(B x L) (4.2)
_ Z:E [/ N 1[(35 e ¢(x, @um“)) (][(V(O, &, — )€ L)~ 1(V(0,d, — ) € L)) @X(dx)] .

Proof: Note first that we can take the probability space such that almost surely ®,, C &,, C
... C ®,,, where \,, <Ay, <... <\, In fact, the distribution of the ®, remains the same
if all ®,, are constructed by successive thinning of ®,,. Let it be the case. Following along the
same line as in the proof of Lemma 3.1 we state that (4.1) is true with the remaining term
equal to

¢

Y E [/ I(V(m, 3,) £ V(0, cpu)) (]I(V(o, &, —z)€L)—L(V(0,d, —z) € L)) @X(dx)] .

u=1 XxuNB

Note now that V(z,®,) = V(x, ®,) is equivalent to N (z, ®,) = N (z,P,). Moreover, for z €

Xus if N (z, PI2X) C yy, then N(z, d2*) = N (z, ) = N(z, D). Thus V(z,®,) # V(z, P,)

implies NV (x, ®I4*) ¢ x; i.e., x € ((x, PI®*), which completes the proof. |
Our main task now is to give a numerically tractable upper bound for the absolute value

of the correcting term R(-,-) in the decomposition (4.1). Lets denote by Apax = max{A, : u =
1,.0. 0}, Amin =min{A\, cu=1,... (£}

Proposition 4.2 The intensity measure /NV;< admits the docomposition (4.1) and the remaining
term is bounded by

IR(B x L)| (4.3)
od? ¢ \d-1 d jod+1
< ST L L € 0 B)(  maxthu )ty € ) dody.
u=1 "'u Re JR u'#u

Proof: Using Lemma 4.1

IR(B x L)| < ZZE[

u=1

T~

I(z € B)][(a: e ¢(x, @umaX)) @X(dx)] .

uw

Note that by the definition

]I(x e ¢(x, @;“a")) =3 11(9: € Xu, N (2, 2,*) N x5, # @))

u=1

INRIA
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and for = € x,, such that ®,({z}) =1

1[(/\/ (z, D) N x& # @) < #(N (2, ©,*) N XZ)

d—1

—_——
m/m I(y € x°) Ad. ./Rd ][(@umaX(B(x,y,zl, L Fi)) = 0)

(d)
X (Cbum‘”‘) (d(y, z1,---,24-1))

<

where
max (d) : : max max max
(CI)U ) (d(y, z1, -, za-1)) Wy, 21, - - - , z4—1 distinet) P (dy) Py (dz1) - . . Du**(dzg_1)

is the so-called factorial moment of ®2** (note that 1/(d (d — 1)!) stands in the previous bound
since each point y € N (z, ®2**) as a neighbour of z, is counted by the integral there with d
different tuples of co-neighbours {z1,..., 24 1} and each such non-ordered tuple is counted by
the factorial moment (d — 1)! times). This makes

IR(B x L) (4.4)
/
241 A
< Zmax”'U , ,
__Z; r A;ﬂxGBﬂm)Axggmme&Jﬂyémﬂ)

X / } / e AV (B@y:21,0520-1)) dzdydz; ...dz4_1 .
Rd JRd

Next, we use approximation of the volume of the d-dimensional ball circumscribed on z, ¥, 21,

-y Rd—1
0 Vd d
(B9, 21,- 20 0) 2 i (_max (e —ul.ly - =)})
Vq
> gar (o =i+ (_max_ Iy —=)7).
Thus,

_ o
// e A (B2 (2521500 20-1)) dz;...dzg—1
R JRd

< (d B 1)!6—)\uud|z—y\d/2d+1 /d '/d e—Aqu|z1|d/2d+1][(‘Zl‘ > ... > ‘Zd—l‘)dzl . dzgy
R R

| p—y|d /2d+1 2(d+1)(d-1)
= (d—1)le Auva|z—y|®/2 T
and applying this to (4.4) we obtain (4.3). |

Corollary 4.3 Let x-mod PP ®, be given, fir x in the interior of x, for some v € {1,... ¢}
and consider ®, + 5. Then the distribution of the cell V(z, ®, + ;) can be approzimated in
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12 B. Btaszczyszyn € R. Schott

total variation by the distribution of the typical cell MY of the homogeneous PVT V(®,) as
follows: for almost all x € xy

sup| P(V (z, @y +62) 1z € I) - MZ(L)‘ (4.5)
2d2 )\d 1 by d 2d+1
< TR Y max(h ) [ e G € ) dy.

/#u
Proof: By the Slivnyak’s theorem, we have for almost all

dA, (- x L)

P(V(z,®y+e,—2) €L) = A () (7).

Thus, by Campbell formulas 2.3 and 2.4 and Proposition 4.2 for all measurable B C y,

/ P(V(z,®y+e,) —z € L) — Mi(L)dz

Ay

2d2 )\d 1 1
< =TS max(Au M) / / eV (2 € B)I(y € xur) dady .
d Ad= sl Re JRd

Lomxr) - V(B).MZ(L)‘

This completes the proof, since B and L can be chosen arbitrarily. [ |

The following result concerning means of bounded functionals of the Voronoi cell follows
immediately from Corollary 4.3.

Corollary 4.4 Let V(z,®, +¢,) be as in Corollary 4.3 and let f(-) be a bounded set-function
with SUPgaspelosed | f(D)] < faup < 00 for some constant fop. Then the mean function f of
the cell V(z,®, + €;) can be approzimated by the mean function f of the typical cell of the
homogeneous PVT V(®,) as follows

E[f(V(z, &y + &))] = E[f (V (2, ®u + 2))] + foup L2, (4.6)
where |R| is upper-bounded by the right-hand-side of (4.5).

We shall show now two examples where the right-hand-side of (4.5) can be numerically
calculated.

Example 4.5 [Cell located at some distance to a “hot/cold spot”] Let x1 = B_.(r), x2 =
R?\ x;1) and = € xo. Then

2d2 )‘gnax —Aovg|z—y|d/2¢+!
Rl < D tme [ 1(y € B, () dy
/\2 R4
d? d z|+2r 2 2 2
_ Y /\Z“_af /| | u?~! arccos (r+|e)” +u” —r e revaut /2 g
T AT Ja 2u(r + |z)

Figure 1 shows the above approximation calculated for A; = 5, A3 = 10 (“cold spot”) and
A1 =10, A2 = 5 (“hot spot”); r = 1.
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Probab.

1

08

A A2
o / 0.6
- ° L
. .
- j.\/ 0.4
02

0 702040608 1 12 14 16 18 2 22 24
distance

Figure 1: The upper bound for the probability that the region of different intensity
of points in a Poisson point process has any impact on the Voronoi cell located at
some distance to that region (see Examples 4.5, 4.6); curves from letf to right: cold
spot, cold wall, hot spot, hot wall. Note a short-distance dependence of the region of
inhomogeneity on the typical cell.

Example 4.6 [Cell located at some distance to a “hot/cold wall”’] Let x; = be a halfspace,
x2 = R?\ x; and the distance of € x3. Then

2
Qd Vq )\d o T d jod+1
|IR| < e u®! arccos ue_>‘2”d“ 127 du,
T A5 U

Figure 1 shows the above approximation calculated for \; = 5, Ay = 10 (“cold wall”) and
A1 =10, A2 = 5 (“hot wall”).

5 Decomposition approximation of the stationary
modulated-Poisson Voronoi tessellation

In this section we consider a stationay random partition of the space that modulates inten-
sity of the, independent of it, Poisson process. We show how the distribution of the typical
cell of the resulting stationary-modulated-Poisson Voronoi tessellation can be approximated by
the distribution of the typical cell of the stationary version of the modulated-Poisson Voronoi
quasi-tessellation of Example 3.3 that admits the complete decomposition of Lemma 3.2. In
Proposition 5.1, that is our main result concerning approximations of the model with the ran-
dom modulation, we give the upper bound for the error of the approximation. As a corollary
we obtain an approximate decomposition of the distribution of the typical cell given its gen-
erating point is covered by some particular element of the partition. This time the quality of
the approximation depends on some integrated measure of the total boundary of the partition.
This measure can be interpreted in terms of the linear contact distribution functions of the
boundaries of the elements of the partition.
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14 B. Btaszczyszyn € R. Schott

In this section we assume a stationary decomposing random partition £ = {Z,
1,...,¢}; that is, that for any vector z € R? the distribution of =+ = {Z, +z : u = 1,. E}
is the same as =. Moreover, let = be independent of Poisson processes ®,, u=1,... 7. ThlS
makes the Z-mod PP ®z the stationary double-stochastic-Poisson (Cox) point process and the
stationary-Cox Voronoi tessellation (CoxVT) V(®=) admits the distribution of the typical cell
ME’E).

Denote by T3=(-) the half of the sum of the capacity functionals of the boundaries of the
elements Z; i.e., for each compact set K C R?

14

T3(K) = 5 S P02, K #0) = ZTM

u=1

where 0=, is the boundary of =,. Let p, = P(0 € Z, ) denote the volume fraction of Z,. For
any z,y € R¢ let (z,y) ={z e R : 2 =€z + (1 — §)y,£ € [0,1]} be the segment in R?.

The following proposition gives an approximate decomposition of the distribution of the
typical cell of x-mod PVT. Note that the sum Zi:l in (5.1) below is the distribution of the
typical cell of the Z=-modulated-Poisson Voronoi quasi-tessellation (cf Example 3.3).

Proposition 5.1 The distribution of the typical mark of the stationary-Cox Voronoi tessella-
tion V(®=) admits the following decomposition

¢
> MM (L) + R (5.1)
(&) u=1
where \z) = Zizl APy and the remainder term is bounded by
1 24 )\d

L s = M CXDEY 6:2)

Proof: Use Proposition 4.2 and observe that

E[Z I(z € 2,NB)I(y € EZ)} < %1{(:5 €B)) P(3Z,N{(z,y) #0)

u=1

By the stationarity of =

/ / e—Amian|z_y‘d/2d+l][(I € B)TQEE«I; y)) dxdy
Re JRE
= wB) [ e TR (0, 3) ay,
]Rd

which completes the proof. [ |

Note that the functional T)=((0,%)) can be interpreted also in terms of the so called linear
contact distribution functions (ledf’s) of the boundaries of the elements 0=, of the partition Z.
For a given unit interval (0,e), |e| = 1, the lcdf of 0=, is

1-— Tax(((), te))

[~ To((o)) 2"

H(%’e)(t) - 1 -

INRIA
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(cf [13], section 3.1.1, p. 71).
The following result concerning mean bounded functionals of the Voronoi cell follows im-
mediately from Proposition 5.1.

Corollary 5.2 Let V (0, Pz + <) be the typical cell of the CoxVT V(®z) as in Proposition 5.1
and let f(-) be a bounded set-function with supgi~pcigsed |f(D)] < foup < 00 for some constant
fsup- Then the mean function f of the cell V (0, Pz +¢eo) can be approzimated by the mizture of
the means in homogeneous PVT’s V(®,) as follows

E[f(V(0, ®= + o))

upuE[f (O> (I)u + ‘50))] + fSupR’ (53)

where R satisfies (5.2).

In a similar manner we can prove the following approximation of the distribution of the
typical cell, given its generator is covered by a particular element =, of the partition =. This
distribution formally can be defined as the distribution M?EIEu) of the typical mark of the
following stationary marked point process

Y I(Xi € B)exvies)-x

X;edx

Proposition 5.3 Fizu € {1,...,£}. The distribution of the typical mark of the stationary-Cozx
Voronoi tessellation V(®=) given its generator is covered by Z, admits the following decompo-
sition

() (L) = M”( )+ R (5.4)
(EIE4) )\( 5
where \z) = 22:1 APy and the remainder term is bounded
1 2% ) 4 jodti
R| < — 2 Tmax [ o=Aminralyl®/270 () 4))) dy . 5.5
RI< e | 22, ((0,9)) dy (55)
Proof: 1t goes along the same lines as the proof of Proposition 5.3. [ |

Example 5.4 [Boolean-modulated-Poisson Voronoi tessellation (BmPVT)| Let the partition
= = {X, X"} be given, where X is a stationary Boolean Model (2.5). Note that

Tie) = %(P(&X MK #0)+ PEX NK #0)) = Tpx(K)

and that 0X C X' = |J, 0C; + Y; is another BM. Thus, using the general formula (2.6) for the
capacity functional of a BM, we get

T3=((0,9)) < Tz ((0,9)) = 1 — exp{~BE[¥((9Co) + (0,))]} -

In the following we assume that Cy is the ball By(p) with a random radius p. Then 0By(p) =
So(p) is the respective sphere and thus

v((8Co) + (0,)) = v(So(p) + (0,y)) < 2dvap® |yl .
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Figure 2: Error of the approximation of the typical Voronoi cell distribution in
Boolean-modulated-Poisson model by the appropriate mixture of Poisson Voronoi
models (see Example 5.4); curves correspond to different (constant) volume fractions
of the Boolean Model with varying radius p of its individual ball.

Recall that p; = 1 — py = 1 — exp[—Bv4E[p?]] and thus
Az =M — (A1 — X2) exp[—BraE[p7]] .

Using (5.2), we have for our BmPVT

1 2% )‘;inax ~Aminvaly*/24+1 —2fBdvaEfp*]ly|
‘R| < m?)\d_Q d@ min 1—e dy
= R

min

2d2 Vq )‘gnax OO d—1 _—Aminvgt® /2011 —2BdvyE[pd—1]t
= o s t“ e 1—e dt. (5.6)
) 0

min

Note that the remainder R tends to 0 when 8 — 0 and E[p?] — co such that SE[p?] = const;
that is, when the grains become large and sparsely distributed while the volume fraction of the
BM X is constant. Figure 2 shows the bound (5.6) for the 2-dimensional model (d = 2) with
a deterministic radius p. The curves correspond to different (constant) volume fractions of the
Boolean Model with varying radius p of its individual ball. From top to bottom:

e the volume fraction of the Boolean model p; = 1 — e AmP* = .86 with Al =5, =10
and \; =10, Ay =5,

® D = 0.63 with )\1 = 5, )\2 =10 and )\1 = 10,)\2 = 5,
® D1 = 039 Wlth Al = 10,A2 = 5 and Al = 5, A2 = 10,
® D = 0.31 with )\1 = 10,/\2 =5 and )\1 = 5, )\2 = 10.
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