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Phénoméne d’Airy et
Combinatoire Analytique des Graphes Connexes

Résumé : Jusqu’d présent, le dénombrement des graphes connexes a été traité
par des méthodes probabilistes, par des décompositions combinatoires particuliéres
ou par des manipulations de séries assez indirectes. Nous montrons ici qu’il est
possible de donner un sens analytique & la série divergente qui exprime la fonction
génératrice des graphes connexes. En conséquence, il devient possible d’obtenir
analytiquement des résultats de dénombrement connus en utilisant uniquement des
principes élémentaires d’analyse combinatoire et de 1’analyse asymptotique clas-
sique (la méthode du col). Dans cette perspective, le dénombrement des graphes
connexes par excés (du nombre d’arétes sur le nombre de sommets) se déduit d’une
analyse de col simple. De plus, un raffinement de ’analyse fondée sur des points
cols coalescents donne un développement asymptotique complet pour le nombre de
graphes d’excés fixé, via une connection explicite avec les fonctions d’Airy.

Mots-clés : combinatoire analytique, théorie des graphes, graphes aléatoires,
connectivité, fonction d’Airy



AIRY PHENOMENA AND
ANALYTIC COMBINATORICS OF CONNECTED GRAPHS

PHILIPPE FLAJOLET, BRUNO SALVY, AND GILLES SCHAEFFER

ABsTrAcT. Until now, the enumeration of connected graphs has been dealt
with by probabilistic methods, by special combinatorial decompositions or by
somewhat indirect formal series manipulations. We show here that it is possi-
ble to make analytic sense of the divergent series that expresses the generating
function of connected graphs. As a consequence, it becomes possible to derive
analytically known enumeration results using only first principles of combina-
torial analysis and straight asymptotic analysis—specifically, the saddle-point
method. In this perspective, the enumeration of connected graphs by excess (of
number of edges over number of vertices) derives from a simple saddle-point
analysis. Furthermore, a refined analysis based on coalescent saddle points
yields complete asymptotic expansions for the number of graphs of fixed ex-
cess, through an explicit connection with Airy functions.

INTRODUCTION

E. M. Wright, of Hardy and Wright fame, initiated the enumeration of labelled
connected graphs by number of vertices and edges in a well-known series of arti-
cles [34, 35, 36]. In particular, he discovered that the generating functions of graphs
with a fixed excess of number of edges over number of vertices has a rational ex-
pression in terms of the tree function T'(z). Wright’s approach is based on the fact
that deletion of an edge in a connected graph leads to either one or two connected
graphs with smaller excess. This decomposition translates into a quadratic differ-
ential recurrence from which Wright was able to deduce general structural results,
especially as regards dominant asymptotics.

The problem of enumerating connected graphs by excess is obviously related to
the question of connectivity in random graphs and so, not unnaturally, it has been
also approached repeatedly through the probabilistic method. It is for instance of
special importance in the emergence of the “giant component” under Erdds and
Rényi’s model. Bollobas’s book [5, Ch. 6] contains an account of various aspects of
the question examined from the probabilistic angle. The “giant paper” of Janson,
Knuth, Luczak and Pittel [18] devotes some 25 pages to generating function eval-
uations before going into the actual physics of the random graph phase transition.
Finally, the enumerative results valid asymptotically over the widest range of the
parameters are those of Bender, Canfield, and McKay in [3].

In contrast, our approach here is completely straightforward. It starts from the
bivariate generating function of connected graphs

n

(1) C(z,q) =log| 1+ Z(l + q)n(n—l)/zz_l
- o1 n!
Date: October 11, 2002.



2 P. FLAJOLET, B. SALVY, AND G. SCHAEFFER

that is viewed nowadays as a direct instance of the classical “exponential formula”
of combinatorial analysis; see for instance [15, 32]. (The formula was published by
Riddel and Uhlenbeck [26] in 1953.) We show that this series that strongly diverges
for any ¢ > 0 can in fact be represented by an integral that gives it bona fide analytic
meaning for small ¢ < 0. In a way, this amounts to assigning negative weights
(or probabilities) to edges, contrary to what is done commonly in probabilistic
or enumerative treatments of the question like [3, 5]. Then, standard methods
of asymptotic analysis, especially the saddle-point technique, apply. Thus, in a
logical sense, the enumeration of graphs by excess “only” requires the exponential
formula and basic asymptotics. Together with the article of Janson et al. [18], the
present article is one of the very few approaches that treats connectivity of graphs
starting from first principles. As opposed to [18], our approach is purely analytic
and hopefully a little more transparent from a logical standpoint. It is also a curious
fact that asymptotic analysis is used here to establish an exact enumerative result.

Our principal result is a purely analytic proof of a theorem, known from earlier
works of Wright! and of Janson et al. [18, 34]. A main character throughout the
article is the “tree function” that is defined by

ZTL
(2) T(z2) = zeT®), T(z) = Z n" 1m,
n>1
and is otherwise known to enumerate rooted labelled trees. For any connected
graph with k edges and n vertices, the quantity £ — n is always at least —1 and is
called the excess? of the graph. Our goal is a characterization of the (exponential)
generating functions (GFs) of graphs of any fixed excess.

Theorem 1. (i) The generating function of unrooted trees (graphs with excess —1)

is
1
(3) Woi() = T() ~ 2T7(2)
(1) The GF of connected graphs with excess 0 (unicyclic graphs) is
1 1 1 1,
(4) Wo(2) = 5 log T=7T@) 5 T(2) = 7T7°(2).

(791) The GF of connected graphs with excess k > 1 is a rational function of T(z):
there exist polynomials Ay, such that

Ar(T(2))

(5) Wi(z) = A=T()%*

Part (1) is commonly attributed to Cayley and several of his contemporaries
(see [18, p. 240] for a discussion), while Part (i¢) is due to Rényi; Equation (5)
of Part (4i7) is Wright’s main result. Observe that Wright had to resort to an
“external argument” based on special multigraphs [34, Sec. 7] in order to obtain the
rationality of the Wy (z) in terms of T'(z).

For completeness, we recall that the generating functions provided by Theorem 1
are equivalent to explicit forms for the quantities® C,, 1o = n![2"]W,(z), as results

1Wright’s results were to some extent anticipated by Temperley [31] whose insightful short
note of 1959 seems to rely partly on heuristic arguments.

20ur notion of excess is consistent with the one of Janson et al. [18, p. 240]. Our Wy, coincide
with those of Wright [34, p. 318] and are equal to the C}, in the notations of [18].

3As usual, we denote by [2"]f(z) the nth coefficient in the series f(z).
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from the standard expansions,
1 2" 1 z"
6 — =1 nZ 0 log—— = n-1Z_
(6) 1-T(z) +Zn n!’ Ogl—T(z) Zan n!’
n>1 n>0
where @, is the Ramanujan @Q-function (see [19, 9] and references therein):

anl_’_n—l_’_(TL—l)(21”L—2)_}_‘”‘
n n

The numerical coefficients A (1) are crucial to dominant asymptotics. Indeed, from
either the explicit forms deriving from (6) or from the known singular expansion [21]
of the tree function, namely T(z) = 1 — v/24/1 — ez + - - -, the following holds.

Corollary 1. The asymptotic form of the graph counts Cy, nir, = n![z"|Wi(z) for
fized k > 2 is

n rp Sl A;c(i)_
M awva(2) (3) F(l%k)+§"((3l_lf\/%+0(%) ,

and more generally, lower order terms depend on the derivatives A,(cj)(l).

Our analysis allows us to characterize these coefficients.

Theorem 2. (1) The generating function of the dominant coefficients Ap(1) is
expressible as

(8) i Ar(1)z* = log (i ckzk> ,

k=1
where
(—DFTBk+3)  (=1)*(6k)!
54REIT(k + 1) (3k)!(2k)!132k25K
11) For j > 1, the generating function of the derivatives A9 (1) can be expressed
k
in terms of the classical Airy function

Crp =

Ai(z) = 2i/ 3 gy solution of y" + zy = 0.
™ —00
More precisely, let
2 Ai'((22)2/3) 95
— 214 (/e 2lNST) ) g 0 2
S(z) - ( + (2z) Ai((2x)—2/3)) +288m+0(z‘ ), z—0,
then ‘ '
>4 (et = AV (z, 5(2)),
k>1

where AY)(z,s) is a polynomial of degree j in s with coefficients that are Lau-
rent polynomials in x. These polynomials can be determined effectively from Equa-
tion (41) below. (See Appendiz II for a table.)

The coefficients Afj ) (1) intervene as subdominant terms in the expansion of Wy(z)
and their knowledge provides a full asymptotic expansion extending (7).

Part (i), the form (8) of the driving coefficients Ay(1), is given explicitly by
Janson et al. in [18] where the authors built upon earlier results of the “Russian
school”, most notably Bagaev and Voblyi. In view of Corollary 1 and the accompa-
nying remarks, this form characterizes the dominant asymptotics of the number of
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graphs of some fixed excess k. Part (i¢) of Theorem 2 then provides a “correction
series” that describes precisely what goes on in successive subdominant asymptotic
terms.

Wright had in fact obtained earlier a recursive determination of the A (1) but he
does not appear to have obtained the relation (8). We now know that the W;,(z) and
the A (1) intervene in a number of closely interrelated problems and a variant of the
sequence {A4;(1)}, called the “Wright-Louchard-Takacs sequence”, appears in [13].
Indeed, the W (z) and the Ag(1) surface in such diverse problems as: parking
and linear probing hashing [13, 20|, Brownian excursion area and area below Dyck
path [22, 11], area below the Poisson excursion [27], inversions in trees [14, 23],
path length in trees of various sorts [30, 28, 29|, and naturally the enumeration of
connected graphs [10, 18, 34, 35, 36]. See [13, 20] for a combinatorial perspective
on the relationship between these problems.

The present article fits in a more global endeavour to find simple reasons for
the occurrence of the Airy function in so many problems of analytic combinatorics.
One good reason is the connection with coalescing saddles as exemplified by [2] in
the case of random maps that are random planar graphs of a specific type. We
propose to examine in future works the extent to which it can be applied to other
graph models, to uniform estimates, and to phase transitions that arise in hashing
and random allocation problems [13, 20].

Finally, statistical physics is lurking in the background. In a partly heuristic, but
insightful paper [31], Temperley developed formulae that correspond to a primitive
form of Theorem 1. In [24], Monasson proposed to approach connectivity of the
random graph via the replica method. It would be of obvious interest to confront
the rigourous approach developed here with the powerful (but yet unrigourous)
replica method. The present paper may hopefully contribute to the debate.

Plan of the article. The article is entirely based on an integral representation
for the divergent series in (1). In other words, the generating function of graphs
can be viewed as the asymptotic expansion of a bona fide analytic object. This is
described in Section 1, where a combinatorial bijection due to Gessel and Wang is
used to dispose of some of the divergence issues. A straightforward application of
the saddle-point method for the asymptotics of integrals then yields Equations (3),
(4) and (5) in Section 2. Consequently, Wright’s representation (Part (i) of Theo-
rem 1) appears to coincide with a standard saddle-point expansion. The dominant
coefficients Ay (1) as well as their their subdominant companions, 4} (1), etc., are a
bit more recondite. In Section 3, we show that relevant information can be gathered
by a method of coalescent saddle points, which gives Theorem 2. Thus, it appears
that very detailed formal expansions found by Janson et al. [18] are in fact precisely
double saddle-point expansions. The expressions obtained involve hypergeometric
functions that are reducible to the classical Airy function.

1. PRINCIPLES OF AN ANALYTIC APPROACH

We discuss here the principles on which our proof of Theorem 1 is built. It is
based on assigning a complex-analytic meaning to strongly divergent series that ex-
press graphical enumerations and to correlative series rearrangements. Accordingly,
special attention is required in distinguishing carefully between formal objects and
their analytic counterparts.
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1.1. Formal Expressions. In what follows, for K a field and 21, 2s, ... a collection
of indeterminates, we let K[[z1, 22, - .. ]] denote the ring of formal power series with
indeterminates 21, 22,... and coefficients in K.

Let G, 1 be the number of labelled graphs with n vertices and k edges and C,,
the number of those that are connected. The (formal) generating functions are
defined as objects of C[[z, ¢]] by

2" 2"
G(z,q) :== Z G"’quﬁ’ C(z,q) :== ZC"’quﬁ'
n,k ) n,k )

A graph is determined by the selection of edges amongst all possible pairs of points,
implying the identity in C[[z, ¢]],

—1y/22"

9) G(z,q) = Y (1 + gD
n>0

On the other hand, a graph is a set of connected components, which, by the classical

exponential formula, implies the relation G(z, q) = exp (C(z,¢q)) and consequently

C(z,q) =log (G(2,9))

V4
(10) =z+ag + (34 +¢°)

valid again in C[[z, ¢]].

Consider next the GF of connected graphs counted according to excess and to
size. An essential component of our approach is to record excess and do so by a
negatively signed variable. Then, in C[[z, ¢]] we have

Q0) = 3 Conse ) 2 = ~C(=2/4,~0)
n,l ’

23

24
3! _+...

+ (16¢ + 15¢* + 6¢° + ¢°) 1 ,

2 3

et B 4 (16— 150 4 64 — )2
=2+ o+ (B — )5y + (16 —15¢+6¢° — ¢°) 57 + -+

=W_1(2) — aWo(2) + @ Wi(2) — - -,

where each W;(z) € C[[z]] is by definition the generating function of connected
graphs with excess £:

zn
(].].) W[(Z) = ch’n_f_gm.

For instance W_;(z) is the GF of unrooted trees, Wy(z) the GF of unicyclic com-
ponents, and so on.

Now, the exponential formula (10) in conjunction with (9) permits us to express
Q(z,q) formally as

1\n

(12) Q(z,9) = —qlog| Y (1 - q)n(nfl)/zm

n!
n>0

In this formula, the right-hand side is to be taken as an element of C(g)[[2]] (that
is, the ring of formal power series in z, with coefficients that are rational functions
in ¢) and the reorganization of the series takes place in that domain, according to

the formula
w2 Wl

log(1+u) =

—le
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Massive algebraic cancellations in the coefficient field C(q) take place when the
series is reorganized and this seems to be the cause of many analytic hardships.

1.2. Integral Representations. The basic analytic representation derives from
the following simple lemma that we state in its bare-bones version.

Lemma 1. Let v, be a finite sequence with generating function V(z) = 3, vn2™
and let w be a real number with w € (0,1). Then,

2 1 e i -1 2
(13) Zw" /21)” = _2/ V(ezz\/logw Je~® /2 .
n V2Tt J —oo

The lemma directly results from the classical Fourier integral

e—t2/2 — L /+Oo eitte—2%/2 o
Vo J s

The importance of (13) for the analysis of g-series comes from the fact that the
integral representation linearizes the quadratic forms present in the exponents. Ob-
viously, the lemma generalizes to infinite sequences that do not grow too fast. (See
for instance [12] for a combinatorial application to chord systems.)

The graph generating function G(z, q) specified by (9) and viewed as a function
of its two parameters z,q diverges wildly as soon as ¢ is positive. However, it
acquires a bona fide analytic meaning if it is considered as a series in z with ¢ a
fixed parameter, provided |1 + ¢g| < 1. In that case, it becomes an entire function
of z. Given this, we may legitimately expect Q(z, ¢) to make analytic sense when q is
restricted to the disk centred at +1 with radius 1. Precisely, we fix q as a numerical
parameter such that |1 — ¢| < 1 and consider the weighting 7 that assigns to a
graph g the weight 7(g) := (—q)®9)~19/ where e(g) is the number of edges and |g]|
is the number of vertices of g. We introduce the two analytic objects

lg] lgl
Haug =Y nl9)r, Qng= > w(g)ng

' bl
g graph |g| g connected graph

The function # is an entire function of z for g in the given range, since it is directly
related to G by H(z,q) = G(—2/q,—q)- The exponential connection between H
and Q, namely Q = log #, holds. Observe also that Q is an analytic function of z
for |z| sufficiently small, since #(0, ¢) = 1.

Application of Lemma 1 now yields the following basic integral representation.

Lemma 2. The generating function of connected graphs counted by excess and
weighted with negative weights admits for q € (0,1) the integral representation

1 +cc :172 (1 _ q)_1/2 .
14 = —qlog | — ———7”(‘1)> )
( ) Q(zaq) qlog <\/ﬂ /;OO exp( 2 z q e dz s

where
113,
A=Ag) = Viog(l—a) ™t = va| 1+ za+ gzq” +--- ).

This representation is central to our treatment.
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1.3. Interchange of Limits and Coefficients. We will prove later, as a by-
product of the analysis, that there exists a family W,(z) of analytic functions each
having radius of convergence e ! such that the analytic Q(z, q) satisfies when |2| <

elasqg—0":

¢
(15) o), 5, L Werle)-)
The W, found in the process satisfy precisely the conditions of Theorem 1 and the
following sections will show how to establish (15) from first principles.
If granted the asymptotic expansion (15), the proof is complete once we estab-
lish that Wy(2) = Wy(z). Now, the algebraic quantities Wy(z) are such that, by
definition,

" We(2) = Cppe = (=1) ¢ (n![z"]Q(2, 9)) ,
with Q(z, q) as specified by the formal relation (12), and [2"], [¢’] representing here
formal coefficient extraction in C[[z, g]]. On the other hand, the analytic quantities
Wy (z) are defined as
Wilz) = (-1 g1 Q(z, ),

where the notation [¢‘] means now extraction of the coefficient of ¢* in the as-
ymptotic expansion of Q(z,q) as a function of ¢ with ¢ — 0F. Thus, under the
assumption (15), Theorem 1 only depends on the validity of the interchange of
coefficient operators:

?
[4] ((2"1Q(2, 9)) =[="] ([¢"]Q(z, 9)) -
Naturally, the divergent character of the underlying series renders this interchange
non-obvious.
The basic ingredient is a lemma that grants conditionally such an interchange of
limits and coefficient operators.
Lemma 3 (Interchange of limits and coefficients). (i) Let s, (u) be polynomials
with nonnegative coefficients and assume that the series
S(z,u) = Z sn(u)z"

n>0
converges for |z| < r (somer > 0) and |u| < 1. Assume that there exists a function
f(z) =2, fn2™ analytic in |2| < r such that

lim S(z,u) = f(z) pointwise for any z, |z| < r.
u—1-

Then for all n > 0, the polynomials s,, converge:

sn(l) = lir?_ [2™S(z,u) = [2"] liril_ S(z,u) = fn.

(73) Additionally, assume that there exist functions go(2) = f(z), g1(2), ... analytic
in |z| < such that for w — 17, one has
~ —1)* :
S, 5. D= 1o
Then, the derivatives of the polynomials s, also converge, and, for all k,n > 0,
d* n
Msn(u) = k![2"]g (2)-

u=1



8 P. FLAJOLET, B. SALVY, AND G. SCHAEFFER

Proof. (i) For any fixed u, write S, (z) = S(z,u) and consider the family of analytic
functions {S,(2)} (in the variable z) indexed by u that ranges between 0 and 1 while
tending to 1. Inside the disk |z| < r, the convergence S, (z) — f(z) is dominated
by f(|z|): for positive z, this results plainly from the positivity of the s,(u), and
for arbitrary z, from the triangular inequality. In particular, the convergence is
dominated by a constant M (r') in an arbitrarily chosen sub-disk |z| < 7’ with 0 <
r’ < r. By a classical result of the theory of analytic functions, bounded pointwise
convergence on compact sets implies uniform convergence. (See the discussion of
normal families of functions in [16, Ch. 12] or [17, Ch. 15], especially pp. 246-247.)
Thus, S,(z) converges to f(z) uniformly in any sub-disk of |z| < r, so that, as
u—17,
1 dz 1 dz
sp(u) = 2mi J S(z,u)zn+1 = fa= ari )\, ) i

This shows that lim,_,;- s,(u) = f,, and the form s,(1) = f, of part (i) of the
assertion follows by continuity of polynomials.

(7¢) The proof follows by induction on k. Assume that S(z,u) now satisfies the
stronger conditions of (i) and that the conclusion is met up to k — 1. Set

T(z,u) = ﬁ <S(z,u) ~ Y i) (- 1)z'> .

=0

Then, by assumption, T(z,u) admits a shifted asymptotic expansion of the same
type as S(z,u), and in particular, it converges to the limit gx(2) as u — 1.
Moreover, one has

_ 1 & iy (w— 1)
T(z,u) = Ztn(u)z" with  t,(u) = w_1F sn(u) — ZSS)(l)i ,

A
n>0

3=l

where the t,(u) are polynomials in u. Now, if the s,(u) have nonnegative co-
efficients, then so do the t,(u). Thus, part (i) of the statement applies to the
function T'(z,u), giving

1
2By = 15 —[.n
isn (1) = lim ta(u) = [2"]gx (2),
so that the conclusion is satisfied for k. O

In summary, Lemma 3 asserts that, under suitable conditions,
[(w = 1)*] ([2")5%*(2,u)) = [2"] ([(u — 1)*]5* (2, w)) -

There, the notations stress the fact that an object S(z,u) is taken either as an
analytic function S3** at (0,0) or as the corresponding asymptotic expansion S
as u — 1. The coefficient notations [(u — 1)*] are to be interpreted accordingly.

1.4. Positivity of the Graphical Divergent Expansions. Finally, as we show
now, the function Q(z, q) satisfies the conditions of Lemma 3. This corresponds to a
supplementary positivity property, itself established by a specific external argument
based on depth-first search traversal of graphs and inversions in trees [14].
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Lemma 4. Assume that, pointwise for each z with |z| < €7, and as ¢ — 0%, the
bivariate generating function of comnected graphs Q(z,q) satisfies an asymptotic
expansion,

16 ) ~ — - l’ 713

(16) Q60 5, SWAGIa)s el <e

for a sequence of functions Wy(z). Then, for each £, the identity Wy(z) = W (2)
holds, where Wy(z) is defined algebraically by (11).

Proof. Let Uy, ¢ denote the number of unrooted labelled trees with n vertices and £
inversions* and let

Unlw) = YU and  Uleyu) i= Y Unlw) S,

£>0 n>0

be the corresponding generating functions. A tree with n vertices has at most
(";1) inversions so that the U,(u) are polynomials; the polynomials also have
positive coefficients given their combinatorial origin. Moreover U(z,u) is analytic
for |2| < e and |u| < 1 since the number of unrooted trees is a priori bounded
from above by n™. (A tree is specified by n daughter-to-mother links).

There is an elegant relation between inversions in unrooted trees and connected
graphs discovered by Ira Gessel and Da Lun Wang [14] who proved combinatori-
ally the formal power series relation U(z,1 + q) = Q(z,—q). In essence, a con-
nected graph may be considered as rooted at 1. From this root node, a depth first
search traversal (with a suitable ordering on successor nodes) gives rise to a tree
together with additional return edges that have to be to inversions. Conversely,
each inversion in a tree may or may not be “activated” depending on the particu-
lar graph under consideration, and this fact is seen to be reflected by the relation
U(z,14+q) = Q(2,—q). (The negative argument —gq in @ is there since we adopted
a negative variable to mark excess.) As a consequence, we have the fundamental
relation

By direct combinatorics, U(z,u) has positive coefficients at (0,0) and is bivariate
analytic in |2| < e71,|u| < 1. Now an asymptotic expansion as ¢ — 0%,
0(q) ~ T Wi ()~
0% 5%
can be recast via the relation (17) as an expansion of U(z,u) as u — 17,
U(z,u) ~ Wi—1(2)(u — 1)
(2, )u—ﬂ‘; e-1(2) (v — 1)

Now, Lemma 3 applies. Part (i) of Lemma 3 gives us already Wy(z) = Wy (2)
through [2"]Wy(2) = [2"]Wo(z), this without any requirement other than (16).
More generally, the equality W;(z) = W;(z) follows from Part (i¢) of Lemma 3 via
the identities [2"|W,(z) = [2"]W,(z) valid for all n. O

The discussion above allows us to identify @ and Q. Accordingly, we shall use
the notation @ in the rest of this article.

4An inversion is a pair of vertices (%,7) such that 1 < ¢ < j and j is on the branch from ¢ to 1.



10 P. FLAJOLET, B. SALVY, AND G. SCHAEFFER

2. SINGLE SADDLE-POINT ANALYSIS

We now proceed with the estimation of Q(z,q) as ¢ — 07, starting from the
integral representation (14) of Lemma 2. As will appear shortly, the “tree function”
T(z) of (2) is essential in our developments, and we shall accordingly adopt t = T'(2)
as the main parameter (so that z = te~?). In this section, the objective is to prove
Wright’s expansion (Theorem 1) by an analysis of the integral representation (14)
when ¢ is restricted to some fixed interval (0,a) with a < 1. Precisely, the single
saddle-point analysis of this section is summarized by an expansion (27) of the form

(18)  —2Q(5,0)+ TWoi(5) ~ Wole) ~ X Au)(—a)* (a0,
q q =
where we have set t = T'(z) and a = q/(1 — t)3.

The analysis proceeds in four steps: first a modification of the integration contour
in the representation of Lemma 2 in order to obtain a saddle-point representation;
second, a standard change of variables in order to normalize the saddle-point in-
tegrand; third, formal termwise integration; fourth, an analysis of the remainder
of the expansion in order to prove that the formal result is indeed an asymptotic
expansion of the integral.

2.1. Saddle-point representation. When ¢ — 0T, the integrand in (14) oscil-
lates more and more wildly, this because of the term e?** /q it contains. The tactics
consist in disposing of the oscillation by shifting the integration contour so as to
cross a saddle point. First, we set zA = w, which transforms the integral into

1 oo w? (1—q)~1/2 iw
Q(2,9) = —qlogwﬁm exp(—w —z#e ) dw.

The integrand rewrites as

1 (w? iw w? —2 wl— (1= q)~1/?

(19) exp( q<2 + ze ))-exp<2(q A7) + ze . )
In this product, the first factor captures the dominant part of the integrand, while
the second one acts as a small perturbation since it tends to a finite limit as ¢ — 07.

The saddle points ¢ of the first factor are located at points ¢ such that

2
(20) 4 (w_ + zei“’> =(+ize =0.
dw \ 2 w=¢
We recall first some basic facts concerning the function 7T'(z) which is defined as
the solution analytic at 0 of T' = zeT. On its radius of convergence |z| = e, T'(2)
has a unique singularity 2o = e~! and T'(z9) = 1; moreover as z describes the real
segment (0,e~1), T'(z) increases from 0 to 1. We recognize in (20) the equation
satisfied by T'(z), so that, as long as |2| < e 1, we can take t = T'(2) and obtain a
saddle point
¢ = —it = —1T(2).

In subsequent computations, ¢ = T'(z) is taken as the independent variable (rather
than z itself), and is restricted when the need arises to be a real quantity in (0, 1).
(Analytic continuation makes it possible to extend the domain of validity of end
formula, if needed.)

The saddle-point method now suggests shifting the line of integration parallel
to itself so that it crosses the point (. This does not change the value of the
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FIGURE 1. The steepest descent line S(f(u)) = 0 for ¢t = 0.5:
general aspect (left) and blow up near 0 (right).

integral by virtue of Cauchy’s theorem and the fact that the integrand is small as
R(w) — £oo. Thus, using t = T'(z) as a parameter, setting w = u—it and replacing
the integration contour on (—o0, +00) yields

2 2

t g\t I
Q(z,9) = (t—5> + (1—ﬁ) E_qIOgW’

I:= /:O exp (—é (“; +te™ —1— iu))) h(u) du

h(w) = exp(<%2 _ uit) (@ =A%)+ tei“%> .

The new integral form (21) “explains” the role of the tree function in the problem.
In effect, it will turn out that the first term in (21) dominates as ¢ — 0, so that it
provides the enumeration of unrooted trees, i.e., Part (i) of Theorem 1.

(21)

with

2.2. Change of variable. First, we reduce the kernel of the saddle-point integral
to standard quadratic form. The corresponding change of variable is defined by the
equation

2
(22) y? = f(u) where f(u) := % +t(e"™ — 1 —ju).

We opt to perform the change of variable in such a way that y varies continuously
on the real line from —oo to +00. Given the geometry of f(u), this corresponds to
taking the integral in (21) along the contour depicted in Figure 1—in fact a steepest
descent line connecting —oo to +00. The value of the integral remains unaffected
by virtue of analyticity and Cauchy’s theorem.

The expression of the integral is changed into

(29) 1= [T evnngay,  HE) =)

— 00
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2.3. Term by term integration. The next step is to expand H as a power series
in y and integrate termwise. The validity of this process will be proved later. The
net result of this formal manipulation is to effect a linear transformation £ on
y-expansions: odd powers of y disappear while even powers are transformed by

1 [T _ > 1-3---(2k—1)
Iy 2ky — _/ —y°/q 2kd — k+1/2.
(y™") V3 I A A —
In order to compute the series expansion of H, we examine the formule induced
by the change of variables. The quantity f(u)/u? is an entire function of u, and

u? 2tu e —1 —iu+u?/2
=(1-t— (1 .
f) = 1=y (14 )

The Taylor expansion of its square-root thus has the form

) = -0 S (1)

k>0

with ag(t) = 1 and a(t) a polynomial of degree k in t. Thus y(1 — t)~%/2 has a
Taylor expansion in powers of /(1 — t) with coefficients that are polynomials in ¢.
Then by reversion of formal power series, the expansion of u(y) is of the form

o

(24) (1—t) Zbk T

k>1

with b;(t) = /2 and coefficients by (t) that are again polynomial in ¢, and the
expansion has a positive radius of convergence. Composing expansions then yields

(25) H(y) = i 1+chtq

(1=9t k>1 3k/2 ’

where the coefficients ¢y (t,q) are computable polynomials in ¢ which are analytic
with respect to g for |g| < 1 as follows from the definition of h.
We have thus obtained the formal divergent expansion for Q:

t* g\t ¢ 1 q

~ [t=-Z L4 ———1 4

(26) Q(z’q)q_)m (t 2>+(1 )\2) 5 log T 8 33
1-3---(2k—1) g

—t(l—(l—Q)_l/z) —qlog 1+Zczk(t,Q) ok (1—¢)3k |°

E>1

In particular, the scaling of the integral provides the enumeration of unicyclic
graphs. Assuming the above formal expansion is asymptotic to @ (this is proved in
§2.4 below), expansions at any finite order with respect to ¢ are legitimate and yield
finite order expansions for ¢ — 071 of the bivariate generating function of connected
graphs counted by size and excess:

en Q@ . (16- T - (S - T2 -T2

where the Aj’s are polynomials in T'(z).
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This gives the results of Cayley and Rényi, as announced in (3), (4), as well as
Wright’s result as stated in (5).

This derivation provides a mechanical way to determine the Wy (z) by a simple
process: (i) compute u(y) by Eq. (22) and (24); (4i4) determine the compound
expansion (25); (i74) integrate termwise by (26) and conclude by expanding the
logarithm like in (27). Barely a dozen instructions in a computer algebra system are
needed to implement the algorithm. The computation yields in particular A, (t) =
t4(6 —t)/(24(1 — t)%); a table of the first ten A; (as a function of § = 1 —t) is given
in the appendix.

2.4. Analysis. To complete the proof of Theorem 1, we now legitimate term by
term integration, thereby establishing that the right-hand side of (27) is an asymp-
totic expansion of @ for fixed real ¢t = T'(z) in (0, 1). This is a variant of the classical
Laplace method, where the c;’s depend on g, see also [25, p. 376].

Define the function H,(q,y) by (cf. (25))

n—1 c k
(29) () = 2220, (1 Dl Hn<q,y)> .

For fixed n > 0, integration termwise of the inner polynomial in y yields the initial
part of the formal expansion of the integral I. To show that this process leads to
an asymptotic expansion of I when ¢ — 0, it is sufficient to show that

+1

(29) /_Oo eV /1H,(q,y) dy = O(¢"F").

Since H and the coefficients c;, £ = 1,...,n — 1 are analytic with respect to ¢
for |¢| < 1, so is H,,. Moreover, H,, is analytic with respect to y in some neighbour-
hood of 0 since H is. The bound (29) is obtained using different tools inside and
outside the disc of convergence of u defined by (24), whose radius we denote by R.
Consider some rg < R. For real y with |y| > ro, we have

h(u(y))| < exp(Cy?)
where C' does not depend on g, in view of the definition of h and the fact that |y| ~
V/2|u| for large y. From the change of variable (22), we also get for |y| — co

du 2y
By |7 Y
so that by continuity there exists C’ independent of ¢ such that |H (y)| < exp(C'y?)
for |y| > ro. Since H and H, differ only by a polynomial, such a bound also
holds for H,,. Therefore the portion of the integral (29) corresponding to |y| > 7o
is O(exp(—r3/q)) when ¢ — 0.

The bound for |y| < 7 is obtained by first bounding the coefficients dj, =
cx/(1 — t)3%/2 uniformly with respect to ¢ and then using a simple argument of
majorizing series. Indeed, these coeflicients are expressed by the Cauchy integral

_ 1 [Flgy)

k= 2in yk+1

where F' is directly related to H and is an analytic function of ¢ and y in |g| < 1
and |y| < R. A valid contour of integration is a circle of radius 7o + § < R, on
which |F| is uniformly bounded with respect to ¢ (for |g| < 1/2) by continuity. This

shows that dy < C(rg + 6)* for some C that does not depend on q and k. From

dy,
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there follows that |H,(g,y)| is bounded by C'rg™|y|™ for some C' that does not
depend on ¢ whence the bound (29) which concludes the proof of Theorem 1.

3. COALESCING SADDLE POINTS AND THE AIRY CONNECTION

In this section, we construct the generating function of the constants Ay (1) that
gives the dominant asymptotics of the number of connected graphs of a fixed excess
(Theorem 2, Part (i) and Corollary 1). At the same time, we obtain an access to
the successive “correction series” (Theorem 2, Part (i7)).

The single saddle-point analysis of the previous section is summarized by expan-
sion (18) that we now recall

(30) ——Q(z Q)+ W_< ~ 3 Ax(t)( (a = 0%),
k>1

where we have set t = T'(z) and o = ¢/(1 — t)3. Such an expansion holds for ¢ in
any closed subinterval of [0, 1), for instance ¢ € [0, %], since it is nothing but a linear
rescaling in the asymptotic variable, as long as ¢ avoids 1. However, the expression
becomes meaningless, should ¢ approach 1. Accordingly, the proof of (30) given
in Section 2 gives access to successive lower order terms of the polynomials Ay (t)
near t = 0.

Here, we develop a more sophisticated analysis based on a method of coalescent
saddle points whose principles originate with Chester, Friedman, and Ursell [6] and
which is exposed in classical treatises like [4, 25, 33]. In particular, we follow closely
the treatment offered by Olver in [25, p. 352-356]. Proceeding along these lines, we
establish below the existence of an expansion

(31) ——Q(z q)+ - W 1(2) ~> Bi(t,a) (o —0%),

E>1

that is valid for ¢ in a closed subinterval of (0,1], for instance ¢t € [§,1]. It will
appear that, for ¢ fixed, as o tends to 0, the By (t,a) form a proper asymptotic
scale with By being proportional to o as a — 0+. It will also appear that each

By, admits an expansion in «, as « tends to 0,
) ~ Zbk,i(t)aia
i>k

where additionally the by ¢(t) are polynomials in t. Once this is granted, the ex-
pansion (31) can be “finitely” reorganized into powers of a, and, given that (30)
and (31) have a common domain of validity (say ¢ € [3,2]), uniqueness of asymp-
totic expansions in the scale of powers of a shows that

(—1)F Ag(t) = by (t) + bog(t) + - -+ + by x (2).

Naturally, such an equality that holds numerically for values of ¢ in [%, 2] lifts to
an identity between polynomials. Setting # = 1 — ¢, this allows us to catch the
generating functions of derivatives of the A (t),

AP ) () ~ (<1751 Y 0] Bult, ),
E>1 ez1

where we obtain the coefficients of 7 through expansions at § — 0, and see that
only a finite number of By(t,a) contributes to 67 for a given j. The generating
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functions of derivatives are thus seen to be accessible to analysis starting from
terms of lower order in 6 from (31).
Throughout the rest of the section, we use the notations

9
-1

and think of a as a quantity that tends to 0 while 8 is a parameter that ranges over
some arbitrary interval (0, b], with 0 being allowed in the limit.

The treatment offered here follows closely in the steps of the single saddle-point
analysis of Section 2, with a different change of variables: first an analysis of the
location of dominant saddle points; second, a cubic change of variables in order to
normalize the saddle-point integrand; third, formal termwise integration; fourth, an
analysis of the remainder of the expansion in order to prove that the formal result
is indeed an asymptotic expansion of the integral.

0=1-—t and a=

3.1. Saddle points. The starting point is the integral representation (21):

’LL2

—+oo

(32) I:= / e FW/p(u)du, with f(u) = -+ (1-6)(e™ —1—1iu).
—0o0

The quantity h preserves its former meaning, but now with ¢ = a63.

The main result of the previous section (Eq. (27)) is of a form (30) that ceases
to be valid when 6 approaches 0 (i.e., t — 1). One reason is that f(u) becomes
locally cubic at 6 = 0 instead of being quadratic when € # 0. Solving f'(u) = 0
for u # 0 in the neighbourhood of the origin reveals a “shadow” saddle point p that
is purely imaginary and satisfies the expansion

1 2 22
=-20(1+20+-0>+—6°+--- ).
(33) p z<+3 +9 +135 + )
Non-uniformity arises precisely from the coalescence of the two nearby saddle points
at 0 and p, as t — 1. By construction, f(0) = 0, while the value of f at the other
saddle point is
28

2 2
=0 -—Zp -5 —....
flo)=—3 3 &

We make use of several expansions related to p, as well as the position of saddle
points other than 0 and p. A convenient expression for such quantities is provided
through the use of the indexed Lambert W function [7]. This function is solution
of ye¥ = z. It is a multivalued function and the index is used to distinguish
between different branches. Thus the first saddle point —it introduced in Section 2
is —it = iWy(—2), while

o= i(W_(=2)-Wo(—2) = i (t + W_a(—te ) =i (1= 6+ W_((6 - 1)t ).

Of course, the W bear no relation to Wright’s generating functions Wj or W.
As illustrated by Figure 2, the next closest saddle points are two symmetrical
points o and —a&, that are given by

(34) o=i(1-0+W_y((6 —1)e1)).
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FIGURE 2. The landscapes of —Rf(u) and —RP(v).

3.2. Change of variable. In order to estimate asymptotically the integral in (32),
the classical method of Chester, Friedmann and Ursell (see in particular [25, p. 352—
356]) is used. Consequently, we introduce the cubic change of variable

(35) f(u) = P(v) where P(v) = %(21)3 + 360?).

The polynomial P is such that P’ has two roots at 0 and —6, P(0) = 0 and P(—0) =
f(p). Thus P and f behave similarly in the neighbourhood of their two central
saddle points, and one expects the change of variable to be conformal in this neigh-
bourhood. Indeed, as illustrated by Figure 2, it is only when approaching the
next saddle points o and —& of f that the two landscapes start to diverge quali-
tatively. Numerical experiments indicate that the change of variables is one-to-one
for any 0 < 6 < 1 and |u| < |o(0)| = |1 + W_a(—e™1)| ~ 7.748360311. However, in
our proofs it will be sufficient to make use of the following.

Lemma 5. [6, Th. 1] There exists 89 > 0 and r,, > 0 such that the change of
variable (85) is one-to-one for any (6,u) such that |0] < 8o, |u| < 7.

Since f does not possess any saddle point outside 0 on the real axis, the change
of variable is also one-to-one on the whole domain of integration. The new con-
tour of integration is obtained by following consistently the proper branch of the
cubic (35): for real v with large absolute value, f is positive; since f(p) < 0, this
forces limarg(v) = +7/3; for small u, f(u) ~ 6u?/2 so that the contour is vertical
in the neighbourhood of v = 0; finally, v = —6 corresponding to u = p fixes the
orientation on the contour. The integral (32) thus admits the exact expression:

in/3
e %) du

(36) I=— / L UG d,  Glo) = hue) -

Figure 3 displays the images of circles and of the real axis by the change of variable.
Small points on the left correspond to the next saddle points ¢ and —, that are
mapped to cusps on the right in the v-plane.
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FIGURE 3. Circles and real axis in the u-plane (left) and their
images in the v-plane (right) for § = 1/10.

3.3. Term by term integration. As in the single saddle-point analysis, the next
step consists in expanding G as a power series

(37) G(v,0,0) =Y gi(a,0)0",
k>0

and integrating termwise. The validity of the process is proved later. This formal
manipulation reduces to a linear transformation 9t on v-expansions defined by

in/3

e oo
M[¢] := / e~ P/1g(v) dv.
e—im/300
The transformation involves the basic integrals
e300
-1 3 2
(38) Ri(§) = / et (T3 )k gy,
e—im/300

The net result of this formal step is an expansion of the fundamental integral I,
namely

_g?
- 0. )9+ =)
(30) I kzzogk( 0)6 Rk< - )

We show in the next section that Ry (¢) behaves roughly like (£!/2/4/3)* when ¢ —
0. We know that Q(z, ¢) is determined principally by log I. At this stage, it suffices
to compose expansions in a routine way in order to obtain the final expansion
of Q(z,a8%) as a — 0.

The rest of this section completes the proof of Theorem 2 by giving:

— precise information on the basic quantities Ry, including the fact that these
form an asymptotic scale;

— the actual computation of the series expansion (37) and of the resulting
expansion of Q(z,q);

— an argument ensuring the validity of term by term integration, which con-
ditions the final result.
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3.3.1. The hypergeometric scale. The asymptotic expansion (39) involves the basic
quantities Ry (£) of which the character as £ — 0 is needed. The expressions to be
obtained involve the generalized hypergeometric series that are classically defined [8]
by

a1,y p | N (01)n e (Gp)n 2"
thJ(bl,...,bq a:) ‘_7§) (b1)n -+ (bg)n n!’

where (a), = a(a+1)---(a+mn —1). For p > g+ 1, such series have radius of
convergence zero. However, they can still be used to express asymptotic expansions,
as we see now.

Lemma 6. For real £ — 0%, R) admits the following (divergent) power series
expansion:

i(—1)§ (%)TF(%—I) 3F1(T’£’T _g), k even,
k42
£—0 | . E—1 = ke kto ks
i~ 2(5) T T R(TE ), koda
Moreover, the Ry, are all reducible to linear combinations of
A¢) = 2Fo(%L% _5) and  B(§) = 2F0(%L% _5)_

These hypergeometric series are often encountered in uniform asymptotic ex-
pansions. In particular, A occurs in the asymptotic expansion of the classical Airy
function [1, §10.4.59], while both A and B appear in the expansion of its derivative.

Proof. For real positive &, deforming the contour to the imaginary axis shows that
another expression for Ry is

+oo 2 3
Ry (&) = 2i/ e E o cos(2v— - kf) dv.
0 £ 2

The change of variables 3v? /¢ = w leads to

k41

e\ 2 [T o 12 2{1/2w3/2 -
21 (5 /0 e Yw cos W—kg dw.

The results follows from expanding the cosine and integrating termwise, which is
justified by Watson’s lemma (see e.g. [16, Vol. I, p. 389)]).

The reduction to A(¢) and B(§) follows from contiguity relations. If Ej, and Oy,
denote the hypergeometric series involved in the even and odd case respectively,
then it can be seen by series manipulations (or by integration by parts) that

&(k+3)(k+5)Ery6 + 6(k + 3)Egpya — 6(2k + 7)Epy2 + 6(k +4)E, =0,
&(k +6)(k + 8)Okq6 + 6(k 4 6)Opta — 6(2k + 7)Opq2 + 6(k + 1)O, = 0.

It is then sufficient to reduce the first three E;’s and O}’s to the desired form. The
following can be proved by series expansion:

Eo = A(§), E> = B(§), Ey=ZA(f) — 73+ ) 3]
01 = B(£), O3 =g (A(€) = B(€), Os = —5igr A(€) + 552 (6 + 5¢) B(€).
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3.3.2. Ezpansions. Locally, a series expansion for the change of variables is obtained
as in the previous section by taking square roots and inverting power series. This
yields

3f(p)v+ 2 —350(5)_3f(p)+3f(p) v?

IYE 0 63 6+ | 6

u =21

+...
(40)
49

41 1
—vl2 2202 4 ... v e
w( +0+609 + >+w (3+1800+ >+

Substituting this expansion in G yields (37) with first terms:

Gv) = 2ie"O (1 + (%,/—3%? - 6%(1 - o)< L - lnl - %))v+ 0(?))

43 2773
=22 (1404+ 602+ (2n —a)f® +---
ie ( +0+ 60 +(540 8a) +

7 259 1673, (147509 1 \ .. ,
T <3 1800 T 32207 T (907200 * 240‘) o+ ) +O( )>

The expansion of @ itself is obtained in the standard way from

— af®log (W égk(a,ﬁ)Gk“Rk (—a03/f(p))) )

by replacing A, f(p), the g; and Ry by their expansion and reordering the terms in
increasing powers of 8. This yields

Sa)

2

) 4 (70— 2) (b

I =e1/29-1/2 <2F0(;Lg

1
V2T
15

0
+t 3 (8 2Fo(5;€

ﬁ;)) +) .
)

Or, put otherwise:

2
Qz,q) — (t—12/2) + (% log 1 — & - %) ¢=—ab*mn (2F0(%;é

4

- f—2(2a + a(7a — 2)5)

5
b (%a(m —2)%8” 4 (2450° — 94a + 20)S + 114a — 20)

_ L ga(?a -2)38% + E(?a — 2)(2450° — 94a + 20)S?
20160 \ 9 3

+%(2019a3 — 8400° + 1440 — 40)S — 36

oo (7330” — 854a” + 164ar - 40)) TR
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where

$%|_3a . L
5= H_Z (1+(2a)1/3%) 14 (0?).

2F0(6i%

For j > 0, the coefficient of 6>t/ in this expansion is precisely the generating
function of the Agf)(l). The first 5 generating functions are given in Appendix IIL.
As a final check, expanding the coefficient of #* in the above expansion of Q with
respect to a, one gets

19 5 65 5 1945 , 21205 ; 603965 ; 10454075 ,
247 T 48 384 768 3072 6144

from which it is easy to recognize the coefficients of 62 in the polynomials A, of
Appendix I, that were obtained by the single saddle-point expansion.

+0 (a®),

3.4. Analysis. So far, we have proceeded formally without paying attention to
convergence. We now show that the series (39) is asymptotic to the integral I.
The proof is similar to that of §2.4, but is technically more demanding because of
uniformity issues.

Recall that the cubic change of variables (35) is one-to-one for |6]| < 6y and either
|u| < ry or w is real. Moreover, we shall make use of the following, where r, =
max,|—, |[v(u)| and ag = 6, °.

Lemma 7. For |0] < 6y, |a| < ag, |v] < Ty, the function G(v,,0) is an analytic
function of its arguments.

Proof. The change of variables is analytic and does not involve a. By definition,
G(v,,0) = h(u(v))du/dv. Its expression shows that h is analytic in u, 8 and g =
af?® provided |g| < 1, which concludes the proof. a

We now define G,,(«, 6,v) by (cf. (37) and the similar (28))
n—1
(42) Gv) = ng(a, 0)vF + "G (e, 8, v).
k=0
The proof that (39) is asymptotic to I is concluded by the following.
Lemma 8. Let 6 be [0,6y) and a > 0, then
e300
(43) I,(a,0) = / e P0G, (a,0,v) dv = 0"0(a™?).
e—im/300
As a consequence of the previous lemma, the coefficients gi(a,6) in (37) are
analytic for |f] < 6y and |a| < ag. The uniform bound on I, then legitimates
expanding the coefficients in (39) with respect to a and reorganizing the truncated
series. Moreover, analyticity with respect to 6 legitimates expanding with respect
to 4, leading to an expansion whose coefficients are asymptotic expansions in « that
give the generating series of the numbers Ag ) (1) of Theorem 2.

Proof. As in the single saddle-point analysis, the proof of the bound on I,, is ob-
tained by bounding |G, (e, 8,v)| in two different regions. For small v we compute
a bound on the coefficients g; and then use a majorizing series argument. For
larger v we consider the behaviour of G(a,8,v) when |v| is large but remains on
the contour.



ANALYTIC COMBINATORICS OF CONNECTED GRAPHS 21

The coefficients g are given by Cauchy’s formula
G(a,0,v)
2z7r ookl
where the contour is for instance a circle centered at the origin with radius r < r,,.
For |a| < ap and € < 6y, G being analytic is uniformly bounded and thus there is
a constant M such that |gy(a,8)| < M/r*. From there it follows that
—n+1

gk a,6

|Gr(e, 8,v)| < M
= [of’
as long as |v| < r.

In order to bound (43), we deform the contour into three pieces: a vertical
segment from —ir, /2 to ir,/2; arcs of the circle |v| = r, /2 from the extremities of
this segment to the original contour of (43); the rest of this contour to infinity. The
integral is then bounded on these three pieces separately.

On the vertical segment, the integral is bounded by

of? R
< Mr*"@"+1 <_—> nl.
3£ (p)

On the arcs of circle, a direct computation leads to the bound

/2 )
/7r/3 exp( i(gg (r3 cos(3¢) + 305 cos(2¢))> (%u) +1 Sy

where K is a positive constant. (The first cosine is negative and the second one is
upper bounded by —1/2.)

For |v| > r,/2, using the change of variables (35) and a reasoning similar to
that of Section 2.4, we get that |Gy (a,8,v)| < exp(C|P(v)|), where C is a positive
constant. Injecting this bound into

+oo
/ e_f(“)/an(v(u))— du,
ro

where rq is such that |v(rg)| = r,/2 leads to a bound exp(—C'rZ/af3) for the
remaining part of the integral. Since ry is bounded from below uniformly with
respect to 6, this concludes the proof of the lemma. a

Ty /26
/ BL@ e gnity "Mr, " dw
—74/26
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APPENDIX I: POLYNOMIALS Ay FOR k=1,...,10

The numerator polynomials of the generating function (5) of connected graphs

with excess k. In this list, 8 = 1 —¢.

Ay

Ag

Az

Ay

A5 =

Ag

A7

Asg

A

©

1
=, (519 + 2602 — 146° + 6% +0%)

1
= (18- 650+ 10862 — 876% + 420* — 230° + 120% — 97 — ¢%)

1
= raq (9525 — 201756 + 6353002 — 745600° + 535740* — 273780° + 115046° — 402007
+17256% — 8796° + 78610 + 76011)

1
= Ti530 (50850 — 3194250 + 86168502 — 13155250° + 12771850 — 8606120° + 4415260° — 18578667

+660640°% — 219776° + 6577010 — 248101 + 124102 — 1146*% — 1086'%)

MUSZGQGZS — 5707469250 + 183359295002 — 34319170906° + 41952020950% — 35062324236°

+ 23020806760° — 117087140807 + 49751328305 — 18300345960° + 601177020"° — 180425700 + 514740162

— 1399153013 + 4851840'* — 2390446° + 224440° 4 20712617)

1
= m(1189944000 — 98791008756 + 3677879362502 — 8134745097560° + 1197755834450

— 1253454584550° + 980040640250° — 5999829511907 + 300815966016° — 128224952010° + 4781320559610
— 1596163521611 + 48601960762 — 137459453012 + 366876510* — 053222005 + 2421571016 — 780888617

+ 38425208 — 366200° — 3300062°)

1
= ———— (2596113838125 — 241701146268750 + 10223188855425002 — 2605794622935000°
1393459200

+ 4485353216988000% — 5554320073622000° + 5170942668589600° — 3757809635925200 7
+ 2210369988465100° — 1089182823566900° + 4630464294504400 — 173878558351520"1
+ 5877848600212012 — 18166181256446% + 5202430882400* — 139724911768601°

+ 3564005642001 — 8752126699017 + 21236878580 — 5125780000° + 159451124920

— 76725412021 + 7390832022 + 651897662°%)

= ———(54927280170000 — 56662781942812560 + 26824602404396250° — 773668222131262560°
2786918400

+ 152382207023475750% — 218156583852371500° + 236573726054155000° — 2007274826165112007
+ 137253126997243600% — 77840078308877100° + 3764527022899598010 — 1589720169572030611
+ 597998092660338012 — 2036617471852960 % + 6364385621667601* — 1845594908510061°

+ 501543354174801¢ — 1288875268621017 + 3160124190576% — 7468345285761°

+ 1720681291162 — 3959710266621 + 917625928022 — 27469919662° + 1309275166%%

— 127127846%° — 10997952626 )

= ——— (87498905321953125 — 9905013754058981256 + 51871787359475737500>
367873228800

— 166939400227582867500° + 370214294152803581250% — 601974300849169652250°
+ 746889757209202915000° — 7283527697343784810007 + 572521530879543699300°
— 371538886214523778300° + 203811478351577107000° — 966591576704982082801!
+ 404367902408040918602 — 15178822141481801226% + 51857200956237072001*
— 16316825143489006401° + 477579026952905450% — 1311436689884033767

+ 34042117499108066 % — 8411416734923186° + 19918819353579362°

— 4553204785526162" + 10135109982756022 — 222003721407662°

+ 48950215705602* — 1097042118046%° + 318050227446%% — 15031625080627

+ 1468402912028 + 124816627202°)

= —————(2372826356485200000 — 292406946001350468750 + 1678039108549792931250°>
735746457600

— 5960044156291372743750° + 14695394664078877691250* — 26763633242744257571250°
+ 37444459561690183598750° — 41390270455117959394250"7 + 36974188060114422097750°
— 27242206694526564621100° + 1688684964920190890730010 — 8981951090343948957900 11
+ 4177516517534052648780 2 — 1728391230053110836186'% + 645664138316670991986 %

— 220548396362568493780 1% | 69625446183552011500 1% — 20498409715101617996*7

+ 5671697993833056410 8 — 14847722652700651501° + 3699609115180606562°

622 023

— 8822528635761777621 + 20243582444191590%2 — 44940009047937360%° + 9711939530173192%
— 2059301311073662% + 432732799074462% — 920836701928027 + 20062472670062%

— 5659350530402° + 265458859446%0 — 2605385952031 — 2179301760632).
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APPENDIX II: PoLyNomiaLs AU) FOR j=1,...,5

The generating functions ), Ag ) gk providing the correction terms in formula (7)
are given by the polynomials AY) (z,v) evaluated at

9 1/ Ai'((22)2/3
v="5()=-= (1+(2x) /3W> '

AN = L 2z + z(7z — 2)v)
12

@1 _ 2,2 2 _ _
A = o (5z( 2 + 72)202 4 (98022 + 80 — 376x)v 80+456m)
—1
A® = (522 (=2 + 72)%0° + 6(—2 + 72)(24527 + 20 — 94z)v>z+
25920z

(—320 + 161522% — 672022 + 1152z)v + 320 — 58642 + 683222 — 1312z)
1
1 . (525503(72 + 72)%v* 4 840(24522 + 20 — 94z)(—2 + 72)%0322
4354560022
+ 56(2800 — 22640z + 462735z — 3365402° + 10966822 )v2z

+ (—627202 — 129692162° + 27938400z" + 29899522 + 89600 — 9632880$5)v

+87866882° — 192657602 + 17920z — 181171222 — 89600)

1
AG) — 13063680025 (105:124(—2 + 72)%0% + 210(24522 + 20 — 942)(—2 + 72)%v?2®
x

+ 28(—2 + 72)(321405z* — 2373602 + 8278822 — 16960z + 2000)v°> 22
— 4(—232960x + 33600 + 20242740z* + 152499222 — 72586162° — 272775002° + 42143852° )v2 2
+ (109402882°> — 1075202 + 9474873625 — 274534422 — 42289728z — 35840 — 674301602% )v

+35840 + 158950422 + 236718722 — 66681602° + 1971202 — 56486304z5) .
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