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Abstract: This work is about a problem from computational biology known as protein threading
problem. By finding out an appropriate linear mixed-integer programming (MIP) formulation we
demonstrate that the real-live instances of this problem could be efficiently solved by using only
some linear-programming (LP) solver instead of special-purpose branch&bound algorithm. This is
due to the fact that within the frame of MIP model proposed, all biological instances, we were able
to test, attain their optima at feasible vertices of the underlying LP polytope which is the essence
of the statement in the title.
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Le probléme de reconnaissance de repliement de protéines est-t-il
dans P?

Résumé : Cet article concerne le probléme de reconnaissance de repliement de protéines connu
sous le nom de “protein threading problem”. Nous proposons plusieurs formulations MIP (Mized-
Integer Programming) du probléme et nous montrons que toutes les instances basées sur des données
“réelles” (utilisées par les biologistes) peuvent étre résolues par un logiciel LP (Linear Programming)
au lieu d'un algorithme b&b (branché&bound) dédié. Dans le cadre de notre dernier modéle MIP,
Poptimum de tous les cas que nous avons résolus, est atteint dans un sommet (0,1) du polytope
sous-jacent, ce qui explique le titre de cet article.

Mots-clés : protein threading problem, mixed-integer programming
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1 Introduction

Although, biological results are beyond the scope of this paper and for the reader, interested in “why
the protein threading problem ?” question it is better to see [I}, Bl 8, 9} 10], we will try to describe the
reasons behind briefly. The protein folding problem also referred as the holy grail of molecular biology
or the second half of the genetic code is to determine the three-dimensional folded shape (protein
structure prediction) of a protein (sequence of characters drawn from an alphabet of 20 letters). It is
important because the biological function of proteins underlies all life, their function is determined
by their three-dimensional shape, and their shape is determined by their one-dimensional sequence.
The importance of computational solutions increases due to the explosion of sequences becoming
available, compare to the slow growth in the number of experimentally determined three-dimensional
structures. The direct approach to protein folding is based on modeled atomic force fields and
approximations from classical mechanics and still faces stiff challenges for large proteins. Another
approach is to exploit the fact that the amino acid types have different preferences (expressed by
a function f (say)) for occupying structural environments (alpha-helices or beta-sheets, so called
segments here below). Additionally, some of the approaches exploit the fact that there appear
to be distinct preferences for spatial proximity as a function of those environments (the local and
non-local interactions and functions p;; scoring the pairwise interactions between the ith and 5
segments). These interaction preferences have been quantified statistically and used to produce
a score function reflecting the extent to which the amino acids from the sequence are located in
preferred environments and adjacent to preferred neighbors. This done, a target sequence(query) can
be aligned or threaded into a template structure(core) by searching for threading which optimizes
the score function.

More formal presentation of the problem will be done by simultaneously introducing of an
already existing terminology. Let C, called core be a set of m items S;, called segments, of length
l;. This set must be aligned to a sequence L of N characters from some finite alphabet. Let ¢; be
the position in L where S; starts. An alignment is called feasible threading if:

i t; > ti—1 + l;—1 for all 4

ii. the length g; (called gap or loop) of uncovered characters, i. e. g; = t; —t;—1 —1;—1 is bounded,
say g/ < gi < g™

Each feasible threading ¢ = (¢1, to, ..tm) is scored by a function f(t) = > fi(t;)+>_ hi(gi), where
fi scores the placement of a segment ¢ to a given position ¢; and h; is used in some experiments for
scoring the gap between two consecutive segments. If the problem now is to minimize f(¢) over the
set F' of feasible threadings, one can show (see section B)) the equivalence with the shortest path
problem between two vertices of a very structured digraph. What makes the problem interesting
(and intractable-NP-hardness is proven in [3]) is the the paths lengths increase by additional costs in
the following way: for some given subset S " of the set of all pairs (unordered) of segments, the length
of the path (t1,%,...,tm) is increased by Y- p;;(ti,t;) where the sum is taken over all (i,j) € s
The function p;; scores the pairwise interaction between segments S;, S; in dependence with their
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4 Nicola Yanev & Rumen Andonov

alignment #;,¢; with L. One can also show (again in section [ that if for all (i,5) € S', j =i + 1
(local interactions) then again we obtain an equivalent (easy solvable) shortest path problem. So
what makes the problem difficult is the presence of non-local interactions, i. e. j > 1+ 1.

This mathematical model is the one we started with and what is still considered as a challenge is
finding of a really fast algorithm for solving the abovementioned optimization problems. The main
inspiration for us to start working over this subject are the results announced in |1}, 2] where a branch-
and-bound algorithm (b&b) is described which is very successful over a big set of real-life (biological)
examples. We were aware of the fact that the real-life instances are may be more tractable than
randomly generated instances, but even then, a branch-and-bound algorithm able to solve non-linear
integer programming problem over the search space of size up to 103! feasible threadings by using
a relaxation of non-evident quality could become a reason for asking questions like: i) how much
hard is the problem on biological instances (especially for so called self threading)?; ii) could it be
improved (either by improving bounds or by creating another mathematical programming model)?;
iii) is it necessary to write special purpose code or some existing solvers could be used? The answers
of these questions is given in the subsequent sections.

2 Linear mixed-integer programming formulations

The first and most obvious model for the protein threading problem from the introduction is to
minimize the objective function

Z Z gijTij + Z Z GijklTij Tkl

(i,k)eE j<I

subject to:

n
dmy=1, i=1m (1)
j=1

Tij SZ-’Ei—Lk, i=2,m;j=1n-1 (2)

where m is the number of segments, n = N — ;" | I + 1(the numbers I} are the lengths of
the segments increased by lmi" the minimal number of gaps between the segments k and k + 1) is
the number of possible placements of each segment relative to the end of the previous one T;j are
binary variables with z;; = 1 meaning the segment 4 starts from the absolute position Z b1 e+ of
the protein sequence L. The meaning of ([Il) is obvious and () cares for non-overlapping placement
of segments. The nonlinear term in the objective function is for the local and non-local interactions
between the segments, i. e. it is supposed that a nonempty set E = {(i, k), k > i} of segments pairs
(i,k) is given together with scores g;;x for placement S; at the 4% relative position and Sy, at [
one.

INRIA



The protein threading problem is in P? 5

In order to linearize the problem we introduce new variables z;jx; € [0, 1] in the objective function
instead of z;;zk; and add the constraints

Zijkl < Tij, Zijhl < Tht, V(i k) €EE; 1> (3)

Tij + Tpy — zijp < 1 (4)

In this way we obtain a linear mixed integer programming problem of minimizing

Zzgz’jfﬂij-F Z Zgijklzz’jkl
J

i (i,k)eE j<I

subject to () @) @) @) and = € {0,1}, 0 < z < 1. We will denote this model by M1.
For the further discussions it is worthwhile to list some easily derivable observations:
Obs. 1: The number of feasible x is given by N, = (?n_l"'m) and could activate at most

N, = (Z_H'k) pairwise interactions. Here k is the number of segments, covered by all local and

non-local interactions. So when k < m, the models based on z to be integer instead of z will have
smaller search space. ( Further we will show how to reduce k to be the number of segments covered
by the non-local interactions only).

Obs. 2: Adding a constant to all coefficients of the objective function does not change the set
of optimal solutions.

Obs. 2 allows for considering instances with all objective function coefficients negative (in the
biological examples they are of different signs), which in turn allows to discard all the constraints (@).
However, this option was never used because of the weakness of the LP-bounds, used for fathoming
the nodes of branch&bound tree. It is demonstrated in [4] that ([B) and (@) give the tightest (in
the sense of underlying polytope) possible linearization of the logical implication z = 1 iff z = 1
and y = 1. It is important to say now, that this and all subsequent MIP (from Mixed-Integer
Programming) models were intended to be solved by CPLEX solver of ILOG version 7. 1, and not
by some special-purpose solver (if any?). Unfortunately, this model, mainly because of the weakness
of LP-bounds (more detailed reasoning is given in table [M), was never efficiently solved by CPLEX
and we leave it with some lessons learned.

3 Network flow formulation

Let G(V,E) be a digraph with arc set E = {((¢,k), (s + 1,{)) | ¢ = 1,m — 1; [ > k} and vertex
set V.= {(i,k) | 1 = 1,m; k = 1,n}, and let NL = {(41,71),-.-, (3, 7¢)} be the set of non-local
(is < js — 1) interactions. This induces the set of indices B = {(ixljrf) |f > 1,k =1,t; | = 1,n}
meaning that the left segment iy of the non-local pair (i, ji) is placed at position / and the right
segment jj of the same pair at position f. The condition f > [ is in accordance with the sub-paths
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6 Nicola Yanev & Rumen Andonov

in G from the vertices in layer ix to the vertices in layer jx. We introduce also variables z. for e € £
and z, for e € E"?. Now we can model the problem from section Bin the following way:

Z Cez, + Z CeZe = min (5)

ecE ecEind

such that: Z Te — Z z.=0 V(i,k) eV (6)
e€l'(i,k) e€T—1(4,k)

Y ze=1 (7)

ecI’(S)

Ze < Z Te, 2e < Z ze Ve= (ig, 1, jk, f) € E™ (8)
e€T (ig,l) e€T (4, f)

Z Tey Z Te— 2, <0 VYee E™ 9)

e€l (ig,l) e€l =1 (4, f)

> Zigjr =1 V(i jx) € NL (10)
f=l

z — binary,z >0 (11)

Into this model S is an artificial source node (see fig.1), I'(x) is the set of arcs outgoing from vertex
z and I'"!(z) is the set of in-going arcs. Constraints (B]), () are network flow representation of the
paths from S to T (see fig.1), constraints (B) force the path to pass through the pair of vertices
activated by SOS (Special Ordered Set) constraints (IT), constraints (@) are for tightening the LP-
relaxation. This model was built under the presumptions of Obs.1, i.e. to enumerate the smaller
search space of variables z than of z, that will be the case if we switch the integer requirements from
z to x variables (this need some minor changes in the model). From the well known properties of the
network flow polytope one can see that for each fixation of z variables to 0, 1 the respective vertices
of the underlying polytope in (z, z)—space have (0,1) z coordinates. To conclude we need to say
how the arcs weights ce are related to the scores from the introduction. Each weight is a sum of
three numbers: one for the tail of the arc (segment-to-position cost), second for the gap cost between
segments(if any) and the third is for the local interactions (if any). If the leading and/or trailing
gaps are scored then these numbers are prescribed to the out-going arcs from S and/or in-going arcs
in T. From the graph in fig.1 we could have more geometrical insight for the problem of optimal
aligning of some sequence with a core of 5 segments, each one with three possible placements: the
path given in a thick lines has a length 5 but taking into account the pairwise interactions (in this
case (1,1,3,2), (3,2,5,2) - the path passes through the vertices (1,1),(3,2), (5,2)) we must add the
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The protein threading problem is in P? 7

costs for passing through these vertices ( c¢1132 + ¢3252 ) to 5 and to obtain the actual length 14
of the path (threading). Thus if we have given weights to all arcs and a table of the costs for the
designated non-local pairwise interactions the optimization problem will convert to finding a path
from S to T with minimal updated length. From this figure we can also stress z- to- z relation:
once the z variables are fixed (21132 = 1, 23250 = 1, all other are zero because of ([I)) to find which
x will be fixed to 1 is equivalent to find the shortest from among the paths passing through (1,1),
(3,2), (5,2). Within this framework we can answer the question for the effectiveness of an existing
branch&bound algorithm.

3+35 .
NON-LOCAL COSTS
// O a3 39

S T (11) 31 |4] B B |1

1435 1+2 (11) 32 2] 31 G52 |4

© (11) 33)|7| (31) (53)(2

(12) 32) 3] (32) 52 |7

3+05 (12) 33) 8| (32) (53)|5

3+25 (13) 33) |5 @93 (692

b =f((11)(21) (32) (42) (52) =115
opt=f((1,1) (2.1) 3.2) (4.2) (5.2)) = 14.0

Figure 1: Graph corresponding to the network flow formulation of the problem. f(z) is a function
computing the exact cost of the path x, while f(z) computes its lower bound according to [II.

4 Related works

In [T 2] a branch&bound algorithm (later referred to as LS) is given together with the demonstration
of its effectiveness on a wide range of instances. The idea of the algorithm is simple and could be
now easily explained. The idea (in the framework of our graph setting) of the lower bound is based
on the following: let (1,41),(2,42),...(m, iy,) be an arbitrary path in the graph G and let (k,[) be a
vertex on this path s.t. {(s1,k),...(sp, k), (k,71), ..., (k,7c)} € NL (k is left or right end of at least
one non-local relation). Let S, = {(s1,k),...(sp,k)} and Sgr = {(k,r1),...(k,7¢)}. Then the number

I*(k,1) = 0.5min;<; Z Csyikl + 0.5min; <, Z Chirjr
$;ESL TjESR

is a lower bound to the costs incurred by the non-local relations having (k,l) at one of their
ends [I, 2]. Now we can add [*(k,l) (shown on fig.1 as the second term in the sums over some
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8 Nicola Yanev & Rumen Andonov

arcs) to the lengths of all arcs out-going from (k,7). Having done this for all vertices covered by
the non-local relations then the shortest path from S to T in the so updated graph G is a lower
bound for the objective function (). The O(m?n?) complexity of this procedure [T, 2] could be
derived from the complexity of the shortest path problem and the complexity of the algorithm for
I* computation (on fig.1 1b is the bound obtained by this relaxation and opt the optimal value). In
the same work a list of impressive computational results is given on a reach set of s.c. self-threading
(the protein sequence is aligned with its own core) instances. When we run CPLEX on the MIP
models generated according to (B)-(TI]) on a large subset of these instances the results are always:
the LP relazation attains its minimum at a feasible (0,1) vertez, hence optimal. This property is so
pertinent to the model that one could use it for defining the self-threading subclass. The relaxed
problem used in LS model [, 2] is based on minimizing of a function f(z) which is inferior to
the objective function f(z) over the set of feasible threadings. For such a relaxation, an optimal
solution z* to the relaxed problem is optimal for the original one if f(z*) = f(z*). For the LS
model this could be taken as the self-threading subclass defining property and this is the reason for
the effectiveness of the LS algorithm on the instances of this subclass. What is important to add
here is that all these properties are score dependent and they could be lost once the scoring scheme
changed. For all instances reported below the objective function coefficients are generated by using
FROST (Fold Recognition Oriented Search Tool) software [6, [7]. It is beyond our knowledge to judge
on diversities or common features of the scoring schemes used in different biological laboratories.
At least for the FROST scheme, the following example could shed some light on: for the 1gal_0
sequence aligned with 1ad3a0 core (these are standard PDB (Protein Data Bank) notations), 953
174 from among 1835394 segment interactions coefficients are distinct—and all this diversity is a
result from simple composition of functions defined over 20 letters alphabetﬂ.

5 Further improvements of the MIP model

In order to improve the LP-bounds and the CPLEX branching strategy by imposing branching on
the SOS constraints instead of on a single variable ( but at the expense of adding extra constraints)
the following modification of the model (H)-(I0) is done:

Let L(NL) = {is|(is, js) € NL}, R(NL) = {is|(jsis) € NL }.

yi =Y zjy l=1n; Vi€ L(NL) (i,j) € NL (12)
/>
yi =Y zjga L=1m; Vi€ R(NL) (j,i) € NL (13)
f<l
n
Y ya=1 Vie RINL)|JL(NL) (14)
=1

!The data variety relates the combinatorial hardness of the optimization problem.
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The protein threading problem is in P? 9

y—Dbinary and all z variables included into these definitions change from binary to continuous.
The role of the newly introduced constraints is twofold: i) ([Z)-(IZ) are tighter than () thus
improving LP-bounds and could be used for much more flexible branching strategy through explicitly
introducing them in the SOS section of the model to be solved by CPLEX ; ii) the number of the
(0,1) variables is drastically reduced because the z variables, covered by the defining constraints, are
forced to be integer in consequence of the unimodularity of the corresponding matrix. Although,
computationally this model (denoted here by M2) is a significant improvement over the preceding
ones, namely its was successfully run (by CPLEX) on a set of biological examples, its main drawback
is the size of the problems created (see table[ll). For instance, when aligning the protein 1coy_0 with
the core 1gal_0 (a problem of size 36 segments and 81 positions) we observe that the corresponding
MIP problem has 741 264 rows 360 945 columns and 54 145 231 nonzero elements. This is, of course,
prohibitively large for practical use and appeal for splitting techniques (see section [l) which help
for significant reduction of the MIP problem size and also of the solution time. One could feel
that what impacts mainly on the size of the optimization problem (besides m,n ) is the two level
control adopted: z variables are controlled by z variables which are controlled by y variables. How
to overcome this deficiency of the model is described in the next section.

6 The main result

Now we introduce binary variables y;; , ¢ € L(NL)UR(NL) j =1,...,n to prevent the flow passing
through vertex (4,j) when y;; = 0 or direct through it when y;; = 1. This could be modeled in an
obvious way to obtain the following network-flow alike problem (M*):

m—1
Z C;x; + Z C;iZ; = min (15)
i=1

tENL
subject to
Aijzi —Iy; =0 i € L(NL)UR(NL) (16)
Bix;—1Iy; =0 1 € L(NL) U R(NL) (17)
Fz=1 (18)
Ey=1 (19)
Yij € {O, 1} (20)
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10 Nicola Yanev & Rumen Andonov

where A; are node-arc incidence matrix for the nodes (%,1),..(z,n) and the z-arcs out-going/in-
going from/to these nodes, B; are node-arc incidence matrices for the same nodes but for the
x—arcs, F' is the node -arc incidence matrix for the digraph G, thus ([8) are the classical network
flow constraints, / is zero vector except for the first n components equal to y;; and finally (I%) which
are SOS constraints on (0,1) variables y. All matrices are absolutely unimodular and the problem
is of block angular form with y as the only binding variables.

Starting tests with this model on various biological examples, surprisingly the LP solution hap-
pened to be integer for very large set of instances. Thus, as a side effect in looking for efficient
algorithm for protein threading problem we obtain the main result, stated as the following :

CONJECTURE: The protein threading problem is in P.

More precisely, the claim is as follows: each one of the models LS, M1, M2, or M* could be
considered as a formal definition of protein threading problem. Now, if the set of query-to-core
instances is restricted to real ones and the score function is as in [0, [7] then an algorithm exists
which can solve each such problem instance in polynomial time. A possible relaxation of the score
function constraint could be easily checked by a simple change in the generator of the objective
function coefficient in the model M*. The problem is, which scoring schemes are welcomed by the
biological society. One could go further with the enlargement of the score function class, but it is
better to stop here.

What is seen from the results in tables [[l and Bl is that there is enough evidence to believe this
conjecture is true. Even for polytope of at least 103%vertices, the objective function of the relaxed
problem of (I0))-(Z1), counting more than million variables, attains its minimum at a vertex of (0,1)
coordinates. It seems that the nature of the scores adopted into the protein threading definition
allows for discarding of a lot of non-local interactions without affecting the optimal point. If this
is true, then the claim of the conjecture will follow from the existence of a polynomial algorithm
for the problem with a special non-local interactions structure. Whatever is the case, it means that
only by using the M* model and the non-special purpose LP solver of CPLEX one could solve in
affordable time all practical problems in the context of protein threading. Some hints for further
improvement of the effectiveness of the approach is discussed in section[d As for the minimalilty of
polytope describing constraints, we must note that each attempt of aggregation, say in (), spoils
the feasibility of the LP solution.

7 Split and conquer

Let us recall here that by the very definition of ([[H)-(T9) model, one can partition (split) it to smaller
subproblems by imposing constraints on the paths in the graph G in the following way. Let k be
some segment and (k,j) j = 1,...n are the vertices in the k** layer. Then by partitioning the set
{1,2,...,n} into r intervals, we could split the problem into r subproblems of smaller sizes and the
i" one is defined over the paths in G which pass through the vertices in the i interval only. Thus
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The protein threading problem is in P? 11

if this interval is (p, q) then for the segments [ on the left(right) of k only the vertices (I,s) : s < ¢
((I,s) : s > p) should be taken into account. The best choice for k is [0.5m] and if the goal is to
split the problem into subproblems of approximately equal size then the intervals should be of equal
length. One could target splitting on the criterium - almost equal number of paths, but because of
simplicity of the implementation we used the first approach. Now, if the split is done one can start
solving the subproblems in some order by passing the best objective function value found as a cutoff
for the subsequent subproblems. Thus, by having the chance to start with the subproblem which
contains the optimal path, all other subproblems will be aborted by the LP solver at the moment
when dual objective reaches the cutoff value. The effect of this strategy is demonstrated in table
on instances which are worthwhile to split. One good choice for the problems to start with is
based on the observation that for the biological instances the optimal path passes “near” the middle
vertex in the middle layer (this area is a crossroad of maximal number of paths). The estimate of
this nearness could be given as a parameter for sequential or as well for parallel implementation of
such splitting approach.

model | query core size space LP size iter time
name name | segm. | pos. size rows | columns
LS 1bdo 0 | 1pauB0 8 14 | 2.03e+05 - - - 0.2s
M1 1bdo 0 | 1pauB0 8 14 | 2.03e+05 1795 1792 22873 22.4s
M2 1bdo 0 | 1pauB0 8 14 | 2.03e+05 3505 1864 3072 29.3s
M* 1bdo 0 | 1pauB0 8 14 | 2.03e+05 439 1853 283 0.2s
LS 1cydAO | leny O 16 40 | 8.14e+06 - - - 2m 19s
M1 1cydAO | leny O 16 40 | 8.14e+06 | 28515 28520 | 1181829 | >12214s
M2 1cydAO | leny O 16 40 | 8.14e+06 | 58962 31673 5072 2m 35s
M* 1cydAO | leny 0 16 40 | 8.14e+06 2909 31654 1676 43

Table 1: Small instances: four models comparisons

8 Computational experiments

In the tables B Bl we summarize the results from running CPLEX on SUNW, UltraSPARC-II, 400
MHz, CPU computer. The instances (scores) are drawn from a redirected output of FROST |6, [7]
which tries to find the best fit of multiple queries-to-multiple cores bank. The LS algorithm [2] is
used at a final stage of this complex and time-consuming procedure. In order to generate interesting
(real big) instances we have to limit the time for this b&b code to some upper bound varying between
30min. and 2h. according the instance size. When LS reaches this bound (respectively indicated
by the sign > in the last “time” column) we write-down the best value ever found by b&b. This
should be taken into account for some of the results in table Bl where we sacrificed the quality of
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12 Nicola Yanev & Rumen Andonov

the comparison for the chance to test on instances, never attempted before. What we mean by
interesting instance is one with more than 103! feasible threadings.

9 Conclusions

We have demonstrated, once more, that the achievements of the mathematical programming the-
ory and algorithms are valuable tools for attacking optimization problems this time arising in the
computational biology. We succeed, relying on such achievements, to linearly model a problem of
nonlinear combinatorial nature and to solve efficiently a lot of instances without having written a
single line of some code (different from model builder). This model reveals an unexpected property
of protein threading problem when it is considered only over biological instances, namely feasibility
of the linear programming solutions. This will allow (at least up to the moment of finding counter-
example) to improve the performance of the approach by looking for a LP solver oriented to the
network flow structure of the LP model proposed. Finally, we believe that the conjecture in the
title of this work could be much easily resolved by the combine efforts of biologists and operations
research specialists.

model | query core problem size | space score time
name name | segm. | pos. size
LS 2cyp_0 | 2cyp_0O 15 98 | 1.5e+18 | -1898.2 1m 45s
M* 2cyp_0 | 2cyp_0 15 98 | 1.5e+18 | -1898.2 18s
LS 3grs_0 | 3grs_0 30 114 | 6.5e+30 | -3809.7 Tm 26s
M* 3grs 0 | 3grs 0 30 114 | 6.5e+30 | -3809.7 1m 08s
LS lcoy 0 | lcoy O 27 149 | 4.0e+31 | -3386.2 20m 47s
M* lcoy_0 | 1lcoy_0 27 149 | 4.0e+31 | -3386.2 1m 48s
LS 2cyp_0 | 1theA0 13 138 | 1.8e+18 -11.4 >20m
M* 2cyp_0 | 1theA0 13 138 | 1.8e+18 -11.6 10m 06s
LS 3minA0Q | 4kbpA0 23 189 | 3.2e+30 57.42 >30m
M* | 3minAO | 4kbpA0 23 189 | 3.2e+30 57.42 53m 31s
LS lcoy 0 | 1gal 0 36 81 | 1.3e+30 100.0 >30m
M* lcoy 0 | 1gal 0 36 81 | 1.3e+30 98.7 Tm 40s
LS 3minB0O | 1gpl 0 23 215 | 5.3e+31 120.4 >50m
M* | 3minB0O | 1gpl 0 23 215 | 5.3e+31 63.5 46m 34s
LS 1gal 0 | 1ad3A0 31 212 | 1.3e+39 140.2 >1h 15m
M* 1gal 0 | 1ad3A0 31 212 | 1.3e+39 76.3 | 7h 10m 15s

Table 2: Huge instances: LS versus M* comparison. Note that even for selfthreading (the first
three instances) M* model is much faster than LS which in this case ends after a single lower bound
computation
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query core problem size space LP size number time
name name | segm. | pos. size rows | columns | of sub-
problems

2cyp_0 | 1theA0 13 138 | 1.8e+18 | 9613 337419 1 10m 06s
2cyp_0 | 1theA0 13 138 | 1.8e+18 | 5764 163908 5 4m 00s
2cyp_0 | 1theA0 13 138 | 1.8e+18 | 6520 198225 3 3m 38s
2bmhAQ | 1cem 0 21 203 | 1.5e+29 | 23670 | 1225613 1 34m 45s
2bmhAQ | 1cem 0 21 203 | 1.5e+29 | 15398 | 620424 3 21m 12s
2bmhAQ | 1cem 0 21 203 | 1.5e+29 | 13643 | 491499 5 17m 54s
3minB0 | 1gpl 0 23 215 | 5.3e+31 | 24011 | 1305173 1 46m 34s
3minBO | 1gpl 0 23 215 | 5.3e+31 | 12760 | 426889 10 29m 30s
3minBO | 1gpl 0 23 215 | 5.3e+31 | 14045 | 507386 5 22m 03s
2cyp 0 | 3grs 0O 30 219 | 4.1e+38 | 41472 | 2294957 1 58m 29s
2cyp_0 | 3grs_0 30 219 | 4.1e+38 | 22417 | 847060 9 49m 24s
2cyp_0 | 3grs_ O 30 219 | 4.1e+38 | 24222 | 979800 5 32m 43s
1gal 0 | 1ad3A0 31 212 | 1.3e+39 | 37191 | 1993288 1 7h 10m 15s
1gal 0 | 1ad3A0 31 212 | 1.3e+39 | 14666 | 675237 13 3h 10m 53s
1gal 0 | 1ad3A0 31 212 | 1.3e+39 | 20296 | 718448 9 1h 14m 23s

Table 3: Huge instances: impact of split and conquer strategy in M* model
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