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Abstract: The mutation and cross-over operators are, with selection, the foundation of genetic
algorithms. We show in this paper, some possibilities offered by these operators. Having explained
the specificity of the most known operators (1-point, p-point and uniform cross-over, classical and
deterministic mutation) we introduce new crossover and mutation operators with a low cost in term
of execution time. These operators were designed for Constraint Satisfaction Problem solving, but
can be useful in other fields.We also introduce a new diversification operator for graph coloring.
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Nouveaux opérateurs génétiques rapides et non dédiés

Résumé : Les opérateurs de mutation et de croisement sont, avec la sélection, les fondements des
algorithmes génétiques. Nous montrons dans ce rapport, quelques possibilités offertes par ces opé-
rateurs. Apres avoir expliqué les spécificités des opérateurs les plus connus (croisement 1-point,
p-point et uniforme, mutation classique et déterministe) nous introduisons de nouveaux opérateurs
de croisement et de mutation qui ont un faible codt en temps d’exécution. Ces opérateurs ont été dé-
veloppés pour la résolution de problemes de satisfaction de contraintes, mais peuvent étre utile dans
d’autres domaines. Nous introduisons aussi un nouvel opérateur de diversification pour le coloriage
de graphe.

Mots-clés : algorithme génétique, croisement, mutation, opérateur de diversification, coloriage de
graphe
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1 Introduction

Genetic algorithm(GA) are widely used to solve a large area of hard optimization problems, and
many new genetic operators have been presented as dedicated to solve a given problem or to im-
plement new ideas. The design of a specialized operator causes some side effects: the more it is
specialized the more it has a high cost in term of execution time. The other solutions are to design
a real hybrid algorithm, for example with Tabu search [9] or simulated annealing [11], but it is not
our goal here. The aim of our research is to find low cost operators, efficient on a large number of
problems, especially in graph coloring and Constraint Satisfaction Problems(CSP). To apply genetic
algorithm to CSPs is easy to do [6]. The broadly used model is the following :

» A chromosome in a genetic algorithm codes a configuration of instantiated variables.
A gene of a chromosome represents a variable of the CSP.

 The values of the domain of this variable are represented by the allelic values of the corre-
sponding gene.

 The evaluation function counts the number of violated constraints.
» The mutation operator changes the gene value by another value from the variable domain.

For our experiments, we used a GA Engine called AgCSP [4], which is dedicated to solve discrete
CSPs. It works like a standard GA, but the chromosomes are integer coded instead of being binary
coded. It is easier to treat problems as graph coloring or random CSP using this coding when
the domains of the variables are finite. The new operators which we will present are designed
for Constraint Satisfaction Problems(CSPs) but they can be used for many areas of optimization
problems, and they have very low cost in term of execution time.

In section 2 we will be interested on crossover, we will show the limitations and the advantages of
the known operators (1-point, p-point, uniform), before introducing two new crossover operators. In
section 3, we present the classical mutation operators, some known deterministic mutation operators,
and introduce new adaptive and deterministic mutation operators. And then in section 4 we propose
a diversification operator for graph coloring, before to conclude.

2 CrossOver operators and CSP

In this section we discuss about the efficiency of classical 1-point and p-point crossover for solving
CSPs. We show that because of the constraint graph structure, these crossovers are not well suited.
We will present the well known uniform crossover[17], and will introduce a new operator with a
different dynamic than uniform crossover. We will also present an adaptive crossover which is fully
described in section 3.3.
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2.1 Classical 1 point and p-point crossover

1-point and p-point crossover operators have been directly inspired from nature where the genetic
code has a reading direction, and two genes are all the more linked as they are close. Therefore using
a one point crossover in a GA seemed to be the best idea. But for a CSP, the linear representation
of the CSP variables in a chromosome does not reflect the structure of the constraint graph. The
co-dependency between two variables cannot be represented by two close genes. With the 1-point
Crossover, many constraint graph partitions are omitted, therefore we can miss some good solutions
because the convergence follows just one direction. Indeed, in a given graph with n nodes, there is
2™ possible partitions in two subgraphs, and the 1-point crossover just proposes n partitions among
all possible, however the aim of crossing is to exploit the maximum of possible reconfigurations. To
avoid this problem the p-point crossover has been designed, but with a fixed number of points p we
have only: (Z) partitions.

These crossovers are very interesting for some optimization problems, but are not satisfactory
for CSPs and graph coloring problems.

2.2 Uniform crossover

Solving a graph coloring problem can be formulated as follow: given a graph G = (V, E) and an
integer k, finding a partition of V' in k classes C. such that Vi € C.,Vj € C,., (i,5) ¢ E. The
uniform crossover [17] has been designed to take into account the specificity of graph partitioning,
and to have a better crossover for problems where the co-dependency is not represented by close
genes. With this operator each locus has the same chance to be chosen. Each parent’s gene has a
probability of % to be represented in the child chromosome.

With this crossover, we have 2™ possible different crossings, and a probability of 2% for each,
here from the name: uniform crossover. But the number of chosen points for crossing is not uniform

> a1 point crossover has 5 chance to represented and a p points has g chance. The probability to
have a p points crossing follows a curve traced on figure 1. The crossings with the minimum number
of points, and those with a maximum number of points are badly represented, and those with nearly
% points are highly represented. To take into account the specificity of some problems, we wanted
to have a uniform probability for the number of crossing points, so we defined a new operator called

p-rand-point crossover.
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Figure 1: Probability to have p crossing points
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2.3 p-rand point crossover

We want a crossover with a uniform repartition of the number of crossing points. But we do not
want to compute a complex probability which will burden the algorithm complexity. We choose a
simple algorithm in three steps which has the following behavior:

 Choose randomly the number p of crossing points between 0 and n.

 Choose randomly the positions of the crossing points, between the (Z) different possible po-
sitions.

 Execute the crossing like a classical p-point crossover.

Let us calculate the number of possible different crossings:

* We have n possible number of crossing points .

« For p chosen points, we have (Z) possible positions.

Finally, we have zgjg (z) = 2™ different possible crossings. Like for uniform crossover, we

obtain all the possible graph partitions. We have a uniform probability to have a certain number p of

crossing points, but for one particular crossing with p fixed points, its probability is: = x ﬁ which

P

follows a curve traced on figure 2.

o
I3
=}

Figure 2: Probability to have a given configuration of crossing with p points

This operator has some advantages, we do not suppose that the number of crossing points is
better if it is near 5. We assume that it is interesting for the operator to not always break the same
dependency, particularly for problems like the n-queen coloring problem (NQCP). In the NQCP
the goal is to color all the squares of a chess board such that two squares cannot be on the same
color if they are on the same column, the same line or the same diagonal. To code this problem as
a chromosome, each line of the chess board is represented contiguously. In fact, preserving some
co-dependency between the squares of a line can be very useful for the search. This crossover is
also interesting when a greedy initialization is used. A simple way for doing a greedy initialization
is to choose a first gene randomly, and initialize the next genes by choosing randomly between the
best values. In this case, breaking the satisfied constraints is not interesting, and our crossover better
preserves this dependency than uniform crossover.

RR n° 4573



6 B. Madeline

2.4 adaptive crossover

The parameter control is one of the difficulties arising from GAs [5], and adaptive methods are one
of the solutions to ease the tuning. Every operator can include an adaptive behavior: In [7] Eiben
and van der Hauw have proposed an adaptive evaluation function with stepwise adaptive weights
(SAW) to solve graph coloring problems: the penalty associated to a variable is increased when some
constraints are violated. Different adaptive mutation operators were also proposed (see section 3),
but in this section, we are interested on adaptive crossover operators. A constraint dynamic adapting
crossover is proposed in [15] by Riff-Rojas. With this crossover the child inherits its genes using
a greedy procedure, which analyses each constraint according a dynamic priority. This dynamic
priority takes into account the network structure and the value of the parents. The first constraint to
be analyzed is the hardest to be satisfied. Smith and Fogarty propose a multi-parent recombination
[16], which takes into account the linked genes, defined dynamically by a flag as a block of genes
over certain loci.

There are many other ways to design adaptive operators. Nevertheless methods for changing pa-
rameters during the run can be classified in three categories: deterministic, exogenous (i.e. adaptive)
and endogenous (i.e. self-adaptive) methods [5, 1]. The deterministic methods control the parame-
ters by a strategy chosen before the run, and do not use any feedback from the run. The exogenous
methods use the informations given by the run to change the parameter values, and the endogenous
methods code the parameter control in the genes of the chromosome itself. We consider that deter-
ministic methods are more interesting for static problems, endogenous methods are well designed
for dynamic problems, and exogenous can be used on the both problem types. We are interested here
by the exogenous methods. We defined an adaptive crossover, in which the rate is decreased when
the population is too homogeneous, and increased when the population is too heterogeneous. This
operator is fully explained in section 3.3 with the adaptive mutation which has the same behavior.

3 Mutation operators

Mutation operators are the diversification operators. Without diversification, a GA converges to a
local optimum and cannot escape from it. But with a classical GA, it is very difficult to find the best
mutation rate, in fact % seems to be a good value in general case [12]. The idea here is to find new
mutation operators, with a low cost in execution time, and not specialized for a given problem. We
first talk about the classical mutation operator, introduce a new deterministic mutation operator and
a new adaptive mutation collectively explained with the adaptive crossover introduced before.

3.1 Classical allelic mutation

First we have to distinguish the allelic mutation from the chromosomic mutation. With the chromo-
somic mutation each chromosome has a probability to be muted, while with the allelic mutation each
gene of a chromosome has a probability to be muted. Then with allelic mutation, each chromosome
has on average one gene muted, with a mutation rate set to 1. Although the rate of 1 generally

INRIA
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seems to be a good mutation rate, it becomes less interesting when the algorithm is in an attractive
basin of a local optimum or deceiver site. In this paper we always use allelic mutation.

3.2 Deterministic mutation

It is known that a high rate for mutation increases the diversity and a low rate helps the convergence,
and it is difficult to find the good compromise. One way is to decrease the mutation rate during the
run. The first one has been proposed by Fogarty in [8]. Many deterministically decreasing schemes
for mutation rate have been proposed further in literature, the idea came from simulated annealing,
which less accepts bad value in the neighborhood at the end of the run than at the beginning. A
decreasing mutation rate for counting-ones function has been proposed by Hesser and Manner in
[10], which takes into account the generation count, and the population size:

plt) = \/% x %g) o

where a, 3, v are constant, A the population size, n the number of genes in a chromosome, and ¢ the
generation counter. Another idea is to decrease the mutation rate as a function of the distance to the
optimum proposed by Béck in [2]:
— 1
pm(f(7)) % ——=—— @)
2(f(z)+1)—mn
Back also presents with Schitz [3] a decreasing mutation rate from 0.5 to % when the number of
evaluations is known before the run:

pm(t) = (2+";2 ><t>1 ©)

n is the chromosome’s length, 7' the maximum number of evaluations and ¢ the current number of
evaluations.

These operators are very interesting but their limitations are due to the blocking of the GA in a
local optimum near the end of the run. It is then impossible to go out. When the GA is blocked in a
local optimum, it would be interesting to increase the mutation rate. But it is difficult to locate such
a blocking in a local optimum during the run. Furthermore, the mutation rate must be decreased
when the algorithm escaped from this local optimum. A solution is to increase slowly the mutation
rate during the run. The hint came from the random initialization that let a good diversity in the
population. The diversity decreases during the run due to selection pressure. In fact, increasing the
mutation rate may preserve a good diversity, but this makes too much exploration and does not really
work, furthermore the regulation is quite impossible.

We think that combining increase and decrease schemes can give an efficient operator, so we
propose a mutation operator in which the rate follows a sinus curve. This allows the algorithm to go
out the local optima, and conserve a good convergence. The mutation rate is defined as follows:

p(t) = Py + <sin (%) x a) @)

RR n°® 4573
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where «, v are constants, P, the default mutation rate (generally %), n the chromosome’s length
and ¢ the generation counter.

« the period of the sinus is determined by the constant ~ (given in number of generations).
« the amplitude of the sinus is determined by the constant o and o < Pyy.

During the run, the GA always alternates between exploration and exploitation, actually the conver-
gence takes more time. Nevertheless less runs stay blocked in a local optimum and better values are
sometime found after a period of high exploration (i.e. when the mutation rate is high). An example
is given in figure 3. This operator has a really good behavior when the problem has many local

Best Fitness

Mutation Rate

S3|>—A SN

0 generation n
Figure 3: Sinus mutation and best fitness

optima for which we can easily go out with a higher mutation rate. We also integrate an amortized
sinus which allows to explore in a larger neighborhood at the beginning of the run than at the end.
This idea combines the decreasing rate idea and the first implementation of our operator:

Pm(t) = Py + (sin (%) X %) (5)

which has the same scheme than sinus mutation, we have just add a decreasing factor with the
generation counter. With these two operators, it is strongly advised to use elitism, because the high
mutation rate can make lose good solutions.

3.3 Adaptiveallelic mutation

With the same idea as the adaptive crossover introduced above (see section 2.4), we propose an
adaptive mutation operator. The principle is to increase the mutation rate when the population is
too homogeneous, and decrease it when the population is too heterogeneous. We need a diversity
measurement function, but we wanted one very simple to compute. In our GA engine, the fitness
function counts the number of violated constraints. That gives us two important informations:

INRIA
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* The best wished fitness is 0, and we directly have a measurement of the distance from the best
found to the best wished in number of violated constraints.

» We have a measurement between the best found and the average fitness in term of violated
constraints.

We assume that the ratio between the best fitness and the average fitness can be a good diversity
measurement function simple to achieve and of low cost because it uses already computed values.
Our diversity measure DM is defined as follows:

BestFitness

DM=1- —————
AverageFitness

(6)

These adaptive operators have parameters: we have to define the bounds for the mutation rate
and crossover rate, i.e. the minimum rate (pom,.;., Pe,.;.) and the maximum rate (pm,..., Pemas)
accepted for the run. For example we cannot accept a mutation rate set to 0.6 or a crossover rate set
to 0.01. We also have two bounds for the diversity measurement. The rates are adapted only when
the diversity measurement DM is greater (resp. lower) than the bound DM .. (resp. D Mpin).
Finally we define a increase/decrease factor. The algorithms for adapting the mutation rate and the
crossover rate are:

Mutation rate : CrossOver rate:

compute DM, compute DM,

if DM < DM i, and Py, < P, if DM < DM,,.;r, and p. > pe,....
then increase p.,; then decrease p.;

if DM > DM,,02 and Dy, > Drnsn if DM > DM,,0. and p. < pe,,.....
then decrease p,y,; then increase p.;

else do nothing; else do nothing;

The parameters are defined as follows:

* Dm,.., (Minimum rate) is the lowest mutation rate permitted (generally 101><n)' Under this rate,

no real exploration is possible and p.,,,, (minimum rate) is the lowest crossover rate permitted
(generally 0.50). Under this rate, no real exploitation is possible.

* Pm,..., (Maximum rate) is the highest mutation rate permitted (generally %).But it can be
higher for difficult problems and p.., . (maximum rate) is the highest crossover rate permitted
(generally 0.90).

* DM nin (Minimum bound) is the lowest diversity measure allowed. (between 0.05 and 0.10
seems to be the best value)

e DM 4. (Maximum bound) is the highest diversity measure allowed (between 0.10 and 0.15
seems to be the best value)

« the increasing or decreasing factor (the best value seems to be between 1.1 and 1.5)

RR n° 4573
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Remark that the three last parameters have the same tuning both for adaptive crossover and adaptive
mutation. The value of the increase/decrease factor is a reactivity factor: higher it is, quicker is the
reaction on the rate. Tests show that these operators have a good robustness compared to classical
mutation and crossover. Furthermore their parameters do not require fine tunings. Using these
operators gives a good result for the GA convergence in most of cases, but does not outperform the
best run with the best tunings of classical operators. But no long time is spent in parameter tuning:
these parameters are easy to control and within a few tests, a good parameterization is found. It
is really interesting to use both adaptive mutation and crossover, with exactly the same tuning for
DM,,;n and DM,,.... With this tuning, the crossover rate decreases (resp. increases) when the
mutation rate increases (resp. decreases), and the adaptive process is done collectively, but it is
also possible to use different tuning for DM, , DM,,4. and the factor of increase or decrease.
After testing, adaptive mutation appears to be more efficient than adaptive crossover. Indeed, the
crossing has a much slower dynamics than mutation, and adaptive crossover does not bring notorious
improvement.

4 Diversification operator

Avoiding early convergence is one of the main care for GA, and there are many methods therefore.
Those methods try to reintroduce some diversity in the population or to conserve a good diversity.
Many solutions are offered to do it: introducing new randomized individuals, changing mutation rate,
doing an hybrid search, using a steady state algorithm or a co-evolutionary algorithm for example.

In graph coloring, a high number of potential solutions have the same evaluation with very
different gene valuations. Two solutions can be genotypically different but phenotypically identical.
For example on Fig.4, the two graphs have exactly the same number of violated constraints, but are
really different. No node has the same color. And their corresponding chromosomes are different
too.

O
Graph 1 l Graph 2
H N H EEN
Chromosome 1 Chromosome 2

Figure 4: Two solutions with different genotypes and same phenotype, and the swap operation from
the first to the second
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Furthermore it is very easy to find the second instantiation from the first: it is a swap from the
domain. This idea is easily transposable to a genetic operator. Our GA engine uses an integer coding
for the gene. This operator chooses a value randomly from the domain, and add this value to all the
genes of the chromosome modulo the domain size. Before the run we have to choose the percentage
of the population which will be swapped. The best results have been obtained with a swap rate set
to 10 percents of the population size per generation. If the swap rate is too high the population is too
heterogeneous and the exploitation is very hard.

As mentioned above, potential solutions for a CSP can have many different genotypes and very
similar fitness. For this reason, another interesting idea is to keep more than one of the best individ-
uals found during the run. Having an elitism rate set to 0.10 can conserve genotypically different
best solutions, and give better results. This is due to exploitation done in different directions. The
GA can use different current best solutions to find a better one.

5 Conclusion

In this paper, we have presented a new crossover operator for CSPs, efficient on certain graph color-
ing problems. It will be interesting to test it on other problems where the structure let some cliques
be contiguous in the chromosome, like for the NQCP. It will be also interesting to transform it with
adaptive parameters, especially for the number of chosen points by adapting the probability to have
a certain number of crossover points. We propose a sinus mutation which combines the advantages
of the decreasing mutation and increasing mutation, and allows the GA to escape from local optima
while preserving the convergence. Although very promising results were founded, it will be inter-
esting to test and compare to other mutation operators on difficult instances. We present adaptive
mutation and crossover, which let us lose much fewer time in parameters tuning, and give better
results on average than classical operators. This can be very useful when a good solution is needed
quickly. We also present a diversification operator dedicated to graph coloring using the difference
between phenotype and genotype. We think these operators can be efficient on other areas where the
GAs are applied but new experiments are necessary to improve this.
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