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Abstract: In this paper, we discuss the parallelization of a computer vision application
for dense fluid motion estimation using OpenMP. The application uses a recent algorithm
based on energy-based motion estimator for predicting and analyzing the motion in image
sequences showing fluid phenomenon. Standard techniques from computer vision are not
well adapted for such images because of the great deal of spatial and temporal distortions
in luminance patterns. The multiresolution multigrid framework of the application renders
it amenable to parallelization after appropriate changes to the algorithm. We discuss why
OpenMP is a suitable alternative to the conventional message passing model and compare it
with other models based on various aspects. The results obtained on a SMP machine from
different parallelization strategies are demonstrated and compared.
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Parallélisation en OpenMP d’une application
d’estimation de mouvement de fluide dense

Résumé : Ce papier décrit une version paralléle écrite en OpenMP d’une application de
vision pour Pestimation du mouvement d’un fluide dense. L’application utilise un algo-
rithme récent fondé sur un estimateur énergétique de mouvement pour prédire et calculer
le mouvement d’un phénoméne dense dans une séquence d’images. Les techniques stan-
dards d’imagerie numérique ne sont pas bien adaptées pour de telles images & cause des
fortes distorsions spatiales et temporelles dans les schémas de lumiére. L’algorithme de
multi-resolution multi-grille utilisée par ’application a da étre légérement adapté pour étre
parallélisé efficacement. Le papier discute 'utilisation d’OpenMP par rapport & ’alternative
classique fondée sur I’échange de messages. Les résultats, obtenus sur une machine SMP
avec différentes stratégies de parallélisation, sont présentés.

Mots-clés : OpenMP, mouvement de fluide dense, parallélisme, SMP
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1 Introduction

In the field of computer vision, many standard techniques exist for motion estimation or
optical flow determination. However, for certain specific domains like the fluid motion
image sequences obtained from the environmental and medical sciences, the requirements of
accuracy are sometimes very high. The general techniques often do not allow to estimate
the motion fields with the required accuracy. Hence, a need is felt for specialized algorithms
that are domain specific. That is to say mehtods that use data models which are specific to
that domain, and hence give better results. It was such a need that motivated the VISTA
project team at IRISA to develop an energy based dense motion estimator for the images
showing fluid motion.

The domain specific algorithms tend to be more sophisticated than the general optical
flow estimation algorithms. The Dense Motion Estimation algorithm requires a very high
computation time when given large images as input. Since the application is required to
calculate motion fields for images obtained from satellites, which are often very large, the
use of the estimator as an operational tool which can work routinely, is not a practical
proposition. The main goal then is to have a faster execution, even with large images.

We propose to reduce the computation time of the estimator by providing a parallel
execution for it. We aim to parallelize the application incrementally without interfering
with its multiresolution multigrid structure. Even though the parallelization is not possible
without changes to the algorithm, we try to make as little change to the original algorithm
as possible.

The parallel programming model that we use to parallelize the dense motion estimation
application is the OpenMP language, which is an parallel programming model that is be-
coming popular. From the point of view of our needs, we justify our choice of OpenMP.
We present a description of the features of OpenMP, and discuss how it compares with the
other existing parallel programming standards like MPI.

The paper is organized as follows. In section 2, we start by describing the dense fluid mo-
tion estimator and present the pseudocode for the general understanding of the application.
We present an analysis as to which parts of the application are computation intensive and the
degree of parallelism that are associated with the various possible parallelization strategies.
We also describe the data access patterns. We then present the expected performance for
the different parallelization strategies. In section 3, we present the OpenMP programming
model and compare it with the other existing standards. A brief description of OpenMP
constructs and functionalities is presented. We go on to describe the parallelization strate-
gies and the results obtained with them in section 4. We compare the actual performance
of the algorithm with that of the expected performance and explain the difference. Analysis
and conclusions based on these results are discussed. The paper draws some conclusion in
section 5.
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2 Dense Fluid Motion Estimation Application

The motion estimator on which we focus on in this study [1] aims at recovering the appparent
motion field between two consecutive images of a sequence showing the evolution of a fluid
flow. It is a dedicated adaptation of an Horn and schunck optical flow estimator [4]. Such an
estimator is defined as the minimizer of a functionnal H = H; + Hs composed of two terms.
The first one encapsulates the data model term. This term gives an adequacy expression
between the unkown (here the motion field w) and the available observations (the luminance
function f(z,t)). The second term enforces a smoothness prior on the solution. This is a
regularization function which make solvable the initial ill-posed problem (i.e recover the
motion field directly from the luminance function variations).

In our case, instead of sticking to the usual brightness constancy assumption which
assumes the constancy of the luminance of a point along its trajectory (Z—’; = 0), the data
model dedicated to fluid motion relies on an integration of the continuity equation of fluid
mechanics. The corresponding functional reads:

Hy(w) = /Qp{f(w+w(a:),t+ 1) exp (dives (@) — f(z 1) . (1)

This data model accounts for the luminance variation which accompanies the luminance
variation in areas where the fluid exhibits a divergent motion. It has to be noted that for
a null divergence this term comes to the usual brightness constancy term. The penalty
function p is a robust penalty function allowing us to deal with significant deviation of the
data model. It allows to implicitely reject points which are not in accordance with such a
model.

The smoothness prior used in conjonction with this data term relies on a second order
div-curl regularization:

/Q (IVdivw (@) + | Veurhw(@)|?) de. @)

Contrary to a classical first order regularization, such a smoothness term allows to preserve
compact areas exhibiting high concentration of curl (also called vorticity) and /or divergence.
Let us remark that an under-estimation of the divergence is all the more problematic in our
case, since the data model includes an explicit use of this quantity.

This kind of regularization is nevertheless very difficult to implement directly. As a
matter of fact, the associated condition of optimality (the Euler-Lagrange equations) consists
in two fourth-order coupled PDE’s, which are tricky to solve numerically. This functionnal
has been therefore simplified by introducing auxiliary functions, and defining the alternative
functional:

Ha(w,6,0) = a /Q (divas — €12 + Ao(|VE]) + /Q jeurlw — (P + Ao(IVCD. (3)

The new auxiliary scalar functions £ and ¢ can be respectively seen as estimates of the
divergence and the curl of the unknown motion field, and A is a positive parameter. The first
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part of each integral encourages the displacement to comply with the current divergence and
vorticity estimates £ and (, through a quadratic goodness-of-fit enforcement. The second
part equips the divergence and the vorticity estimates with a robust first-order regularization
enforcing piece-wise smooth configurations. Getting rid of the auxiliary scalar fields £ and
¢ in (3) (by setting £ = divw and ¢ = curlw) would amount to the original second-order
div-curl regularization (2), if p is the quadratic penalty function. From a computational
point of view, regularizing functional (3) only implies the numerical resolution of first-order
PDE’s. It can be shown for the Ly norm that this simplified div-curl regularization consists
in a smoothed version of the original second order div-curl regularization [2].

To allow the computation of long range displacements the estimator has been encapsu-
lated within an incremental multiresolution structure. Let us note that it is the integrated
nature of the data constraint used here (the model is defined for displacements as well as
for velocities) which authorizes the implementation of such a scheme.

Multiresolution scheme consists to implement an incremental estimation scheme on a
pyramidal hierarchical representation of the image data [3]. At a given resolution level, a
incremental displacement field is computed considering that the main components of the
displacements is known. This main component is indeed supposed to be estimated at a
previous resolution level. It is considered as being null at the coarsest level. Such a mul-
tiresolution estimator corresponds indeed to a kind a Gauss-Newton strategy for non-linear
least squares minimization [5].

2.1 Minimization issue

The minimization of the functionnal is considered through a direct discretization of H; and
H,. The different functions involved in the functionnal have been dicretized on the image
lattice. A particular attention has been payed for the discretization of divergence and curl
operator for which an uncentered discretization scheme has been used.

The overhall system is constituted by two main sets of variables that have to be estimated.
The first one is the motion field w, and the second set comprizes the two scalar fields £ and (.
The estimation is conducted alternatively by minimizing H; + Hs with respect to w, £ and
¢ respectively. For the motion field, considering the div and curl estimates £ and ¢ as being
fixed, the robust minimization with respect to w is solved with an iteratively reweighted least
squares technique. This optimization is embedded in an efficient multi-parametric adaptive
multigrid framework [5]. This technique consists to solve the corresponding problem for
a subset of solution subspaces of increasing size. Each of these subspaces are defined as
the space of piece-wise parametric solutions on a square-blocks grid. The hierarchy is built
considering a hierarchy of nested square-blocks grids. For each of these grid, one has to
solve a large sparse linear system.

Then in turn, the motion field w being fixed, the minimization of H with respect to
¢ and ( is in fact equivalent to the minimization of H,; and is again conducted using an
iteratively reweighted least squares technique. More details of the minimization issues can
be found in [1].
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2.2 Pseudocode

The application computes the incremental velocity fields and keeps adding them to the
motion fields, until the convergence criteria are met. The velocity fields are stored as separate
arrays for each component. To allow for a multiresolution of pyramids, and a multigrid
structure at each level of the pyramid, the image array is divided into blocks. The elements
of a block occur together on the image. As the computation moves to the lower grid level,
each block is subdivided into 4 blocks, each having a size one-fourth of the original block.
At the lowest resolution and lowest grid level, each block consists of one image pixel only.
Following is the listing of the pseudocode of the principal section of the application.

do from coarse resolution to fine resolution (multiresilution setup)

do from coarse scale to fine scale (multigrid scheme)
/*pre-estimation operations */ (SEQUENTIAL I)
Construct the observations of ft, fx, and fy
/*Estimation*/

do until convergence of the overall system
do until convergence
Calculate the incremental velocity fields (PARALLEL I)

end do

Estimate the new values of £ and ( (PARALLEL II)
end do
/* post estimation operations */ (SEQUENTIAL II)

Add incremental velocity fields
Warp the image t+1 accordingly
end do
project fields to next resolution level
end do

The outermost loop in the pseudocode that goes from coarse resolution to fine resolution
corresponds to the multiresolution pyramid structure of the application. Hence one iteration
over this loop computes the incremental velocity fields at a pyramid level k. This field is
projected to the next level, and the same procedure is repeated for the next level k+1 in
the next iteration of the loop. Within each resolution level is a multigrid structure, which is
represented by the inner do loop from coarse scale to fine scale. At the end of computation
at each grid level, the incremental velocity field calculated at that level is added to the
velocity fields, and then this is repeated for the next grid level till the finest grid level is
reached. Within every grid level, there are two nested convergence loops, which estimate
the incremental velocity fields over all the blocks of the image till the convergence criteria
are met.

The calculation of the incremental velocity fields can be done in parallel over the different
blocks. This parallel computation, with separate blocks assigned to separate processors, is
henceforth referred to as the Inter-Block parallelism. Another approach toward parallelism

INRIA
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would be to do computations over different elements of the block in parallel. So, differ-
ent processors would then be performing computation over the different parts of the same
block. This sort of parallel computation is referred to as the Intra-Block parallelism. The
estimation of the new divergence and the new curl is done after each convergence of the
inner convergence loop. This computation occurs over the entire image array, and can also
be done in parallel.

2.3 Analysis
2.3.1 Timing Percentages of the Sequential Application

The times spent in the various parts of the application are indicated in Table 1 and Table 2.
The labels SEQUENTIAL I, SEQUENTIAL II, PARALLEL I, PARALLEL II are marked
on the pseudocode of the previous section.

As can be seen from Tables 1 and 2, the application spends 85.3 per cent of computation
time in the parallelizable part for the small image, and 94.1 per cent for the medium sized
image. As the image size increases, the application spends a greater percentage of its
computation time in the parallelizable part. This indicates the possibility of achieving a
good speed-up for the large images on which the application will be run.

| | Time in seconds | Percentage |

SEQUENTIAL I 9.392 13.86
PARALLEL I 26.637 39.31
PARALLEL II 31.162 46.00
SEQUENTIAL II 0.565 0.83
Total 67.756 100

Table 1: Timing of the Sequential Application for the small image (128 x 128)

| | Time in seconds | Percentage |

SEQUENTIAL I 31.624 4.66
PARALLEL I 453.807 66.93
PARALLEL II 184.100 27.15
SEQUENTIAL II 8.567 1.26
Total 678.098 100

Table 2: Timing of the Sequential Application for the medium sized image (680 x 480)
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2.3.2 Degree of Parallelism

Table 3 indicates the size and the number of blocks at various grid levels of the application.
The Number of blocks indicates the degree for parallelism® between blocks (Inter Block
Parallelism) while the Number of elements indicates degree for parallelism within blocks
(Intra Block Parallelism)

2.3.3 Data Access

For computation within the block, each point uses the information of the actual and incre-
mental velocity fields at the points in its neighborhood. Hence, at the block boundaries,
there are interactions with the field values at the boundaries of the neighboring blocks. The
list of blocks is initially constructed by a simple partitioning of the image. The consecutive
blocks in the list are the blocks that are consecutive on the image row-wise. At succes-
sive grid levels, each block is broken into 4 blocks, and these 4 blocks appear consecutively
on the list of blocks. For the Inter-Block parallelism strategy, since each element accesses
velocity field information for only the points in its neighborhood, all the inter-processor
communication occurs for the block boundary points information.

2.3.4 Parallelization Strategy

The Intra-Block parallelism aims to parallelize the computation within each block of the
image. In a single iteration of the convergence loop, a function traverses the linked list of
the blocks once, and on each block the incremental velocity field is calculated by solving a
system of linear equations of the form Az = b. The calculation of the coefficients of the
matrix A and the vector b is done by using the velocity field information at each point inside
the block, and this can be done in parallel because the results obtained at different points
inside the block involve reductions to the coefficients of the matrix and the vector. As can
be seen from table 3, the largest block that is encountered for a medium sized image is
32 x 32 only (for 2 resolution levels). The blocks at the other grid levels are much smaller.
The parallel computation over such small blocks is not expected to surpass the overheads
associated with parallelization. Hence, no significant speed-up is expected. Thus, it does
not appear interesting to parallelize using the Intra-Block strategy.

Another strategy for parallelization is the Inter-Block strategy which involves computa-
tion over different blocks in parallel. So a single processor would be assigned the computation
of a single block, and when it completes that block, it would be assigned another block for
computation. Since the number of blocks would in general be much larger than the number
of available processors, this strategy is expected to achieve good results. Table 4 summarizes
the expected improvements in time based on the parts that have been parallelized.

The parallel version of the algorithm differs from the sequential one in the respect that
while the sequential version follows a Gauss Seidel algorithm for convergence, the parallel
version uses a Jacobi convergence scheme. In the Gauss Seidel scheme, the velocity array

1Let define the degree of parallelism as the amount of work that can be done in parallel.

INRIA
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Resolution | Grid | Configuration | Number Block Elements
level level of Blocks of blocks Size per block
1 1 170 x 120 20400 2 x 2 4
1 0 340 x 240 81600 1x1 1
0 1 340 x 240 81600 2 x 2 4
0 0 680 x 480 326400 1x1 1
1 2 85 x 60 5100 4 x4 16
1 1 170 x 120 20400 2 x 2 4
1 0 340 x 240 81600 1x1 1
0 2 170 x 120 20400 4 x4 4
0 1 340 x 240 81600 2 x 2 1
0 0 680 x 480 326400 1x1 4
1 3 43 x 30 1290 8 x 8 64
1 2 85 x 60 5100 4 x4 16
1 1 170 x 120 20400 2 x 2 4
1 0 340 x 240 81600 1x1 1
0 3 85 x 60 5100 8 x8 64
0 2 170 x 120 20400 4 x4 16
0 1 340 x 240 81600 2 x 2 4
0 0 680 x 480 326400 1x1 4
1 4 22 x 15 330 16 x 16 256
1 3 43 x 30 1290 8 x8 64
1 2 85 x 60 5100 4 x4 16
1 1 170 x 120 20400 2 x 2 4
1 0 340 x 240 81600 1x1 1
0 4 43 x 30 1290 16 x 16 256
0 3 85 x 60 5100 8 x8 64
0 2 170 x 120 20400 4 x4 16
0 1 340 x 240 81600 2 x 2 4
0 0 680 x 480 326400 1x1 1
1 5 11 x 8 88 32 x 32 1024
1 4 22 x 15 330 16 x 16 256
1 3 43 x 30 1290 8 x8 64
1 2 85 x 60 5100 4 x4 16
1 1 170 x 120 20400 2 x 2 4
1 0 340 x 240 81600 1x1 1
0 5 22 x 15 330 32 x 32 1024
0 4 43 x 30 1290 16 x 16 256
0 3 85 x 60 5100 8 x8 64
0 2 170 x 120 20400 4 x4 16
0 1 340 x 240 81600 2 x 2 4
0 0 680 x 480 326400 1x1 1

RR n° 4556
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values were used in the same iteration that they were calculated in. This was replaced
by the Jacobi scheme, where the values used in one iteration were all the values that had
been calculated in the previous iteration. Two separate velocity field arrays were hence
maintained, one for reading the values, and the other for writing.

Two important facts about the Gauss-Seidel method should be noted. First, the compu-
tations in Gauss Seidel method have to be serial. Since each component of the new iterate
depends upon all previously computed components, the updates cannot be done simultane-
ously as in the Jacobi method. Second, the new iterate depends upon the order in which
the equations are examined. The Gauss-Seidel method is sometimes called the method of
successive displacements to indicate the dependence of the iterates on the ordering. If this
ordering is changed, the components of the new iterate (and not just their order) will also
change. The change of the algorithm is therefore expected to result into a change in the
number of iterations toward convergence.

2.3.5 Speed-up
The speed-up and the efficiency are classically defined:

speed-up = sequential execution time/parallel execution time

efficiency = speed-up/number of processor

In order to evaluate the the benefit coming from the parallelization of the two parallel
section we have identified, we estimate the parallel time for different number of processor.
The number, presented in Table 4 and in Figure 1, have been obtained from Table 1 and
Table 2. Assuming a perfect parallelization, the parallel time has been divided by the
number of processor. So, Table 4 and Figure 1 show the speed-up increases as the number of
processors increases. However, the efficiency decreases because the sequential part becomes
significant.

| No. of processors | Time in seconds | Speed-up | Efficiency |

1 678.10 1.00 1.00
2 359.15 1.89 0.95
4 199.67 3.40 0.85
8 119.93 5.66 0.71
16 80.060 8.47 0.53
32 60.125 11.28 0.35

Table 4: Expected times and speed-ups for the medium sized image (680 x 480)

INRIA



Parallelization of Dense Fluid Motion Estimation Application 11

12

'speédup'

10 | —

speed-up
(=]
!

1 1 1 1 1 1
0 5 10 15 20 25 30 35
Number of processors

Figure 1: The speed-up graph
3 OpenMP

At its most elemental level, OpenMP is a set of compiler directives and callable runtime
library routines that extend FORTRAN (and separately, C and C++) to express shared-
memory parallelism. It leaves the base language unspecified, and vendors can implement
OpenMP in any FORTRAN compiler. Naturally, to support pointers and allocatables,
FORTRAN 90 and FORTRAN 95 require the OpenMP implementation to include additional
semantics over FORTRAN 77.

3.1 OpenMP Design Objective

OpenMP was designed to be a flexible standard, easily implemented across different plat-
forms. The standard comprises four distinct parts: control structure, the data environment,
synchronization, and the runtime library.

3.1.1 Control structure

OpenMP strives for a minimalist set of control structures. Experience has indicated that only
a few control structures are necessary for writing most parallel applications e.g. the parallel
directive provides arguably the most widely used shared-memory programming model in
scientific computing. OpenMP includes control structures only in those instances where a
compiler can provide both functionality and performance over what a user could reasonably
program.

RR n° 4556



12 N. Jain, E. Memin, C. Pérez

3.1.2 Data environment

Associated with each process is a unique data environment providing a context for execution.
The initial process at program start-up has an initial data environment that exists for the
duration of the program. It contructs new data environments only for new processes created
during program execution. The objects constituting a data environment might have one of
three basic attributes: shared, private, or reduction.

3.1.3 Synchronization

There are two types of synchronization: implicit and explicit. Implicit synchronization points
exist at the beginning and end of parallel constructs and at the end of control constructs (for
example, do and single). In the case of do sections, and single, the implicit synchronization
can be removed with the nowait clause. The user specifies explicit synchronization to man-
age order or data dependencies. Synchronization is a form of inter-process communication
and, as such, can greatly affect program performance. In general, minimizing a program’s
synchronization requirements (explicit and implicit) achieves the best performance. For this
reason, OpenMP provides a rich set of synchronization features, so developers can best tune
the synchronization in an application.

3.1.4 Runtime library and environment variables

In addition to the directive set described, OpenMP provides a callable runtime library and
accompanying environment variables. The runtime library includes query and lock functions.
The runtime functions allow an application to specify the mode in which it should run. An
application developer might wish to maximize the system’s throughput performance, rather
than time to completion. In such cases, the developer can tell the system to dynamically set
the number of processes used to execute parallel regions. This can have a dramatic effect on
the system’s throughput performance with only a minimal impact on the program’s time to
completion.

3.1.5 Summary

Table 6 summarizes the functionalities provided by the OpenMP API. It categorizes them
into one of three categories: control structure, data environment, or synchronization. The
standard also includes a callable runtime library with accompanying environment variables.

3.2 Why OpenMP?

MPI [6] has effectively standardized the message-passing programming model. It is a
portable, widely available, and accepted standard for writing message-passing programs.
Unfortunately, message passing is generally a difficult way to program. It requires that
the program’s data structures be explicitly partitioned, so the entire application must be

INRIA
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Functionality |

OpenMP

Overview |

Orphan scope | Yes, binding rules specified
Query functions Standard
Runtime functions Standard
Environment variables Standard
Nested parallelism Allowed
Throughput mode Yes
Conditional compilation OPENMP
Control structure | |
Parallel region Parallel
Iterative Do
Noniterative Section
Single process Single,Master
Early completion User coded
Sequential Ordering Ordered
Data environment | |
Autoscope Default(private)
Default(shared)
Global objects Threadprivate
Reduction attribute Reduction
Private initialization Firstprivate
Copyin
Private persistence Lastprivate
Synchronization | |
Barrier Barrier
Synchronize Flush
Critical section Critical
Atomic update Atomic
Locks Full functionality

Table 5: OpenMP functionality.

parallelized to work with the partitioned data structures. There is no incremental path to
parallelize an application.

The POSIX thread API [8], is an accepted standard for shared memory in low-end
systems. However, it is not targeted at the technical, HPC space. There is little FORTRAN
support for POSIX threads. Even for C applications, the POSIX threads model is awkward,
because it is lower-level than necessary for most scientific applications and is targeted more at

RR n° 4556
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providing task parallelism, not data parallelism. Also, portability to unsupported platforms
requires a stub library or equivalent workaround.

Researchers have defined many languages for parallel computing, but these have not
found mainstream acceptance. High-Performance FORTRAN (HPF) [7] is the most popular
multiprocessing derivative of FORTRAN, but it is mostly geared toward distributed-memory
systems.

Developers need to parallelize existing code without completely rewriting it, but this is
not possible with most existing parallel-language standards. Only OpenMP allows incre-
mental and scalable parallelization of existing code. OpenMP is targeted at developers who
need to quickly parallelize existing scientific code, but it remains flexible enough to support a
much broader application set. OpenMP provides an incremental path for parallel conversion
of any existing software. It also provides scalability and performance for a complete rewrite
or entirely new development.

However, OpenMP has a major limitation that the programs written using OpenMP
can not be executed over distributed memory machines, which are more popular and more
economical than the SMP machines for which OpenMP has been designed. Therefore, MPI
continues to be the most popular parallel programming paradigm.

Our goal is to obtained a faster execution for the application. We need to have an
incremental way of parallelizing the application. At the same time, we want to make min-
imal changes to the algorithm and the data structures involved therein. All these factors
contributed to our choice of using OpenMP for parallelization.

| | MPI | POSIX threads | OpenMP |

Scalable | yes sometimes yes

Incremental parallelization | no yes yes
Portable | yes yes yes

FORTRAN binding | yes no yes

High level | no no yes

Supports data parallelism | no no yes
Performance oriented | yes no yes

Table 6: Comparing standard parallel-programming models.

4 Parallelization of the Application

This section describes the approaches toward parallelism, and presents and analyzes the
results obtained with them. After the parallelization had been done using OpenMP, we
carried out the tests. All tests were done on a SMP machine using the pgec 3.2-3 compiler
from PGI. The SMP machine had four 550 MHz Pentium III processors.

INRIA
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4.1 Intra-Block Parallelism

Here, the computation within each block is parallelized. Table 7 presents the execution
times of the parallel version of the code. As can be seen from the table, the execution times
increase with the increase in the number of processors. The block of the different resolution
and grid levels, presented in Table 3, are too small. So, the overheads associated with this
parallelization are not surpassed by the increase in performance, and hence this strategy
did not yield good results, as expected. Hence we decided not to use this strategy for the
parallelization of the application.

| No. of processors | Time in seconds |

1 436.063
2 510.141
4 683.583

Table 7: Results obtained for the Intra-Block parallelism for the medium sized image

4.2 Inter-Block Parallelism

The Tables 8 and 9 present the times spent in various parts of the parallel code with different
number of processors for the small image as well as the medium image, and compares this
to the corresponding times spent in the same portions by the sequential version of the
application. The times spent in the parallel region go down considerably and this indicates
a good speed-up. Also, it is notable that the time spent in the part marked sequential T is
decreasing. This is because this part calls a function that is also called from the parallelized
parts, and that function has been parallelized. There is a difference between the expected
and the actual running times of the parallel application. This difference can be accounted
for by the increase in the number of iterations toward convergence at any grid level. As
described earlier in section 2.3.4, the algorithm has been modified to Jacobi scheme, and
this has led to the increase. The Gauss Seidel scheme converges faster, but this change
was necessary because Gauss Seidel scheme does not accommodate computation in parallel.
So, although the time for the execution of a single iteration goes down, the number of
iterations increase and hence the program spends more time than expected. The increase in
the number of iterations is presented in tables 9 and 12. For the small image, the increase in
the number of iterations accounts for about 1.2 seconds, while in the case of medium sized
image, this increase is about 56.6 seconds. However, despite this difference, the decrease in
the execution time for the program is still significant.

4.3 Conclusion

The Intra-Block strategy of parallelization does not give good results for this application,
and that is mainly because the block sizes are too small so that parallelism on them does not
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| #procs | SEQUENTIALI | PARALLEL I | PARALLEL II | SEQUENTIAL II | Total |

1 9.415 27.790 28.351 579.125 | 644.681
2 6.255 17.105 16.975 605.310 | 645.645
4 5.655 9.416 10.333 581.525 | 606.929

Table 8: Times spent in seconds in the different parts for parallel Application for the small
sized image (128 x 128)

| #procs | SEQUENTIAL I [ PARALLEL I | PARALLEL II | SEQUENTIALII | Total |

1 30.967 518.716 151.256 9.656 | 710.595
2 19.816 326.956 95.083 6.210 | 448.065
4 14.409 181.686 66.791 8.977 | 271.864

Table 9: Times spent in seconds in the different parts for parallel Application for the medium
sized image (680 x 480)

No. of processors | Res1 | Res1 | Resl | ResO| ResO| ResO
Grid2 | Grid1 | Grid 0 | Grid 2 | Grid 1 | Grid 0

Sequential 131 170 13 209 350 9
1 160 219 13 205 360 9
2 160 218 13 208 356 9
4 160 217 13 206 363 9

Table 10: Number of iterations for small image

| No. of processors | Predicted time in seconds | Actual time in seconds ]

1 67.757 69.032
2 38.857 40.942
4 24.407 25.986

Table 11: Estimated vs Actual times for execution of the parallel code for the small image

overtake the overheads resulting from parallelization. On the other hand, the Inter-Block
parallelism strategy gives good results. The difference between the expected and the actual
time of execution can be accounted for by the increase in the number of iterations toward
convergence at each grid level. Despite that, the speed-up is significant
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No. of processors | Res1 | Res1 | Res1 | ResO| ResO| ResO
Grid 2 | Grid 1 | Grid 0 | Grid 2 | Grid 1 | Grid 0

Sequential 118 166 9 216 224 15
1 147 207 9 220 265 15
2 146 206 9 222 267 15
4 148 210 9 221 270 15

Table 12: Number of iterations for medium sized image

| No. of processors | Predicted time in seconds | Actual time in seconds ]

1 678.100 710.598
2 359.146 448.106
4 199.669 271.864

Table 13: Estimated vs Actual times for execution of the parallel code for the medium sized
image (680 x 480)

35 T -
'speedup_estimated’ ——
'speedup_actual’ ---— <

speed-up

0.5 L L

number of processors

Figure 2: The speed-up graph for the medium sized image (640 x 480)
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5 Conclusion

With the advent of new and sophisticated algorithms for image processing and vision, the
need to parallelize them follows in order the need to effectively use them. Toward this end,
we chose the dense fluid motion estimation application and aimed to parallelize it using
OpenMP. OpenMP is a standard for parallelization which is more promising than the other
existing standards, and is becoming popular. In this paper, we presented our experience
with OpenMP parallelization with respect to a dense fluid motion estimation application on
a shared memory multiprocessors.

The application that we parallelized addresses the problem of estimating and analyzing
the motion in image sequences showing fluid phenomenon. It uses a dedicated energy-based
motion estimator. The data model used is embedded in a multiresolution framework, and
the optimization of the global energy function is solved within an efficient multigrid scheme.
The application could broadly be divided into four sections, two of which took most of the
execution time of the program. These two sections of the code could be parallelized, while
the other two remained sequential. We have presented the times spent in various parts, the
degree of parallelism, the data access patterns and the strategy of parallelization that could
be expected to work best.

We used the OpenMP programming model for parallelizing our application. OpenMP
provides a fast way of incrementally parallelizing the application with minimal changes to
the data structures and the algorithm in general.

We have demonstrated our results achieved on the test images using Intra-Block as well as
the Inter-Block strategy. The Intra-Block parallelism does not achieve good results because,
due to the small size of the blocks, the speed-ups achieved do not surpass the parallelism
overheads. This was as expected, and hence it is not an adequate solution for this application.
On the other hand, with the Inter-Block parallelization strategy, the processors are assigned
different blocks for computation, and each block’s computation is done by a single processor.
This achieves significant speed-ups and considerably reduces the execution time. Hence it
is practical to follow this approach. With sufficiently large number of processors, it is now
possible to use the application as an operational tool for routine work.

The parallel version of the application has been developed to run on shared memory
multiprocessors. Work has been going on to have OpenMP execution on top of PC cluster,
especially using software distributed shared memory (SDSM). In the future, it would be in-
teresting to have an execution of the application for DSM architecture. It would considerably
increase the usability of the application.
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