N

N

A Generic Object-Calculus Based on Addressed Term
Rewriting Systems

Dan Dougherty, Frédéric Lang, Pierre Lescanne, Luigi Liquori, Kristoffer Rose

» To cite this version:

Dan Dougherty, Frédéric Lang, Pierre Lescanne, Luigi Liquori, Kristoffer Rose. A Generic Object-
Calculus Based on Addressed Term Rewriting Systems. [Research Report] RR-4549, LORIA, UMR
7503, Université de Lorraine, CNRS, Vandoeuvre-les-Nancy; INRIA. 2002, pp.49. inria-00072039

HAL Id: inria-00072039
https://inria.hal.science/inria-00072039
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072039
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4549--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Generic Object-Calculus Based on
Addressed Term Rewriting Systems

Dan Dougherty — Frédéric Lang — Pierre Lescanne — Luigi Liquori — Kristoffer Rose

N° 4549
September 2002

THEME 2

apport
derecherche

% INRIA

LORRAINE

A Generic Object-Calculus Based on
Addressed Term Rewriting Systems

Dan Dougherty* , Frédéric Lang' , Pierre Lescanne! | Luigi Liquori® |
Kristoffer Rose!

Théme 2 — Génie logiciel
et calcul symbolique
Projet MIRO

Rapport de recherche n° 4549 — September 2002 — 49 pages

Abstract: We describe the foundations of AOby®, a framework, or generic calculus,
for modeling object-oriented programming languages. This framework provides a setting
for a formal operational semantics of object based languages, in the style of the Lambda
Calculus of Objects of Fisher, Honsell, and Mitchell. As a formalism for specification,
AOby® is arranged in modules, permitting a natural classification of many object-based
calculi according to their features. In particular, there are modules for calculi of non-
mutable objects (i.e., functional object-calculi) and for calculi of mutable objects (i.e.,
imperative object-calculi). As a computational formalism, AObj® is based on rewriting rules.
However, classical first-order term rewriting systems are not appropriate to reflect aspects of
implementation practice such as sharing, cycles in data structures and mutation. Therefore,
the notion of addressed terms and the corresponding notion of addressed term rewriting are
developed.

Key-words: Object-based calculi, shared objects, mutable objects, cyclic objects, explicit
substitution, Addressed Term Rewriting.

* Worcester Polytechnic Institute (Worcester MA, USA) — dd@cs.wpi.edu

f Inria Rhone-Alpes (Montbonnot, France) — Frederic.Lang@inrialpes.fr

 Ecole Normale Supérieure de Lyon (Lyon, France) — Pierre.Lescanne@ens-lyon.fr

§ INr1a Lorraine (Vandoeuvre-lés-Nancy, France) — Luigi.LiquoriQloria.fr

T IBM T. J. Watson Research Center (Yorktown Heights NY, USA) — krisrose@us.ibm.com

Unité de recherche INRIA Lorraine
LORIA, Technopble de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lés-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Un calcul i objets générique basé sur
les systémes de réécriture de termes a adresses

Résumé : Nous décrivons les fondements de AObj®, un calcul générique pour modéliser
les langage de programmation & objets. Ce calcul offre une base pour la sémantique
opérationnelle des langages & objets, dans le style du “Lambda Calculus of Objects” de
Fisher, Honsell et Mitchell. AObj® est structuré en modules, qui permettent une classification
naturelle de nombreux calculs d’objets selon leurs caractéristiques. En particulier, il existe
des modules pour les calculs d’objets non-mutables (i.e., les calculs d’objets fonctionnels)
et pour les calcul d’objets mutables (i.e., les calculs d’objets impératifs). La sémantique
opérationnelle de AObj® est basée sur des régles de réécriture. Cependant la théorie classique
des systémes de réécriture de termes du premier ordre n’est pas adaptée pour refléter des
aspects pratiques d’implémentation tels que le partage, les cycles dans les structures de
données et la mutation. Par conséquent, la notion de terme & adresse et la notion associée
de systéme de réécriture de termes a adresses sont développées.

Mots-clés : Calculs basés sur les objets, objets partagés, objets mutables, objets
cycliques, substitution explicite, réécriture de termes & adresses.

A Generic Object-Calculus Based on ATRS 3
Contents
1 Introduction 5
2 A Simple Example Exploiting Object Inheritance 10
2.1 Cloning o e 11
2.2 Illustrating an Imperative Calculus 12
2.3 Tlustrating a Functional Calculus 14
3 Rewriting with Addresses 14
3.1 Sharing 15
3.2 Cycles and Mutation 16
3.3 Syntax of Addressed Terms 17
34 Rewriting 17
4 Modules and Top Level Rules of AObj” 19
4.1 Symtax of NOby® 19
4.2 Architecture of AOby® 21
5 Examples in A\Obj® 25
6 Meta-Theory of A\Obj* 27
6.1 Addressed Termso 27
6.2 Addressed Term Rewriting 32
6.3 Acyclic Mutation-free ATRS 36
6.4 The Calculus A\(Oby° and its Relation with AObpy* 41
7 Conclusions 44

RR n° 4549

D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

List of Figures

0 ~JO Uik WIN -

Sharing and Cycles Using Addresses 9
The Object Pixel o o 11
The Clonespand g. o o i i ittt ittt e e 11
The Memory Structure after (1,2), 13
The Memory Structure after (3), 13
Detail from Figure 4 L 16
A Loopin the Store 16
The Syntax of AOby® L 20
The Top Level Rules of AOby® 22
The Module K 25
A Loopinthe Store 27
The Term ¢ and the Preterm u, 31
The Syntax of AOby” e 42
The Rules of AOby? o o i e e 43

INRIA

A Generic Object-Calculus Based on ATRS 5

1 Introduction

Recent years have seen a great deal of research aimed at providing a rigorous foundation
for object-oriented programming languages. In many cases, this work has taken the form of
“object-calculi” 26, 1].

Such calculi can be understood in two ways. On the one hand, the formal system is a
specification of the semantics of the language, and can be used as a framework for classifying
language design choices, to provide a setting for investigating type systems, or to support a
denotational semantics. Alternatively, we may treat an object-calculus as an intermediate
language into which user code (in a high-level object-oriented language) may be translated,
and from which an implementation (in machine language) may be derived.

In this paper, we present the calculus AObj® in which one can give a formal specification
and an operational semantics for a variety of object-based programming languages. In fact,
AOby®, introduced in [37], is a generic framework, leading to an easy classification of object-
based languages and their semantics, making a clear distinction between functional and
imperative languages, i.e., languages with non-mutable objects and languages with mutable
objects, or according to Okasaki’s terminology [45]: languages with persistent objects and
languages with ephemeral objects.

The calculus A\Obj® is based on A-calculus, but we do not restrict our attention to so-called
“functional” object-oriented calculi. A key feature of our approach is the representation of
programs as addressed terms [36], which support reasoning about mutation. Since AOb)“
contains the A-calculus explicitly, we therefore have a modular and uniform treatment of
both functional and imperative programming.

Many treatments of functional operational semantics exist in the literature [34, 9, 32, 43].
To go further and accommodate imperative operations one can use the traditional stack and
store approach [48, 23, 53, 42, 24, 57,1, 15]. The greater complexity of the presentation of the
latter works might lead one to conclude—wrongly—that implementing functional languages
is easy in comparison with imperative languages. Such a false impression may be due in part
to the fact that typical operational semantics formalisms are based on algebras: this makes
them good at abstracting away the complexity of the algebraic structures used in functional
languages, but ill-suited to express the non-algebraic structure of imperative data structures.
The novelty of AObjy® is that it provides a homogeneous approach to both functional and
imperative aspects of programming languages, in the sense the two semantics are treated in
the same way using addressed terms, with only a minimal sacrifice in the permitted algebraic
structures. Indeed, the addressed terms used were originally introduced to describe sharing
behavior for functional programming languages [50, 12].

From another point of view, the use of addressed terms suggests a bridge between the
operational and denotational semantics for a language. This is not a direction we pursue in
detail in this paper but the main idea is as follows. A traditional denotational semantics
for imperative languages involves the store, i.e., a function from locations to values, as one
of the key domains. The store typically has no explicit representation in the programming
language and it has no structure beyond being a function space. But if we identify locations
with addresses in an addressed-term representation of an execution state, we may see the

RR n° 4549

6 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

store as intimately bound up with the program expression. Indeed, the term “program
expression” is now misleading, since we have at hand an expression modeling an ezecution
state, which embodies a function from addresses to sub-expressions whose values in turn
comprise the store. Note that the semantics now need not refer to the entire store but only
that finite part concerning addresses explicit in the execution state. Furthermore the store
inherits a structure, induced by the execution state’s tree-structure; for example there is
now a notion of one store-location occurrence being within the scope of another.

All of this leads to a new and rather subtle relationship between operational and
denotational semantics. In a sense we have identified a new level of abstraction, more
general and robust than the machine level, yet more concrete and operational than a purely
mathematical treatment a la A-calculus.

Specifically, the calculus A\Obj® enjoys the following properties:

o It is faithful to implementation in the sense that each transition in the system
corresponds to a constant-cost operation in the execution of code on a machine. This
permits reasoning about resource usage and the actual cost of certain implementation
choices.

o It is a formal system which can support a careful analysis of some fundamental
properties of object-oriented languages, such as type-safety and observational
equivalence.

With regard to the first point, AObj® gives an explicit account of substitution, sharing,
and redirection. The inclusion of explicit indirection nodes is a crucial innovation here.
Indirection nodes allow us to give a more realistic treatment of the so-called collapsing rules
of term graph rewriting (rules that rewrite a term to one of its proper sub-terms): more
detailed discussion will be found in Sections 3.4 and 4.2.

The framework A\Obj® is not a monolithic formal calculus. It is defined in terms of a set of
five modules (L, C, F, |, and K), each of which captures a particular aspect of object-calculi.
Indeed, the modules are sets of rules which describe, in “small-steps”, the transformations
of the objects, whereas the strategies (such as call-by-value, call-by-name, etc) describe how
these rules are invoked giving the general evolution of the whole program. Usually in the
description of an operational semantics, strategies and small steps are tightly coupled. In
our approach they are independent. As a consequence, we get the genericity of A\Oby®, in
the sense that many semantics can be instantiated in our framework to conform to specific
wishes. A specific calculus is therefore a combination of modules plus a suitable strategy.
Thus, we choose to not code strategies into the framework itself and we postpone discussion
of specific strategies for future work. Also, for the sake of simplicity, we will not here explore
issues such as privacy or encapsulation.

A useful way to understand the current project is by analogy with graph-reduction as
an implementation-calculus for functional programming. Comparing AOby® with the state
of the art implementation techniques of functional programming (FP) and object oriented
programming (OOP) gives the following correspondence:

INRIA

A Generic Object-Calculus Based on ATRS 7

Paradigm AObj® fragment Implementation techniques

Pure FP AO0b® (L) Graph Rewriting; Explicit Substitutions
Pure FP+O0P AOby* (L+C+F) Graph Rewriting; Explicit Substitutions
Imp. FP+O0P AOby* (full) Stack & Store

In the remainder of this introduction we provide historical context for our focus on object-
based languages and our use of explicit substitutions and addressed term rewriting in the
formal system.

Object-based Languages

The monograph [1] makes the case for the study of object-based languages both as examples
of a novel object-oriented style of programming and as a way of implementing class-based
languages. In object-based languages there is no notion of class: the inheritance takes place
at the object level. Objects are built “from scratch” or by inheriting the methods and fields
from other objects (sometimes called prototypes). Examples of object-based language are in
Self [55], Obliq [16], Kevo [52], Cecil [17], Moby [25, 28, 27] and 0-{1,2,3} [1].

Among the proposals firmly setting the theoretical foundation of object-based languages,
two of the most successful are the Object Calculus of Abadi and Cardelli [1] and the Lambda
Calculus of Objects (AOby) of Fisher, Honsell, and Mitchell [26].

AOb) is an untyped A-calculus enriched with object primitives. Objects are untyped and
a new object can be created by modifying and/or extending an existing prototype object.
The result is a new object which inherits all the methods and fields of the prototype. The
consistency of dynamic object-extension with a sound type-system was one of the main
goals of A\Obj. This calculus is computationally complete, since the A-calculus is built in the
calculus itself.

The calculus AObyt [29, 18] is an extension of AOby with a new small-step semantics,
and a new type system; the type soundness result ensures that a typed program “cannot-go-
wrong”. In particular, A\Oby" allows typed objects to extend themselves upon the reception
of a message.

Two classical problems we find in the literature regarding the implementation of
imperative and flexible object-calculi are:

e The capacity to handle loops in the store [1].
e The capacity to dynamically extend objects.

The system AObj® studied here presents solutions to each of these problems.

Explicit Substitutions Calculi

Calculi of explicit substitutions give a finer description of the meta-operation of substitution,
a fundamental notion in any programming language; see for instance [2, 38, 14]. Roughly

RR n° 4549

8 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

speaking, an explicit substitution calculus fully includes the substitution operation as part
of the syntax, adding suitable rewriting rules to deal with it. These calculi give a good
model of the concept of “closures” that represent partially computed function applications. If
combined with updating, closures can represent objects by considering the state of the object
as what has been computed “so far” [3]. In section 6.4, we present A(Oby° as an antecedent of
AOby®. Tt adds explicit substitutions to AOby of [26] (but not addresses, the main innovation
of the present paper). The reader who wishes a slow and stepwise introduction to AOb)®
may wish to look first at that language.

Recently [21] a technical analysis of an explicit substitutions calculus via intersection
types has yielded a refinement and strengthening of the classical theorem that leftmost
reduction is a normalizing strategy in the A-calculus. The latter theorem is the theoretical
foundation for the correctness of the standard evaluation strategy for functional languages;
see for example [44] Prop. 2.4.12.

Addressed Calculi and Semantics of Sharing

Efficient implementations of lazy functional languages (and of computer algebras, theorem
provers, etc.) require some sharing mechanism to avoid multiple computations of a single
argument. A natural way to model this sharing in a symbolic calculus is to pass from
a tree representation of terms to directed graphs. Such term graphs can be considered
as a representation of program-expressions intermediate between abstract syntax trees and
concrete representations in memory, and term-graph rewriting provides a formal operational
semantics of functional programming sensitive to sharing. There is a wealth of research on
the theory and applications of term graphs; see for example [11, 51, 49, 13] for general
treatments, and [56, 54, 6, 5, 4] for applications to A-calculus and implementations.

However, representing and thinking with graphs can be delicate (observe that graphs
differ from trees in that the latter naturally support definition and proof by structural
induction). In this paper we will annotate terms, as trees, with global addresses a la
[23, 50, 12]. Lévy [39] and Maranget [41] previously introduced local addresses; from the
point of view of the operational semantics, global addresses describe better what is going in
a computer or an abstract machine.

With explicit global addresses we can keep track of the sharing that could be used
in the implementation of a calculus. Sub-terms which share a common address represent
the same sub-graphs, as suggested in Figure 1 (left), where a and b denote addresses.
In [36], addressed terms were studied in the context of addressed term rewriting, as an
extension of classical first-order term rewriting. In addressed term rewriting we may rewrite
simultaneously all sub-terms sharing a same address, mimicking what would happen in an
actual implementation.

The notion of computation on terms is expanded in the present paper to encompass
computations performing mutation, still through rewriting rules.

We also enrich the sharing with a special back-pointer to handle cyclic graphs [50]. Cycles
are used in the functional language setting to represent infinite data-structures and (in some
implementations) to represent recursive code; they are also interesting in the context of

INRIA

A Generic Object-Calculus Based on ATRS 9

. A 4 4

Acyclic graph Corresponding addressed term Cydlic graph Corresponding addressed term

Figure 1: Sharing and Cycles Using Addresses

imperative object-oriented languages where loops in the store may be created by imperative
updates through the use of self (or this), see Figure 11. The idea of the representation of
cycles via addressed terms is rather natural: a cyclic path in a finite graph is fully determined
by a prefix path ended by a “jump” to some node of the prefix path (represented with a
back-pointer), as suggested in Figure 1 (right).

The formalisms of term-graph rewriting and addressed-term rewriting are fundamentally
similar but we feel that the addressed-term setting has several advantages.

First, our intention is to define a calculus which is as close to actual implementations as
possible, and the addresses in our terms really do correspond to memory references. To the
extent that we are trying to build a bridge between theory and implementation we prefer
this directness to the implicit coding inherent in a term-graph treatment.

Also, the relation between the value of subterm and the address attached to the subterm is
precisely the store, so that the store is represented in the syntax itself. The most important
consequence of our choice of formalism is the fact that we have a completely direct and
transparent way to model mutation. Since memory references (qua addresses) are first-class
citizens for us it is trivial to model changing the value at an address, by changing the
subterm whose label is that address.

We should also note here that there is another active line of current research which aims to
elucidate resource-usage in programming languages: this is the work which brings linear logic
to bear on implementation questions. Notable examples here include [31, 30, 7, 40, 8, 35].
These investigations are complementary to ours, but not really comparable. The intention
there is to analyze phenomena such as garbage collection as part of the underlying logic of
the language in question. But existing mainstream languages build in resource management
in a way external to the underlying logic (if their design is based on logic at all). Questions
of garbage collection and pointer-chaining are central to the task of mapping of a typical
language to a machine, but are likely viewed by the programmer as well as the implementor
at a different level from the meanings of the core language constructs. Our own goal is
to better understand the relationship between code as written by the programmer and as
executed on conventional architectures, by working in a system explicitly bridging these two
extremes.

RR n° 4549

10 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

Outline of the Paper

In Section 2, we discuss by an example the main concepts that a generic calculus of objects
has to take into account. In Section 3, we say how addressed term rewriting systems give
solutions to the basic questions of object oriented languages, namely sharing, cycles and
mutations. Section 4 presents the five modules of rewriting rules that form the core of
AOby®. They are illustrated by some examples in Section 5. Section 6 details the framework
of addressed term rewriting systems and establishes a general relation between addressed
term rewriting systems and first-order term rewriting systems. This result is used to prove
the correspondence between a sub-set of A\Obj® and a calculus without addresses. Section 7
concludes and describes related and further works.

2 A Simple Example Exploiting Object Inheritance

The examples in this section embody certain choices about language design and
implementation (such as “deep” ws. “shallow” copying, management of run-time storage,
and so forth). It is important to stress that these choices are not tied to the formal calculus
AObj* which is the subject of this paper. Indeed, our main point is that AObj® provides a
foundation for a wide variety of language paradigms and language implementations. We hope
that the examples are suggestive enough that it will be intuitively clear how to accommodate
other design choices. The main body of the paper justifies that intuition. These schematic
examples will be also useful to understand how objects are represented and how inheritance
can be implemented in AOby®.

Reflecting implementation practice, in AOb)® we distinguish two distinct aspects of an
object:

o The object structure: the actual list of methods/fields.
e The object identity: a pointer to the object structure.

We shall use the word “pointer” where others use “handle” or “reference”. Objects can be
bound to identifiers as “nicknames” (e.g., pixel), but the only proper name of an object is
its object identity: an object may have several nicknames but only one identity.

Consider the following definition of a “pixel” prototype with three fields and one method.
With a slight abuse of notation, we use “:=" for both assignment of an expression to a
variable or the extension of an object with a new field or method and for overriding an
existing field or method inside an object with a new value or body, respectively.

pixel = object {x :=0;
y :=0;
onoff := true;
set = (u,v,w){x := u; y := v; onoff := w;};
}

INRIA

A Generic Object-Calculus Based on ATRS 11

code

e T T e T
| pi xel L set onof f |true x | 0 y 0 f
el D= . | ey]

Nickéme Objebt identity Object s{ructure

Figure 2: The Object Pixel

set code of set

[]

pixel p q

Figure 3: The Clones p and q

After instantiation, the object pixel is located at an address, say a, and its object structure
starts at address b, see Figure 2. In what follows, we will derive three other objects from
pixel and discuss the variations of how this may be done below.

2.1 Cloning

The first two derived objects, nick-named p and q, are clones of pixel:

clone(pixel);
clone(p);

p
q :

Object p shares the same object-structure as pixel but it has its own object-identity. Object
q shares also the same object-structure as pixel, even if it is a clone of p. The effect is
pictured in Figure 3. We might stress here that p and q should not be thought of as aliases
of pixel as Figure 3 might suggest; this point will be clearer after the discussion of object

RR n° 4549

12 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

overriding below. The semantics of the clone operator we illustrate here differs somewhat
from that found in certain existing object-oriented programming languages like SmallTalk
and Java. For example in Java there will be sharing between an object and its clone if an
instance field of the original is itself a reference to an object. In Java a true deep clone of
an object is in general not available via the built-in clone method, but may be provided by
the programmer overriding the default method.

In the rest of this section, we discuss the differences between functional and imperative
models of object-calculi, i.e., between models with non-mutable and mutable objects.

2.2 Illustrating an Imperative Calculus

Imperative object-calculi have been shown to be fundamental in describing implementations
of class-based languages. They are also essential as foundations of object-based programming
languages like Obliq and Self. The main goal when one tries to define the semantics of an
imperative object-based language is to say how an object can be modified while maintaining
its object-identity. Particular attention must be paid to this when dealing with object
extension. The semantics of the imperative update operation is subtle because of side-
effects.

Here, we show what we want to model in our framework when we override the set
method of the clone q of pixel, and we extend a clone r of (the modified) q with a new
method switch.

g.set := (u,v,w){ x := x*u; y := y*v; onoff := w;}; (1)
r := clone(q); (2)
r.switch := (){ onoff := not(onoff);}; (3)

Note that we have used a Java-like imperative syntax here to save parentheses.

Figure 4 shows the state of the memory after the execution of the instructions (1,2).
Note that after (1) the object q refers to a new object-structure, obtained by chaining the
new body for set with the old object-structure. As such, when the overridden set method
is invoked, thanks to dynamic binding, the newer body will be executed since it will hide
the older one. This dynamic binding is embodied in the treatment of the method-lookup
rules (SU) and (NE) from Module C as described in Section 4.

Observe that the override of the set method does not produce any side-effect on p and
pixel; in fact, the code for set used by pixel and p will be just as before. Therefore,
(1) only changes the object-structure of q without changing its object-identity. This is
the sense in which our clone operator really does implement shallow copying rather than
aliasing, even though there is no duplication of object-structure at the time that clone is
evaluated.

This implementation model performs side effects in a very restricted and controlled way.
Figure 5, finally, shows the final state of memory after the execution of the instruction
(3). Observe that, in this case, the update operation, denoted by “:=", extend the object
r with the onoff method. Again, the addition of the switch method changes only the
object-structure of r.

INRIA

A Generic Object-Calculus Based on ATRS 13

onof f [true

set ‘ —| = code of set

’4;

set ——= new code of set

[]

pixel p q r

Figure 4: The Memory Structure after (1,2)

A
[
X ‘ 0
r
y [0
* T
[
onof f [true)
swilch‘ —|» code of switch
[
set ‘ 1 = code of |set
| S
’ set ‘ ——= new code of set

0 o0—!

pi xel

Figure 5: The Memory Structure after (3)

In general, changing the nature of an object dynamically by adding a method or a field
can be implemented by moving the object identity toward the new method/field (represented
by a piece of code or a memory location) and to chain it to the original structure. This
mechanism is used systematically also for method/field overriding but in practice (for
optimization purposes) can be relaxed for field overriding, where a more efficient field look
up and replacement technique can be adopted. See for example the case of the Imperative

RR n° 4549

14 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

Object Calculus in Chapter 10 of [1], or observe that Java uses static field lookup to make
the position of each field constant in the object.

This implementation model, however does not avoid the unfortunate loop in the store:
an example of loop will be given Section 3.

2.3 Illustrating a Functional Calculus

Object-calculi can play a role as well in a purely functional setting, where there is no
notion of mutable state. As said before, an “update” operation, denoted by “:=", can either
override or extend an object with some fields or methods. In a functional setting, the update
always produces another object with its proper object-identity since this ensures that all
references to an object have the same meaning whether their evaluation is delayed or not.
This property is also known as referential transparency. Thus, the result of an update must
be a fresh object in the sense that it has a proper (new) object-identity.

The “imperative” definition of pixel,p,q,r in the previous example could have been
written in a more traditional functional object-calculus as follows. Here let x = A in
B is syntactic sugar for the functional application (Ax.B)A and the clone(_) function is
essentially an identity function since cloning in a purely functional setting is not relevant,
due to the absence of mutation:

let p = clone(pixel) in
let q = clone(p).set := (u,v,w)

{((self.x := self.x*u).y := self.y*v).onoff := w} in
let r = (clone(q).switch := (){self.onoff := not(self.onoff);}) in r

which obviously reduces to:
(pixel.set := (u,v,w) {...}).switch := O{...}

Worth noticing is that the above code would be implemented, in a purely functional calculus,
in the same way as Figure 5.

3 Rewriting with Addresses

In this section we introduce addressed term rewriting systems (ATRS) informally—in the
context of object-oriented programming—by examining these issues in turn and the ways in
which they are reflected in features of ATRS. Section 6 presents a more formal treatment.

The paradigm of term rewriting [19, 33, 10] provides a computational interpretation of
first-order equational reasoning and is a very convenient and powerful tool to describe the
operational semantics of simple calculi.

In addition, term rewriting systems are sufficiently flexible to model the operational
semantics of functional programs, although at a high level, ignoring certain aspects of
memory management, reduction strategy, and parameter-passing. They are widely used
to formalize, prototype, and verify software.

INRIA

A Generic Object-Calculus Based on ATRS 15

However, as suggested in the introduction, classical term rewriting cannot easily express
issues of sharing and mutation. Calculi which give an account of memory management
often introduce some ad-hoc data-structure to model the memory, called heap, or store,
together with access and update operations. However, the use of these structures necessitates
restricting the calculus to a particular strategy. The aim of addressed term rewriting (and
that of term graph rewriting) is to provide a mathematical model of computation which
better reflects memory usage.

3.1 Sharing

Sharing has been extensively studied in the context of obtaining implementations of lazy
functional programming languages [46, 47], and the initial studies of sharing in the notations
of term graph rewriting systems were indeed motivated by this application.

Sharing of computation. Consider the function square defined by
square(x) = times(z, x)

It is clear that an implementation of this function should not duplicate its input x in the
expression times(x,), but optimize this by only copying a pointer to the input. This not only
saves memory but also makes it possible to share future computations on z, in particular
when z is not already required to be a value, as in e.g., lazy programming languages.
Classical term representations do not permit us to express this sharing of the actual structure
of x. However, the memory structures used for the computation of a program can be
represented using addressed terms. For instance, the “program” square(square(2)) can be first
instantiated in memory, provided locations a, b, ¢ to each of its constructors, as the addressed
term (or memory structure) square®(square® (). It can then be reduced as follows:

square®(square’(2°)) — times®(square®(2°), square®(2°))

- timesa(tlmes (2°,2°), times® (2, 2°))
— times®(4°,4%)
- 16%,

where “—” designates one step of shared computation (we are assuming that definitions
to compute the function times(z,y) to the value z * y exist for each z and y). The key
point of a shared computation is that all terms which share a common address are reduced
simultaneously. This corresponds to a single computation step on a small component of the
memory.

Sharing of Object Structures. In object-oriented programming, the aim of sharing is
not only to share computations as in the former example, but also to share structures. Indeed,
objects are typically structures which receive multiple pointers. Moreover, the delegation-
based model of inheritance insists that object structures are shared between objects with

RR n° 4549

16 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

set ‘ | » code of set

gl set \ | = new code of set
/ a hl:]

Figure 6: Detail from Figure 4

m |

loop in the store

Figure 7: A Loop in the Store

different identities. As an example, if we “zoom” on Figure 4, we can observe that the object
p and q share a common structure, addressed by b. This can be very easily formalized in
the framework, since addresses are first-class citizens. See Example 2 in Section 5.

3.2 Cycles and Mutation

Cycles. Cycles are essential in functional programming when one wants to deal with
infinite data-structures in an efficient way, as is the case in lazy functional programming
languages. Cycles are also used, in some implementations, to save space in the code of
recursive functions.

In the context of object programming languages, cycles can be also used to express loops
introduced in the memory (the store) by the imperative operators. Figure 7 illustrates
the situation where the body of method m references the object p (via self); a complete
translation of such example in AOby® will be presented in Example 3.

INRIA

A Generic Object-Calculus Based on ATRS 17

Mutation. Almost all object-oriented programming languages are not purely functional,
but rather have some operations that may alter the state of objects without changing object’s
identity. An example of such a mutation was given in Section 2.2 (Figures 4 and 5), where
we see that the object denoted by p has had its structure altered by the addition of some
methods, without changing its object identity. Note that the object p may be shared, and
that all the expressions containing pointers to p undergo the mutation that happened at
address a.

The key point of mutation in the setting of ATRS is the possibility to modify in-place
the contents of any node at a given location, with respect to some precise rules. More details
on computations performing mutation will be given in Section 4.

3.3 Syntax of Addressed Terms

An addressed preterm is a tree where each node receives a label (the operator symbol e.g.,
times) and an address (e.g., a). Of course we will not want to treat an arbitrary preterm as
an addressed term, because an unconstrained preterm may denote a non-coherent memory
structure. Roughly speaking, since each node in a memory has a unique symbol and a unique
list of successor locations, it must be the case that all “sub-terms” at a given address in a
term denote a unigue memory sub-structure. For instance, the expression

times® (square®(2°), square®(2%))

(quite similar to the one presented in Subsection 3.1) is not admissible, because it designates
that the unique son of the node at address b is both at addresses ¢ and d. In contrast, the
expression

times® (square®(2°), square®(2°))

is admissible.

Above we used the word sub-term, but in the presence of back-pointers, this notion does
not really make sense. For example suppose t is an addressed term at address a containing
a back-pointer o%. If one takes a sub-term of ¢ in the usual sense, say at address b, one
might obtain a term with a dangling back-pointer e*. Therefore when defining the term
at address b, (denoted by t@b), one has to “expand” (or “unfold”) e* sufficiently to avoid
dangling pointers. Because of this surgery, we do not call t @b a sub-term but an in-term.
Note that the relation “to be an in-term of” is not well-founded. Section 6 gives the details.

3.4 Rewriting

Addressed terms themselves formalize the data structures representing code and data in a
machine; we now describe the operational semantics of the machine as rewriting of addressed
terms.

A rewriting rule, denoted by I — r, is a pair of addressed terms with variables. As for
ordinary terms, such a rule induces a reduction relation on the set of addressed terms. This
relation is defined with the help of a notion of a term matching another term. Roughly

RR n° 4549

18 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

speaking, a term ¢ matches / when the variables of [can be substituted by addressed terms,
and its addresses by other addresses, resulting in ¢. The intuition that substitution on
addressed terms is almost the same as classical term substitution is sufficient to understand
the following idea.

In an addressed rewriting rule [— r, [and r must have a common address, say a, at
their respective roots. The idea is that the rule describes how the node at this address has
to be modified for computation. Other addresses reachable from a may be modified as well,
and new nodes introduced by 7.

Intuitively, given an addressed term ¢, the rewriting takes the following four steps:

1. Find a redex in t, i.e., an in-term matching the left-hand side of a rule.

2. Clreate fresh addresses, i.e., addresses not used in the current addressed term ¢, which
will correspond to the new locations occurring in the right-hand side, but not in the
left-hand side.

3. Substitute the variables and addresses of the right-hand side of the rule by their new
values, as assigned by the matching of the left-hand side or created as fresh addresses.
Let us call this new addressed term u.

4. For all a that occur both in ¢ and w, replace in ¢ the in-terms at address a by the
in-term at address a in wu.

The fact that both members of a rule must have the same address has non-trivial technical
consequences. For example we cannot directly admit rules like F*(X) — X, called collapsing
or projection rules. We can recover the effect of such rule by adding to the signature a unary
function symbol, intuitively seen as an indirection node and written []. This constraint is
realistic as, in fact, it turns to be the technique used by all actual implementations to avoid
searching the memory for pointers to redirect. With that, the above rule can be expressed
as F*(X) — [X]“. The use of explicit indirection nodes is motivated by our wish to explicit
the constraints that every rewriting step must be as close as possible to what happens in
a real implementation, so that the complexity of the rewriting and the complexity of the
execution on a real machine are closely correlated. It is a simple and efficient way to avoid
an unbounded, global, redirection.

The last operation in the above definition of rewriting corresponds to the simulation of
updates in-place in a memory: all over the rewritten term, address contents are modified to
give an account of the sharing and mutation. This operation is the key point of the following
property: any reduction starting from an addressed term results in an addressed term, i.e.,
the coherence of the underlying memory structures is preserved by the application of any
rule, as will be established by Theorem 14 in Section 6.

Section 4 gives an intuition of the way rules are defined and used, in the particular
setting of AOby®. Section 5 presents a rich collection of object expression in which some
typical computations in AObjy® are modeled by (addressed) rewriting.

INRIA

A Generic Object-Calculus Based on ATRS 19

4 Modules and Top Level Rules of \Obj*

The purpose of this section is to describe the top level rules of the framework AOb)®. The
framework is described by a set of rules arranged in modules. The five modules are called
respectively L, C, F, I, and K.

L is the functional module, and is essentially the calculus Acg of [12]. This module alone
defines the core of a purely functional programming language based on A-calculus and
weak reduction.

C is the common object module, and contains all the rules common to all instances of object
calculi defined from AObj®. It contains rules for instantiation of objects and invocation
of methods.

F is the module of functional update, containing the rules needed to implement object update
that also changes object identity.

| is the module of imperative update, containing the rules needed to implement object update
that does not change object identity.

K is a module which provides a dynamic semantics of the clone operator.

The set of rules L + C + F is the instance of AOby® for non-mutable object calculi while L
+ C 4+ I + K is for mutable object calculi.

4.1 Syntax of \Obj*

The syntax of AObj® is summarized in Figure 8. The first category of expressions is the code
of programs. Code contains all the constructs of the calculus AObyt [29], plus an imperative
update and a clone operator. Terms that define the code have no addresses, because code
contains no environment and is not subject to any change during the computation (remember
that addresses are meant to tell the computing engine which parts of the computation
structure can change simultaneously). The second and third categories define dynamic
entities, or inner structures: the evaluation contexts, and the internal structure of objects
(or simply object structures). Terms in these two categories have explicit addresses. The last
category defines substitutions also called environments, i.e., lists of terms bound to variables,
which are to be distributed and augmented over the code.

Notation. The “.” operator acts as a “cons” constructor for lists, with the environment
id acting as the empty, or identity, environment. By analogy with traditional notation for
lists we adopt the following aliases:

M[]* M{[id]®
MUy /21;...;Up /2] & M[Uyjzy. Up/2, -id]*

1>

In what follows, we review all the four syntactic categories of AOb)®*:

RR n° 4549

20 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

M,N = MM|MN|z|c|{)|M<m| Code
(M +: m=N)| (M + m=N) | clone(z)

UV == Ms|*| (UV)*| Eval. Contexts
U «<=m)" [(Uem=V)"|

(U+:m=V)*|[01"| Sel*(0O,m,U) |

(U7 | e
o = ()| {(O+m=V)"|e® Object Structures
s x= Ufz.s | id Substitutions

Figure 8: The Syntax of AObj*

The Code Category. Code terms, written M and N, provide the following constructs:

e Pure A-terms, constructed from abstractions, applications, variables, and constants.
This allows the definition of higher-order functions.

e Objects, constructed from the empty object () and update operators: the functional
(_ « _)andtheimperative { <«:). An informal semantics of the update operators
has been given in Section 2. As in [29], these operators can be understood as extension
as well as override operators, since an override is handled as a particular case of
extension.

e Method invocation (<).

e Cloning. The operator clone(z) creates a new object identity for the object pointed
to by = but which still shares the same object structure as the object z itself (it is a
“shallow copy” as discussed in Section 2).

Evaluation Contexts. These terms, written U and V', model states of abstract machines.
Evaluation contexts contain an abstraction of the temporary structure needed to compute
the result of an operation. They are given addresses as they denote dynamically instantiated
data structures; they always denote a term closed under the distribution of an environment.
There are the following evaluation contexts:

e Closures, of the form M[s]*, are pairs of a code and an environment. Roughly speaking,
s is a list of bindings for the free variables in the code M.

INRIA

A Generic Object-Calculus Based on ATRS 21

e The terms (UV)?*, (U « m)*, (U +« m = V)2 and (U «: m = V)2, are the
evaluation contexts associated with the corresponding code constructors. Direct sub-
terms of these evaluation contexts are themselves evaluation contexts instead of code.

o Objects, of the form [O]?, represent evaluated objects whose internal object structure
is O and whose object identity is a. In other words, the address a plays the role of an
entry point or handle to the object structure O, as illustrated by Figure 2.

e The term Sel®(O,m,U) is the evaluation context associated to a method-lookup, i.e.,
the scanning of the object structure O to find the method m, and apply it to the object
U. Tt is an auxiliary operator invoked when one sends a message to an object.

e The term [U]” denotes an indirection from the address a to the root of the addressed
term U. The operator [1" has no denotational meaning. It is introduced to make
the right-hand side stay at the same address as the left-hand side. Indeed in some
cases this has to be enforced. e.g. rule (FVAR) and (IC). This gives account of
phenomena well-known by implementors. Rules like (AppRed), (LCop), (FRed) and
(IRed) remove those indirections.

o Back-references, of the form % represents a back-pointer intended to denote cycles as
explained in Section 3.

Internal Objects. The crucial choice of AObj® is the use of internal objects, written O,
to model object structures in memory. They are persistent structures which may only be
accessed through the address of an object, denoted by a in [O]“, and are never destroyed
nor modified (but eventually removed by a garbage collector in implementations, of course).
Since our calculus is inherently delegation-based, objects are implemented as linked lists (of
fields/methods), but a more efficient array structure can be envisaged. Again, the potential
presence of cycles means that object structures can contain occurrences of back-pointers .

The evaluation of a program, i.e., a code term M, always starts in an empty environment,
i.e., as a closure M[]".

4.2 Architecture of \Obj)*

The rules of AObj* as a computational-engine are defined in Figure 9.

Remark 1 (On fresh addresses) We assume that all addresses occurring in right-hand
sides but not in left-hand sides are fresh. This is a sound assumption relying on the formal
definition of fresh addresses and addressed term rewriting (see Section 6), which ensures
that clashes of addresses cannot occur.

In what follows, we will explain the rules, module by module.

RR n° 4549

22

D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

The Module L
(MN)[s]®
((Ae.M)[s]P U)*
z[U/z . s]°
z[U/y . s]*
(' vye
[(Az.M)[s]"]"

The Module C
(sl
(M < m)[s]°
(101" < m)e
([U1° < m)e
Sel*((0 <+~ m =U)b,m,V)
Sel®({0 <« n=U),m,V)

The Module F
(M = m = N)[s]*
(101" «m=v)e
(U =m=v)

The Module |
(M = m = N)[s]°
([01" «:m=V)e

(U1 : m=V)e

N N

1

{

_)

_)

_)

(M[s]* N[s]*)*

M[U/z . §]*
on*

zfs]* z#y
wv)e
(Az.M)[s]®
ron*

(M[s]* <= m)*

Sel®(0,m, [01%)
(U <= m)*
wv)e
Sel*(0,m,V) m#n
(M[s]" ¢ m = N[s]°)*
[{0 m=V)T"

(U+m=V)e

(M[s]b +: m = NJ[s]%)®
MO0 «m = V)"

U : m=V)o

(IP)
(IC)
(IRed)

All addresses occurring in right-hand sides but not in left-hand sides are fresh.

Figure 9: The Top Level Rules of AObj®

INRIA

A Generic Object-Calculus Based on ATRS 23

The Module L. This module is very similar to the calculus Ao? of [12], a calculus of
explicit substitution enriched with addresses, to which we have added explicit indirections.
Module L hence defines the core of a very simple functional programming language.

Rule (App) tells how environments have to be distributed over applications: it creates
two new evaluation contexts (closures) located at new fresh addresses b and c; each of these
closures is reachable from address a, updated so as to contain an evaluation context of
application. Note that the two occurrences of s in the right-hand side of the rule contain
the same addressed sub-terms. This means that these sub-terms are shared.

Once a substitution reaches an abstraction, a redex can be contracted by applying rule
(Bw) (the name comes from Beta weak, the name this rule is assigned in functional languages;
a more appropriate pronunciation would be Bind weakly). This extends the substitution by
adding a pair, binding the parameter of the abstraction to the argument of the application.

Once a variable is reached by a substitution, a lookup has to be performed in the
substitution to find the evaluation context to be substituted, i.e., the one bound to the
variable. This is described by rules (FVar), and (RVar). Note that, since modifications must
be performed in place, and since U has its own address, the only simple way to get access
to U from a is to set an indirection (denoted by a pair of []-brackets) from a to the root of
U.

The last two rules (AppRed), and (LCop) say how to get rid of indirections that could
block the identification of redexes. Intuitively, we are here treating the situation in which
address a has a redex, but one of its components is available only through a redirection. In
this module, an indirection blocks a reduction if the indirected node is an abstraction, and
the indirection node is the left argument of an application. We have two alternative ways
to get rid of such indirections, modeling choices that may be made in an implementation:

1. Redirect from the address a to the root of U, as in rule (AppRed).

2. Copy the indirected abstraction node lying at address b, at the address of the
indirection node a, as in rule (LCop). Note that the copy is only a copy of the node at
b, not of a whole graph, since addresses in s and (implicit addresses) in Az.M do not
change. Note as well that this copy may not cause a loss in the sharing of computation
since an abstraction is already a value and can not be reduced further.

Finally observe that, in contrast to [12], no rule is given which allows us to copy shared
structures for applications and other closures. There are two reasons to do this: the first is
that it could induce a loss in the sharing of computations since applications and closures are
not values; the second (stronger) is that such closures can reduce to objects, and, as we will
see later, a copy would have the same effect as a clone of object. We certainly do not want
to have uncontrolled cloning of objects, particularly in the presence of imperative update.
In fact, the way an implementer is going to handle redirections is an essential component
of the design of an object oriented language. One main purpose of our approach is to make
this pointer manipulation explicit in a rewriting framework.

RR n° 4549

24 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

The Common Object Module C. This module handles object instantiation and
message sending. Object instantiation is defined by rule (NO) where an empty object is
given an object identity. More sophisticated objects may then be obtained by functional
or imperative updates, defined in modules F and I. Message sending is formalized by the
five remaining rules, namely rule (SP), which propagates the environment into the receiver
of the message, rule (SA), which performs the self-application, rules (SU) and (NE), which
perform the method-lookup, and finally rule (SRed) which redirects a blocking indirection
node. Note that there is no copy alternative to rule (SRed), since we still do not want to
lose control of the cloning of objects.

The Functional Object Module F. This module gives the operational semantics of
a calculus of non-mutable objects. It contains only three rules. Rule (FP) propagates
substitutions over functional update operators, installing the evaluation context needed to
proceed, while rule (FC) describes the actual update of an object of identity b. The update
is not made in place at address b, hence no side effect is performed, but the result is a
new object, with a new object identity a which used to be the address of the evaluation
context that has led to this new object. This is why we call this operator functional or
non-mutating. The last rule (FRed) is the way to get rid of blocking indirection nodes in
the case of functional update.

The Imperative Object Module |I. This module contains rules for the mutation of
objects (imperative update) and cloning primitive. Imperative update is formalized in a way
close to the functional update. Rule (IC) differs from rule (FC) in address management, as
illustrated in Section 2. Indeed, look at address b in rule (IC). In the left-hand side, b is the
identity of an object [O], when in the right-hand side it is the identity of the whole object
modified by the rule. Since b may be shared from anywhere in the context of evaluation,
this modification is observable non-locally as a side effect or mutation. Moreover, since the
result of this transformation has to be accessible from address a, an indirection node is set
from a to b. As described in Section 3, rule (IC) may create cycles because it is possible
that the address b is a sub-address of V. Module | has also a rule that redirects blocking
indirection nodes in the case of imperative extension, namely rule (IRed).

The Clone Module K. This module deals with object cloning and it is presented
separately in Figure 10. The term clone(z) is a primitive for cloning, that performs a
lookup in the environment as variable access, but that always creates a copy of the found
object. As we said before, by copy, we mean a shallow copy that creates a new object
identity for an existing object even though z and clone(z) share the same object structure.
This operator belongs to the core of A\Obj®, but for readability we feel more appropriate to
make it an independent module. Rules (SRVar) and (SFVar) lookup the object bound to z
in the environment, in a way similar to rules (RVar) and (FVar). Once the object is found,
it is given the new identity a (SFVar). Rule (CRed) gets rid of a blocking indirection by
local redirection.

INRIA

A Generic Object-Calculus Based on ATRS 25

clone(z)[U/y . s]* — clone(z)[s]* z#vy (SRVar)
clone(z)[[O]"/z . s]* — [O]" (SFVar)
clone(z)[[U%/z . s]* — clone(z)[U/x . s]° (CRed)

Figure 10: The Module K

5 Examples in \Ob)“

Here we propose some examples that should aid the understanding of the framework.
We first give an example showing a functional object which extends itself [29] with a
field n upon reception of message m.

Example 1 (An Object which “self-inflicts” an Extension) Let self ext = (() «
add_n = Aself.(self < n= As.1)). The reduction of M = (self ext < add n) in

N
AOby® starting from an empty substitution is as follows:

M[]* =* ({()[]? + add_n = N[]°)’ < add_n)" (1)
= ([O)¢]% + add_n = N[]°)® < add_n)* (2)
= (T{()* ¢ add_n = N[]C)fj]” & add_n)® (3)

o]

— Sel(0,add_n, [0]%) (4)
— ((Aself.(self «+ n = Xs.1))[]° [O]")® (5)
— (self « n = As.1)[[O]"/sel£]® (6)
— (self[[0]"/self]" + n = (As.1)[[O]"/sel1]9)® (7)
= {[T01"" +n = (As.1)[[O]"/seL£]?)" (8)
= ([071° < n = (As.1)[[O]"/se1£]?)® (9)
= [{O +n= (/\self.l)[[|'0'|]b/self]g)h'ﬂa (10)
In (1), two steps are performed to distribute the environment inside the extension, using
rules (SP), and (FP). In (2), the empty object is given an object-structure and an object
identity (NO). In (3), this new object is functionally extended (FC), hence it shares the
structure of the former object but has a new object-identity. In (4), and (5), two steps (SA)
(SU) perform the look up of method add_n. In (6) we apply (Bw). In (7), the environment is

distributed inside the functional extension (FP). In (8), (FVar) replaces self by the object
it refers to, setting an indirection from h to b. In (9) the indirection is eliminated (FRed).

RR n° 4549

26 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

Step (10) is another functional extension (FC). There is no redex in the last term of the
reduction, i.e. it is in normal form.

) . . b
Some sharing of structures appears in the example above, since e.g. [O]° has several
occurrences in certain terms of the derivation.

Example 2 (Object Representations in Figures 4 and 6) Representing object struc-
tures with the constructors () (the empty object), and {(_ «+) (the functional cons of an
object with a method/field), and object identities by the bracketing symbol [_7, the object p
and g, presented in Figures 4 and 6, will be represented by the following addressed terms.

p 2 [+y=0)« x=0)" + onoff = true)® + set =---)’]"
a = [+3=0)° x=0)? « onoff = true)’ + set = ---)°
+— set = ---)9'|]h

The use of the same addresses b,c,d, e, f in p as in q denotes the sharing between both object
structures while g, h, are unshared and new locations.

Let us look on an example how we can express cycles, hence loops in the framework.

Example 3 (Loop in the store of [1]) Consider an object o which contains one single
method, namely m. The method m overrides itself. In AObj)®, we represent methods with
A-abstractions whose first parameter s denotes the object itself. The object o is then:

[—m=(As.(s «: m= Xs".s)) [])]

~ v
~~

N

a

where {_ <: _) denotes the imperative cons of an object with a method/field, and N[]°
refers to the evaluation context at address ¢ given by code N in the identity environment [].
When m is invoked on the object o, it “self-inflicts” an override of m with a new body in which
s s now bound to o itself.

The result of this operation could be expressed as the infinite term defined by the fixed
point equation:

0 2 () +m=N[])%m=(As".s)[0/s])'1" (bad)

Here, [o/s] says that in the A-abstraction (A\s'.s), the free variable s is bound to o. This is
not the approach taken in the framework AXObj®: rather than having to deal with an infinite
term (or a fized point equation), we adopt the back-pointer e labeled with the same address
as o.

The following legal term in AObj)® is, the addressed term representing o, in which e®
denotes a back-pointer to the addressed term at location a, namely o itself:

0o 2 [{()’ «m=N[])" n=(As"5)[s"/s])T" (good)
Figure 11 gives a graphical illustration of the loop.

INRIA

A Generic Object-Calculus Based on ATRS 27

m ‘ — = N [id]
A f m_| 7j
initial | I)
J[F-umeeen 0 (29 (el
‘ R ' loop in the store

Figure 11: A Loop in the Store

6 Meta-Theory of A\Obj*

The computational engine underneath the framework A\Obj® is essentially based on Addressed
Term Rewriting Systems (ATRS) [36]; ATRS were introduced as a framework which can
account for computation with sharing, cycles, and mutation. ATRS enjoy the following
features:

e They permit one to model the “geometry” of an implementation, including aspects of
sharing and mutation.

e They permit a straightforward representation of cyclic data via “back-pointers”.

e They enjoy bounded complexity of rewriting steps by eliminating implicit pointer
redirection.

In this sense, ATRS provide a handy tool for the definition of the formal operational
semantics of AOby”.

Part of this Section is mainly inspired from [36] in which the interested reader may find
some further examples.

6.1 Addressed Terms

Addressed terms are first order terms labeled by operator symbols and decorated with
addresses. They satisfy well-formedness constraints ensuring that every addressed term
represents a connected piece of a store. Moreover, the label of each node sets the number
of its successors. More abstractly, addressed terms denote term graphs, as the largest tree
unfolding of the graph without repetition of addresses in any path. Addresses intuitively
denote node locations in memory. Identical subtrees occurring at different paths can thus
have the same address corresponding to the fact that the two occurrences are shared.

RR n° 4549

28 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

The definition is in two stages: the first stage defines the basic inductive term structure,
called preterms, while the second stage just restricts preterms to well-formed preterms, or
addressed terms.

Definition 1 (Preterms) 1. Let X be a term signature, and e a special symbol of arity
zero (a constant). Let A be an enumerable set of addresses denoted by a,b,c,..., and
X an enumerable set of variables, denoted by X,Y, Z, ... An addressed preterm ¢ over
Y. is either a variable X, or ® where a is an address, or an expression of the form
Fo(ty,...,t,) where F € X (the label) has arity n > 0, a is an address, and each t; is
an addressed preterm (inductively).

2. The location of an addressed preterm t, denoted by loc(t), is defined by
loc(F(t1,...,t,)) = loc(e*) = a,
and it is not defined on variables.

3. The set of variables and addresses occurring within a preterm t is denoted by var(t)
and addr(t), respectively, and defined in the obvious way.

Remark 2 Note that the concrete syntaz of A\Ob)* of Figure 8 extends the above scheme in
two ways:

1. Symbols in the signature may also be infix (like e.g., (_ < _)), bracketing (like
e.g., [_1), mizfix (like _[_]), or even “invisible” (as is traditional for application,
represented by juxtaposition). In these cases, we have chosen to write the address
outside brackets and parentheses.

2. We shall use AObj* sort-specific variable names.

For example we write (UV)® instead of apply®(X,Y) and M[s]* instead of closure®(X,Y)
(substituting U for X, etc.). Indeed, we shall leave the names of \Oby® function symbols,
such as apply and closure alluded to above, unspecified.

It is clear that not all preterms denote term graphs, since this may lead to inconsistency in
the sharing. For instance, the preterm

((rO“1” < m* 1¢)*1")°
is inconsistent, because location a is both labeled by () and (_ < _). The preterm
((TO*1° < me 10T

is inconsistent as well, because the node at location b has its successor at both locations a
and e, which is impossible for a term graph. On the contrary, the preterm

((TO1" =m)° [0)*1°)

d

d

INRIA

A Generic Object-Calculus Based on ATRS 29

denotes a legal term graph with four nodes, respectively, at addresses a, b, ¢, and d'.
Moreover, the nodes at addresses a and b, respectively labeled by () and [], are shared
in the corresponding graph since they have several occurrences in the term. The well-
formedness constraints filter preterms which denote term graphs from preterms which do
not. Only the former are called addressed terms.

The definition of a preterm makes use of a special symbol denoted by e, and called a
back-pointer. The back-pointer is also present in the definition of the syntax of AOb)*, see
Figure 8. The purpose of this symbol is to denote cycles. Having a simple representation
of cycles is an interesting feature for specifying imperative object calculi, because one can
create cycles in the memory by doing imperative updates of objects. Classical rewriting,
or algebraic specification tools, lack the provision of a representation of cycles. ATRS
representation of cyclic graphs inherits from the work of Rose [50] in using the so-called
back-pointer representation. A back-pointer e® in an addressed term must be such that a is
an address occurring on the path from the root of the addressed term to the back-pointer
node. It simply indicates at which address one has to branch (or point back) to go on along
an infinite path. For instance, the addressed term

[(()® +m= (Axy)[e* /31T’

denotes a cyclic object which refers to itself in the environment and whose cycle originates
at address b. Note that e is considered as a special symbol in the sense that it is not a
label. In the previous addressed term, the label at address bis [_]. Given the previous
informal definitions, one could argue that there may be several addressed terms denoting a
same cyclic term graph. In fact, there may even be infinitely many. Indeed,

[(()* «m= Qay)e /v
[()* «n= Qey)[+*1 /510
[()® «m= Qe)[[{()® «m= o)1 /590

are just the first three of an infinite sequence of preterms that all denote the same term
graph, corresponding to different levels of unfolding of addresses b, ¢, and d. However, it is
clear that there is a smallest (with respect to the size of the addressed term) representation
of this term graph, namely the first one. In the following, we will work modulo the smallest
representations of cyclic term graphs.

An essential operation that we must have on addressed (pre)terms is the unfolding that
allows seeing, on demand, what is beyond a back-pointer. Unfolding can therefore be seen
as a lazy operator that traverses one step deeper in a cyclic graph. It is accompanied

10Observe that computation with this term leads to a method-not-found error since the invoked method
m does not belong to the object [()“'ﬂb, and hence will be rejected by a suitable sound type system or by a
run-time exception.

RR n° 4549

30 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

with its dual, called folding, that allows giving a minimal representation of cycles. Note
however that folding and unfolding operations have no operational meaning in an actual
implementation (hence no operational cost) but they are essential in order to represent
correctly transformations between addressed terms.

Definition 2 (Folding and Unfolding) Folding. Let t be a preterm, and a be an
address. We define fold(a)(t) as the folding of preterms located at a in t as follows:

fold(a)(X) £
fold(a)(.b) 2.
fold(a)(F*(t1,...,tn)) = o
fold(a) (F(t1,...,tn)) = F*(fold(a)(t1),. .., fold(a)(t,)) ifa#b

Unfolding. Let s and t be preterms, such that loc(s) = a (therefore defined), and a does
not occur in t except as the address of *. We define unfold(s)(t) as the unfolding of
% by s in t as follows:

unfold(s)(X) £ X
unfold(s)(e®) £ {

unfold(s) (F®(t1,...,tm)) = FO(t,,...,t,) where s' = fold(b)(s
th = unfold(s')(t,)

s ifa=b

b

° otherwise

t;n £ unfold(s") (tm)

We now proceed with the formal definition of addressed terms also called admissible
preterms, or simply terms, for short, when there is no ambiguity. As already mentioned,
addressed terms are preterms which denote term graphs. First, we give the reader an
intuition of the problems raised by this constraint.

As an example, in Figure 12, the preterm ¢ is an addressed term, whereas the preterm u
is not an addressed term because the address b does not occur on the path from the root of
the term to the second occurrence of e°. Similarly, a sub-term of an addressed term, in the
usual sense, is not an addressed term. For instance, o® is not an addressed term although ¢,
which contains it, is.

This example shows us that the usual sub-term relation is not the one we need. A
specific notion of term at a given address in an addressed term, abbreviated in-term, has
the intended property and is given next. This notion tells us that the unique in-term of ¢

located at address b is s
[< m=(xy)[e*/y])°]

which is an addressed term. Similarly, the unique in-term of ¢ at address ¢ is

QPO = m=o9)]"/y]°

INRIA

A Generic Object-Calculus Based on ATRS 31

1>

(1) m= Qxy)[o/51)T° 0 = Quy)[[{()* m=0)°]"/5]%)?

1>

(1)« m= (xy)o/31)T" < n = Oxy)lo’ /5]
Figure 12: The Term ¢t and the Preterm u

although ¢ has three distinct sub-terms at address ¢, namely u, o¢, and (Ax.y)[e"/y]°.

The notion of in-term helps to define addressed terms. The definition of addressed terms
takes two steps: the first step is the definition of dangling terms, that are the sub-terms, in
the usual sense, of actual addressed terms. Simultaneously, we define the notion of a dangling
term, say s, at a given address, say a, in a dangling term, say ¢t. When the dangling term ¢
(i.e. the “out™term) is known, we just call s an in-term. For a dangling term ¢, its in-terms
are denoted by the function t@ , read “t at address _”, which returns a minimal and
consistent representation of terms at each address, using the unfolding.

Therefore, there are two notions to distinguish: on the one hand the usual well-founded
notion of “sub-term”; and on the other hand the (no longer well-founded) notion of “term
in another term”, or “in-term”. In other words, although it is not the case that a term is a
proper sub-term of itself, it may be the case that a term is a proper in-term of itself or that
a term is an in-term of one of its in-terms, due to cycles. The functions ¢; @ _ are also used
during the construction to check that all parts of the same term are consistent, mainly that
all in-terms that share a same address are all the same dangling terms.

Dangling terms may have back-pointers which do not point anywhere because there is no
node with the same address “above” in the term. The latter are called dangling back-pointers.

For instance,
(Ax.y)[e’/y]°

has a dangling back-pointer, while

Q)T = m=09)]"/y]°

has none. The second step of the definition restricts the addressed terms to the dangling
terms which do not have dangling back-pointers.
The following definition provides simultaneously two concepts:

e The dangling terms.

e The function t@ _ from addr(t) to dangling in-terms. ¢ @a returns the in-term of ¢
at address a.

Definition 3 (Dangling Addressed Terms) Variables. Every X € X is a dangling term.
Since addr(X) =0, X @ _ is nowhere defined.

RR n° 4549

32 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

Back-pointers. % is a dangling term such that e Qa = °.

Expressions. Let ty,...,t, be dangling addressed terms (n > 0) and a be an address such
that:

1. Vb € addr(t;) N addr(t;), we have t; @b =1t; @b, and
2. a € addr(t;) only if t; @a = .

Then, given F € ¥ of arity n,

o F(t1,...,t,) is a dangling term.
e t@ s defined by:

—tQa=t.
— Vb € addr(t) \ {a}, we have t@b = unfold(t)(t; @b), where t; is any of
t1,...,ty containing b.

The “admissible” addressed terms can now be defined as those where all * do point back
to something in ¢ such that a complete (possibly infinite) unfolding of the term exists. The
only way we can observe this with the t@ _ function is through checking that no % can
“escape” because this cannot happen when it points back to something.

Definition 4 (Addressed Terms) A dangling addressed term t is admissible if
Va € addr(t), we have t @Qa # &°
The addressed terms denote the admissible dangling addressed terms.

Proposition 5 (In-terms Admissibility) If ¢ is an admissible term, and a € addr(t),
then

1. t@a is admissible, and
2. VYb € addr(t@a), we have (t@Qa)@Qb=tQb.

Proof. By definition of addressed terms: it follows from how the function t@ _ is well-
defined. O

6.2 Addressed Term Rewriting

Given the representation of term graphs by addressed terms, how do we compute? First
of all, the computation on an addressed term must return an addressed term (not just a
preterm). In other words, the computation model (here addressed term rewriting) must
take into account the sharing information given by the addresses, and must be defined as
the smallest rewriting relation preserving admissibility between addressed terms. Hence, a
computation has to take place simultaneously at several places in the addressed term, namely
at the places located at the same address. This simultaneous update of terms corresponds
to the update of a location in the memory in a real implementation.

INRIA

A Generic Object-Calculus Based on ATRS 33

In an ATRS, a rewriting rule is a pair of open addressed terms (i.e., containing variables),
both located at the same location. The way addressed term rewriting proceeds on an
addressed term t is not so different from the way usual term rewriting does. There are
four steps.

1. Find a redex in t, i.e. an in-term matching the left-hand side of a rule. Intuitively, an
addressed term matching is the same as a classical term matching, except there is a
new kind of variables, called addresses, which can only be substituted by addresses.

2. Create fresh addresses, i.e. addresses not used in the current addressed term ¢, which
will correspond to the locations occurring in the right-hand side, but not in the left-
hand side (i.e. the new locations).

3. Substitute the variables and addresses of the right-hand side of the rule Sby their new
values, as assigned by the matching of the left-hand side or created as fresh addresses.
Let us call this new addressed term w.

4. For all a that occur both in ¢ and u, the result of the rewriting step, say t', will have
t' @Qa = u@a, otherwise ¢ will be equal to t.

We give the formal definition of matching and replacement, and then we define rewriting
precisely.

Definition 6 (Substitution, Matching, Unification) 1. Mappings from addresses
to addresses are called address substitutions. Mappings from variables to addressed
terms are called variable substitutions. A pair of an address substitution a and o
variable substitution o is called a substitution, and it is denoted by {a;0).

2. Let {a;0) be a substitution and p a term such that addr(p) C dom(a) and
var(p) C dom(o). The application of {a;0) to p, denoted by {(a;o)(p), is defined
inductively as follows:

(o) (F*(P1,---,Pm)) = F¥(q,...,qm) and g; = fold(a(a))({a; 0)(p;))

3. We say that a term t matches a term p if there exists a substitution {o; o) such that

(a5 0)(p) = t.

4. We say that two terms t and w unify if there erists a substitution {o;0) and an
addressed term v such that v = {a;0)(t) = (0 o) (u).

Example 4 1. The term ([()2]% < m)® matches ([O]® < n)® with substitution

{a—b,b—d};{m—n,0— ()*})

RR n° 4549

34 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

2. The term z[o"/z]® matches x[U/x;s]® with substitution
{am b} {x = 2,U o 2[e’/2]";s = []})

Note that the range of the obtained variable substitution consists of addressed terms,
as required by the definition of a substitution.

We now define replacement. The replacement function operates on terms. Given a term,
it changes some of its in-terms at given locations by other terms with the same address.
Unlike classical term rewriting (see for instance [19] pp. 252) the places where replacement
is performed are simply given by addresses instead of paths in the term.

Definition 7 (Replacement) Let t,u be addressed terms. The replacement generated by
u in t, denoted by repl(u)(t) is defined as follows:

repl(u)(X) = X
repl(u)(s) £ { u@a if a € addr(u)

o otherwise,

uQa if a € addr(u)

Tepl(u) (Fa‘(tla ce ,tm)) = { Fo (repl(u) (tl); ceey repl(u) (tm)) otherwise

Proposition 8 (Replacement Admissibility) If ¢ and u are addressed terms, then
repl(u)(t) is an addressed term.

Proof. By induction on the structure of t as a dangling term. We show more generally
that if t and u are dangling terms whose dangling addresses are in any set A, then repl(u)(t)
is a dangling term whose dangling addresses are in A. Since an addressed term is a dangling
term without dangling address, the intended result follows. d

Example 5 1. Lett be x[()[]*/z; ()[]*/7]°, and u be [{)°]".
The replacement generated by u in t gives x[[{)°]*/x; [()¢1*/y]°.

2. Lett be
([0 = m= (As.8)[1)/x [T /v
and u be
M) —m=ss)[19177
The replacement generated by u in t gives

x[u/x; [(()¢ «m = (s.8)[])1" /31"

We now define the notions of redex and rewriting.

INRIA

A Generic Object-Calculus Based on ATRS 35

Definition 9 (Addressed Rewriting Rule) An addressed rewriting rule over ¥ is a pair
of addressed terms (1,7) over ¥, written | — 7, such that loc(l) = loc(r) (same top address,
therefore | and r are not variables), and var(r) C var(l) (no creation of variables). Moreover,
if there are addresses a,b in addr(l) N addr(r) such that l@a and @b are unifiable, then
r@Qa and r @b must be unifiable with the same unifier.

Definition 10 (Redex) A term t is a redex for a rule l — r, if t matches I. A term t has
a redex, if there exists an address a € addr(t) such that tQa is a redez.

Note that, in general, we do not impose restrictions as linearity in addresses (i.e. the same
address may occur twice), or acyclicity of [and r. However, AOby® is linear in addresses
(addresses occur only once) and patterns are never cyclic. Cycles may only be introduced
by the means of imperative update.

Beside redirecting pointers, ATRS create new nodes. Fresh renaming insures that these
new node addresses are not already used.

Definition 11 (Fresh Renaming) 1. We denote by dom(yp) and rng(y) the usual
domain and range of a function .

2. A renaming is an injective address substitution.

3. Let t be a term having a redex for the addressed rewriting rule | — r. A renaming
Qgresh 15 fresh for I — r with respect to t if

dom(Qresn) = addr(r) \ addr(l)

i.e. the renaming renames each newly introduced address to avoid capture, and
rng(Qgresn) N addr(t) = 0, i.e. the chosen addresses are not present in t.

Proposition 12 (Substitution Admissibility) Given an admissible term t that has a
redex for the addressed rewriting rule I — r. Then

1. A fresh renaming Qgresn exists for | — r with respect to t.
2. (@ U agresn; 0)(r) is admissible.

Proof. The admissibility of t and | ensures that the substitution («;o) satisfies some
well-formedness property, in particular the set rng(c) is a set of mutually admissible terms
in the sense that the parts they share together are consistent (or in other words, the preterm
obtained by giving these terms a common root, with o fresh address, is an addressed term).

The use of agesn both ensures that all addresses of r are in the domain of the substitution,
and that their images by o will not clash with existing addresses.

The definition of substitution takes care in maintaining admissibility for such substi-
tutions, in particular the management of back-pointers. These properties are sufficient to
ensure the admissibility of (o U Oresn; o) (r). O

RR n° 4549

36 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

At this point, we have given all the definitions needed to specify rewriting,.

Definition 13 (Rewriting) Let ¢ be a term which we want to reduce at address a by rule
Il — r. Proceed as follows:

1. Ensure t@a is a redex. Let (o;0)(l) £ tQa.
Compute Qsresh, @ fresh renaming for | — r with respect to t.

Compute u = (@ U Qgresh; 0)(T)-

The result s of rewriting t by rule | — 7 at address a is repl(u)(t). We write the
reduction t — s, defining “—7” as the relation of all such rewritings.

Theorem 14 (Closure under Rewriting) Let R be an addressed term rewriting system
and t be an addressed term. If t = u in R then u is also an addressed term.

Proof. The proof essentially walks through the steps of Definition 13, showing that each
step preserves admissibility.

Let R be an addressed term rewriting system and t be an addressed term rewritten by the
rule l = r. All of t, I, and r, are admissible. For the rewrite to be defined, we furthermore
know that t has a redez

t' 2t@a=(0)()

By Proposition 5, t' is admissible and by Proposition 12, we can find a renaming oyesn that
is fresh for | — r with respect to t' and we know that u = (o U agresn; o) (1) is admissible.
Proposition 8 finally ensures that repl(u)(t) is admissible. O

6.3 Acyclic Mutation-free ATRS

In this subsection, we consider a particular sub-class of ATRS, namely the ATRS involving
no cycles and no mutation. We show that this particular class of ATRS is sound to simulate
Term Rewriting Systems.

Definition 15 (Acyclicity and Mutation-freeness) e An addressed term is called
acyclic if it contains no occurrence of e.

e An ATRS rule l — r is called acyclic if I and r are acyclic.
e An ATRS is called acyclic if all its rules are acyclic.

e An ATRS rule l — r is called mutation-free if,

V a € (addr(l) N addr(r)) \ {loc(l)}, we have l@a =rQa.

e An ATRS is called mutation-free if all its rules are mutation-free.

INRIA

A Generic Object-Calculus Based on ATRS 37

The following definition aims at making a relation between an ATRS and Term Rewriting
System. We define mappings from addressed terms to algebraic terms, and from addressed
terms to algebraic contexts.

Definition 16 (Mappings) e An ATRS to TRS mapping is a homomorphism ¢ from
acyclic addressed preterms to finite terms such that, for some function set {F, | F € X}
where each Fy is either a projection or a constructor:

X
F¢(¢(t1)7 ey ¢(tn))

¢(X)
G(F(tr,. .. tn))

> >

e Given an ATRS to TRS mapping ¢, and an address a, we define ¢, as a mapping
from addressed preterms to multi-hole contexts, such that all sub-terms at address a
(if any) are replaced with holes, written ¢. More formally,

$a(X) 2 X

N 0 ifa=b
Ga(FP(t1, ... tn)) = { Fy(pa(tr), -, da(tn)) otherwise

e Given a context C containing zero or more holes, we write C[t] the term obtained by
filling all holes in C with t.

e Given an ATRS to TRS mapping ¢, we define the mapping ¢, from addressed terms
substitutions to term substitutions as follows:

$a(0)(X) 2 { $(0(X)) if X € dom(o)

- X otherwise

Lemma 17 (Mappings and Contexts) Let t be an acyclic addressed term, and a an

address. Then ¢(t) = ¢, (t)[p(t @ a)].
Proof. The case a ¢ addr(t) is obvious since there is no hole to fill. Now let a € addr(t).
We prove the lemma by structural induction on t.

e t is obviously not a variable since it must contain ot least address a.

e Lett be Fb(t1,...,t,). The case a = b is trivial. Otherwise,

¢(t) = F¢(¢(t1): LR ¢(t"))

For each t;, either a ¢ addr(t;) and then ¢(t;) = ¢o(t;), or a € addr(t;) and then by
induction hypothesis ¢(t;) = ¢o(t;)[0(t; Qa)]. Since t is acyclic, then t; Qa = tQa,
hence ¢(ts) = ga(t)p(t@a)]. Thercfore, §(t) = Fo(ga(tr), -, da(tn)[$(t @ a)] =
da(t)[P(t@a)] as desired.

RR n° 4549

38 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

O

Lemma 18 (Replacements and Contexts) Lett and u be acyclic addressed terms where
a £ loc(u) is the only address in addr(t) N addr(u) such that u@a #t@a. Then

1. repl(u)(t) is acyclic.

2. $(repl(u)(®)) = da(HP(w)].

Proof.

1. Trivial according to the definition of replacement (no folding).

2. By structural induction on t.

e Ift is a variable X, then
p(repl(u)(X)) = ¢(X) = X = X[d(u)] = ¢a(X)[(u)]
o Lett be Fb(t1,...,t,). Two cases are to be considered:
(a) a =b: then
p(repl(u)(F*(t1, .- -, tn))) = d(u) = O[¢(u)] = ¢a(t)[P(u)]
(b) a # b: note that since repl(u)(t) is acyclic, then
P(repl(u) (F* (b1, ., tn))) = (F* (repl(u)(tr), .. ., repl(u)(tn))
(no folding). Hence, by induction hypothesis,

$(repl(u)(F* (t1, - . tn))) = Fy(da(t)[(w)],- -, da(tn) [$(w)))
6(Da(tr),- .., ¢a(tn))[d(u)]
o(t)[0(u)]

M n
s M

Lemma 19 (Mapping and Substitution) If (a;0)(t) s acyclic, then ¢({a;0)(t)) =
$s(0)(8(2))-
Proof. By structural induction on t.

o Ift =X, then

¢((a;0)(X)) = ¢(0(X)) = ¢5(0)(X) = ¢5(0) (¢(X))

INRIA

A Generic Object-Calculus Based on ATRS 39

o Ift =F%t1,...,tn), then

$((a;0) () = H(FV ((@;0) (1), - - -, (@;0) (¢0)))

since {a; a)(t) is acyclic (fold is unnecessary). Hence,

(s 0)(1)) = Fy(d({a; 0)(t1)), - - -, p({s 0) (tn)))
On the other hand,

$5(0)((t)) = ¢s(0) (Fy((t1), - . -, ¢(tn))) = Fy(05(0)(d(t1)), - -, #5(0)(6(tn)))
By induction hypothesis, ¢({c;) (t;)) = ¢ds(0)(P(t;))-
O

Lemma 20 (In-term Substitution) Let (a;0)(t) be an acyclic addressed term, and let
b € addr(t), such that a(b) = a. Then (a;0)(t) @Qa = {(a;0)(t@QD).
Proof. By structural induction on t.

e t cannot be a variable since it must contain address b.
e Ift be F°(t1,...,t,), then we consider two cases:

1. b=e:
(a;0)(t) @a = F*({a;0) (1), ..., {a;0)(tn)) = (o) (t@D)

2. b#c:
(@;0)(t) @a = F* ((a;0)(t1), -, (@;0)(ta)) Qa

There must be some t; such that
FO((a;0)(t1), -, 0) (tn)) @a = (e 0)(t:) Qa
Hence, by induction hypothesis,
(a;0)(t) @a = (a;0)(t: QD) = (s 0)(t@D)
(]

Lemma 21 (In-terms Conservation) Let | — r be an acyclic mutation-free rule, t an
acyclic addressed term, and b an address in t such that tQb = (a;0)(l) (i.e., tQb is a
redex). Let ay be a fresh address renaming for | — r w.r.t. t and u = (a U ay; o) (r).

1. u is acyclic.

2. VYa € (addr(t) N addr(u)) \ {b},t@Qa =u@a.

RR n° 4549

D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

Proof.

1. We show the acyclicity of u by contradiction. Assume u is cyclic. Since r is acyclic,
there exists a sub-term of r of the form F¢(t1,...,t,) such that for one of the t;,
(a; 0) (t;) contains a(c) (e.g., there is a fold that produces a o).

Obviously, c is neither a fresh address nor the location of | and r, otherwise t; would
necessarily contain ¢ i.e., v would be cyclic.

Hence, c is another address of . We know by hypothesis that [@c = r Q¢ i.e., that
l@c= Fe(t1,...,tn), and that t is acyclic i.e., that {a;0)(t;) does not contain a(c).
Obviously, this is also true for (o U ay;o0)(t;) since t; does not contain fresh addresses
(it belongs to). This contradicts the hypothesis.

We conclude that (U ap; 0)(r) is acyclic.

2. Assume there is a € (addr(t) N addr(u)) \ {b} such that t@Qa # u@a. Then a may
have three distinct origins:

(a) a is a fresh address in u. Obuviously, this is not possible since by hypothesis
a € addr(t).

(b) There is an address ¢ € addr(l) N addr(r) such that a(c) = a. In this case,
u@a = {aUays;o)(r)Qa=(aUayso)(r@c)
from Lemma 20 and acyclicity of u. Similarly,
t@Qa = {a;0)(l)@a = {a;0)(lQc)

From the hypothesis, we know that r @Qc = [@c¢, hence r Q¢ contains no fresh
address i.e., u@Qa = {o;0)(r@Qc) = (a;0)(l@c) = t@a, which contradicts the
hypothesis.

(¢) There is no address of | mapping to a. Since t is acyclic, {a;o)(l) makes no
folding i.e., for all sub-term of | of the form F¢(ty,...,t,), we have

(@ o) (Fe(tr,. . ta)) = F*O((a50) (t1), .., (@ 0)(tn))

Hence, there must be a variable X in | such that o(X) contains a. According
to the previous observation, tQa = o(X) Qa. Since {a;0)(r) is acyclic, it must
also be the case that u@a = o(X) Qa.

O

INRIA

A Generic Object-Calculus Based on ATRS 41

Theorem 22 (TRS Simulation) Let S = {l; — r; | i = 1..n} be an acyclic mutation-free
ATRS, and t an acyclic term. Ift — u in S, then ¢(t) =T ¢(u) in the system

#(S) = {o(l;) = #(r;) | i = 1.n}

Proof. From the definition of addressed term rewriting, we have that t — repl(t)(u)
where there are a,o,ag,o0,l,7 such that t@Qa = (o)), and v = (aUay;o)(r).
From Lemma 17, we have ¢(t) = ¢q(t)[¢p(t@a)]. Note that a € addr(t), hence ¢o(t)
contains at least one hole. On the other hand, from Lemmas 18 and 21, we have
d(repl(u)(t)) = ¢a(t)[P(u)]. We just have to show that (t@a) — ¢(u) by rule ¢(1) — H(r).
This is immediate from Lemma 19 since ¢(t@Qa) = ¢({az0)(1)) = ¢s(o)(P(1)), and
p(u) = ¢({aUay;o)(r)) = ¢s(0)(4(r)), and obviously, ¢;(0)($(1)) = ¢s(0)(4(r)), by rule
b(1) — H(r). 0

6.4 The Calculus \Obj° and its Relation with \Obj*

The calculus AObjy° mentioned in the introduction is intermediate between the calculus AOb)
of Fisher, Honsell and Mitchell [26] and our AOby®. It does not use addresses (see the syntax
in Figure 13) and so in particular it does not model mutation. The syntax of AOby° is
presented in Figure 14; the reader will note that terms of this calculus are terms of AOb)®
without the addresses, indirections, and object identities, and the rules are those of modules
L + C + F of AObjy°.

In this section we establish some fundamental results about the relationship between
AOby° and AObj®: informally we say that AObj® is a conservative extension of AObj° in the
sense that for an acyclic mutation-free term, computations in AObj3® and computations in
AObj° return the same normal form. Since a AObj®-term yields a AObj)’-term by erasing
addresses and indirections, one corollary of this conservativeness is address-irrelevance, i.e.
the observation that the program layout in memory cannot affect the eventual result of the
computation. This is an example of how an informal reasoning about implementations can
be translated in A(Oby® and formally justified.

As a first step we note that the results presented in Section 6.3 are applicable to AOby? .

Definition 23 (Mapping AObj)® to AXOby°) Let ¢ be the mapping from acyclic AOby®-
terms which do not contain the <: operator and the clone(x) term, and which erases
addresses, indirection nodes ([1), and object identities ([_1“), and leaves all the other
symbols unchanged. Each term ¢(U) is a term of AOb)°.

Theorem 24 (AObjy° Simulates AOby®) Let U be an acyclic AOby®-term which does not
contain the <—: and clone(z) symbols. If U - V in L + C + F, then ¢(U) =* ¢(V) in
AOby° .

Proof. It relies on Theorem 22. Just notice that each rule l — v of modules L + C + F
is acyclic and mutation-free, and that either it maps to a rule ¢(1) — ¢(r) which belongs to
AOby?, or it is such that ¢(1) = H(r). O

RR n° 4549

42 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

M,N == Xe.M|MN |z|c]
OVI{M~m=N)|M<=m (Code)
UV == Ms]|UV|

Uem|{U<m=V)|Sel(O,m,U) (Eval. Contexts)
0 = () |{O&<m=V) (Object Structures)

s u= Uz .s | id (Substitutions)
Figure 13: The Syntax of AOb)?

Another issue, tackled by the following theorem, is to prove that all normal forms of
AObj° can also be obtained in L + C + F of AOby®.

Theorem 25 (Completeness of \Oby® w.r.t. \Oby”) If M —* N in AOb)®, such that
N is a normal form, then there is some U such that ¢(U) = N and M[]* =>* U in L + C
+ F of A\Oby°.

Proof. The result follows from the facts that

1. Each rule of AObj° is mapped by a rule of L + C + F.

2. Rules of \Obj® are left linear in addresses, hence whenever a AOb)° -term matches the
left-hand side of a rule, whatever the addresses of a similar addressed term are, it
matches the left-hand side of a rule in L + C + F of \Oby”.

3. Whenever an acyclic \Oby)®-term U contains an indirection node [1%, this node
may be eliminated using one of rules (AppRed), (LCop), (SRed), or (FRed) (hence,
indirection nodes cannot permanently hide some redezes).

4. Object identities [_1° are harmless as well since they systematically occur on top of
AObj®-terms of sort O, and only there.

O

The last issue is to show that L + C + F of AObjy* does not introduce non-termination
w.r.t. AOby° .

Theorem 26 (Preservation of Strong Normalization) If M is a strongly normalizing
AObj° -term, then all A\Oby®-term U such that ¢(U) = M is also strongly normalizing.

INRIA

A Generic Object-Calculus Based on ATRS 43

Basics for Substitutions

(MN)[s] — (M[s] N[s]) (App)

(A M)[s)U) = M[U/z . 5 (Bw)

z[Uly . s] = als] z#y (RVar)

o[U/z . 5] > U (FVar)

(M & m = N)[s] = (M[s] - m = NI[s]) (P)
Method Tnvocation

(Ofs] = () (NO)

(M <= m)[s] = (M][s] < m) (SP)

(0 < m) — Sel(0,m, 0) (SA)

Sel((0 « m =U),m,V) = (UV) (SU)

Sel({(0 « n=U),m,V) = Sel(O,m,V) m#n (NE)

Figure 14: The Rules of AOby”

Proof. This relies on two facts: first, Theorem 22 states that one step in L + C
+ F of AObj® maps to at least one step in ¢(L + C+ F) (that is AOb)° plus a set of
rules of the form M — M); second, the system of rules | — r for which ¢(l) = ¢(r)
(AppRed, LCop, NO, SP, SRed, FP, FC, FRed) is Noetherian. The second fact can be
shown using the following functions w and §, and verifying that whenever U — V by one of

RR n° 4549

44

D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

these rules, then w(U) is greater than w(V):

m(M[s]"
7((UV

o(M
0({M + m=N)

oM <=m
o(M

d(M)+6(N) +
= 5(M) +5(N)
0
134

[1>

(M) +

in all other cases

N)
)
)
)

1>

Both considerations permit to conclude that if U had an infinite computation in L + C
+ F of AOby®, then ¢(U) would have an infinite computation in AOb)°. O

7 Conclusions

We have presented a framework to describe many object-based calculi. To our knowledge,
this framework has no equivalent in the literature; it has the following features:

It is computationally complete since the A-calculus is explicitly built-in to the language
of expressions.

It gives an account of the delegation-based techniques of inheritance.
It is compatible with dynamic object extension and self-extension in the style of [29].

It is generic, due to the partition of rules in independent modules, which can be
combined to model (for example) functional vs. imperative implementations.

It supports the analysis of implementations at the level of resource usage, as it models
sharing of computations and sharing of storage, and each computation-step in the
calculus corresponds to a constant-cost computation in practice.

It is founded on a novel and mathematically precise theory, i.e., addressed term
rewriting systems.

Furthermore, A\(Obj® is generic in the sense that many strategies may be implemented. We
have not given any definition of particular strategies since we do not want to privilege one
strategy over another.

INRIA

A Generic Object-Calculus Based on ATRS 45

The approach for functional languages studied in [12] should be generalizable to AOb)®:
from a very general point of view, a strategy is a binary relation between addressed terms
and addresses. The addresses, in relation with a given term, determines which redexes of
the term has to be reduced next (note that in a given term at a given address, at most one
rule applies). This is a restriction w.r.t. the calculus in which not all the redexes may be
reduced. If this relation is a one-to-many relation, the strategy is non-deterministic. If this
relation is a function, then the strategy is deterministic and sequential. If this function is
computable, then the strategy is computable.

Implementors and designers of languages are usually interested in some subclass of the
computable strategies, that follows some locality principle—namely that a lot of reductions
happen in a small connected part of the whole structure before “jumping” to another distant
part. The definition of such strategies—which includes the usual call-by-value, call-by-name,
call-by-reference, etc.—can be expressed using a very simple set of inference rules (those rules
will be collected in another module of AOby® not presented in this paper). These rules can
be combined, as basic building blocks, provided possible conditions on their application, to
define a lot of strategies.

We plan to extend AOby* to handle the embedding-based technique of inheritance,
following [37], to include a type system consistent with imperative features and with the
ability to type objects extending themselves, following [29]. Finally a prototype of AOb)®,
should make it easy to embed specific calculi and to make experiments on the design of
realistic object oriented languages.

Acknowledgements

Suggestions by Maribel Fernandez are gratefully acknowledged: they were very helpful in
improving the technical presentation of the paper.

The present version of this paper has been deeply influenced by comments and remarks
of anonymous referees. In particular, Section 6 was almost completely rewritten following
their advises. Therefore the authors feel strongly indebted to the referees.

A “proof-of-concept” version of this paper was presented at the RTA’s satellite workshop
Westapp [20]; the final version of the paper was also influenced by the many questions and
suggestions raised by the audience during and after the talk.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit Substitutions. Journal of
Functional Programming, 1(4):375-416, 1991.

[3] H. Abelson, G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 1985.

RR n° 4549

46 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

[4] Z. M. Ariola and Arvind. Properties of a First-order Functional Language with Sharing.
Theoretical Computer Science, 146(1-2):69-108, 1995.

[5] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and Ph. Wadler. A Call-By-Need
Lambda Calculus. In Proc. of POPL, pages 233—-246. ACM Press, 1995.

[6] Z. M. Ariola and J. W. Klop. Cyclic Lambda Graph Rewriting. In Proc of LICS, pages
416-425. IEEE Computer Society Press, 1994.

[7] A. Asperti and C. Laneve. Interaction Systems I: The Theory of Optimal Reductions.
Mathematical Structures in Computer Science, 4(4):457-504, 1994.

[8] A. Asperti and C. Laneve. Interaction Systems II: The Practice of Optimal Reductions.
Theoretical Computer Science, 159, 1996.

[9] L. Augustson. A Compiler for Lazy ML. In Symposium on Lisp and Functional
Programming, pages 218-227. ACM Press, 1984.

[10] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[11] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway, M. J.
Plasmeijer, and M. R. Sleep. Term Graph Rewriting. In Proc. of PARLE, number 259
in Lecture Notes in Computer Science, pages 141-158. Springer-Verlag, 1987.

[12] Z.-E.-A. Benaissa, K.H. Rose, and P. Lescanne. Modeling Sharing and Recursion for
Weak Reduction Strategies using Explicit Substitution. In Proc. of PLILP, number
1140 in Lecture Notes in Computer Science, pages 393—407. Springer-Verlag, 1996.

[13] S. C. Blom. Term Graph Rewriting, Syntax and Semantics. PhD thesis, Vrije
Universiteit, Amsterdam, 2001.

[14] R. Bloo and K. H. Rose. Preservation of Strong Normalisation in Named Lambda
Calculi with Explicit Substitution and Garbage Collection. In Computer Science in the
Netherlands, pages 62-72, 1995.

[15] V. Bono and K. Fisher. An Imperative, First-Order Calculus with Object Extension. In
European Conference for Object-Oriented Programming, number 1445 in Lecture Notes
in Computer Science, pages 462-497. Springer-Verlag, 1998.

[16] L. Cardelli. A Language with Distributed Scope. Computing Systems, 8(1):27-59, 1995.

[17] C. Chambers. The Cecil Language Specification, and Rationale. Technical Report 93-
03-05, Department of Computer Science and Engineering, University of Washington,
USA, 1993.

[18] A. Ciaffaglione, P. Di Gianantonio, F. Honsell, and L. Liquori. Toward a Typed
Foundation of Object Reclassification. In preparation, 2001.

INRIA

A Generic Object-Calculus Based on ATRS 47

[19] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science,
volume B, chapter 6: Rewrite Systems, pages 244-320. Elsevier Science Publishers,
1990.

[20] D. Dougherty, F. Lang, P. Lescanne, L. Liquori, and K. Rose. A Generic Object-
Calculus based on Addressed Term Rewriting Systems. In P. Lescanne, editor, Proc. of
WESTAPP’01, Fourth International Workshop on Explicit Substitutions: Theory and
Applications to Programs and Proofs, pages 6—25. Logic Group Preprint series No 210.
Utrecht University, the Netherlands, 2001.

[21] D. Dougherty and P. Lescanne. Reductions, Intersection Types, and Explicit
Substitutions. In Proc. of TLCA, number 2044 in Lecture Notes in Computer Science,
pages 121-135. Springer-Verlag, 2001.

[22] H. Ehrig, G. Engels, H-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation Vol 2: Applications, Languages
and Tools. World Scientific, 1999.

[23] M. Felleisen and D. P. Friedman. A Syntactic Theory of Sequential State. Theoretical
Computer Science, 69:243-287, 1989.

[24] M. Felleisen and R. Hieb. The Revised Report on the Syntactic Theories of Sequential
Control and State. Theoretical Computer Science, 102, 1992.

[25] K. Fisher, D. Grossmann, D. MacQueen, R. Pucella, J. Reppy, J. Riecke, and S. Weirich.
The Moby Programming Language, 2000. http://www.cs.bell-1labs.com/who/jhr/
moby/index.html.

[26] K. Fisher, F. Honsell, and J. C. Mitchell. A Lambda Calculus of Objects and Method
Specialization. Nordic Journal of Computing, 1(1):3-37, 1994.

[27] K. Fisher and J. H. Reppy. The Design of a Class Mechanism for Moby. In Proc. of
PLDI, volume 34 of SIGPLAN Notices, pages 37-49. ACM Press, 1999.

[28] K. Fisher and J. H. Reppy. Extending Moby with Inheritance-based Subtyping. In
Proc. of ECOOP, volume 1850 of Lecture Notes in Computer Science, pages 83—107.
Springer-Verlag, 2000.

[29] P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calculus of Objects with
Self-inflicted Extension. In Proc. of OOPSLA, pages 166-178. ACM Press, 1998.

[30] G. Gonthier, M. Abadi, and J.-J. Lévy. Linear Logic Without Boxes. In Proc. of LICS,
pages 223-34. IEEE Computer Society Press, 1992.

[31] G. Gonthier, M. Abadi, and J.-J. Lévy. The Geometry of Optimal Lambda Reduction.
Proc. of POPL, pages 15-26, 1992.

RR n° 4549

48 D. Dougherty, F. Lang, P. Lescanne, L. Liquori, K. Rose

[32] G. Kahn. Natural Semantics. Technical Report RR-87-601, Institut National de
Recherche en Informatique et en Automatique, Sophia Antipolis, France, 1987.

[33] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume 1, chapter 6. Oxford University
Press, 1990.

[34] P. J. Landin. The Mechanical Evaluation of Expressions. Computer Journal, 6, 1964.

[35] F. Lang. Modéles de la B-réduction pour les Implantations. PhD thesis, Ecole Normale
Supérieure de Lyon, 1998.

[36] F. Lang, D. Dougherty, P. Lescanne, and K. Rose. Addressed Term Rewriting Systems.
Technical Report RR 1999-30, Laboratoire de I’Informatique du Parallélisme, ENS de
Lyon, France, 1999.

[37] F. Lang, P. Lescanne, and L. Liquori. A Framework for Defining Object-Calculi
(Extended Abstract). In Proc. of FM, number 1709 in Lecture Notes in Computer
Science, pages 963—982. Springer-Verlag, 1999.

[38] P. Lescanne. From Ao to Av, a Journey Through Calculi of Explicit Substitutions. In
Principles of Programming Languages, pages 6069, 1994.

[39] J.-J. Lévy. Optimal Reductions in the Lambda-calculus. In J. P. Seldin and J. R.
Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 159-191. Academic Press, 1980.

[40] I. Mackie. The Geometry of Interaction Machine. In Proc. of POPL, pages 198-208.
ACM Press, 1995.

[41] L. Maranget. Optimal Derivations in Weak Lambda Calculi and in Orthogonal
Rewriting Systems. In Proc. of POPL, pages 255—268, 1992.

[42] I. Mason and C. Talcott. Equivalence in Functional Languages with Effects. Journal
of Functional Programming, 1(3):287-327, 1991.

[43] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, 1990.
[44] J. C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
[45] Ch. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[46] S. Peyton-Jones. The Implementation of Functional Programming Languages. Prentice
Hall, 1987.

[47] M. J. Plasmeijer and M. C. D. J. van Eekelen. Functional Programming and Parallel
Graph Rewriting. International Computer Science Series. Addison-Wesley, 1993.

INRIA

A Generic Object-Calculus Based on ATRS 49

[48] G. Plotkin. A Structural Approach to Operational Semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, Denmark, 1981.

[49] D. Plump. Term Graph Rewriting, chapter 1, pages 3-61. World Scientific, 1999. in [22].

[50] K. H. Rose. Operational Reduction Models for Functional Programming Languages.
PhD thesis, DIKU, Kobenhavn, Denmark, 1996. DIKU report 96/1.

[51] R. Sleep, R. Plasmeijer, and M. C. D. J. van Eekelen, editors. Term Graph Rewriting.
Theory and Practice. John Wiley Publishers, 1993.

[52] A. Tailvalsaari. Kevo, a Prototype-based Object-oriented Language based on
Concatenation and Modules Operations. Technical Report LACIR 92-02, University
of Victoria, Canada, 1992.

[53] M. Tofte. Type Inference for Polymorphic References. Information and Computation,
89(1):1-34, 1990.

[54] D. A. Turner. A New Implementation Technique for Applicative Languages. Software
Practice and Ezperience, 9:31-49, 1979.

[55] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In Proc. of OOPSLA, pages
227-241. ACM Press, 1987.

[56] C. P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
Oxford, 1971.

[57] A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Information
and Computation, 115(1), 1994.

RR n° 4549

/<

Unité de recherche INRIA Lorraine
LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

