
HAL Id: inria-00072047
https://inria.hal.science/inria-00072047

Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimality of the CUSUM Procedure
George V. Moustakides

To cite this version:
George V. Moustakides. Optimality of the CUSUM Procedure. [Research Report] RR-4541, INRIA.
2002. �inria-00072047�

https://inria.hal.science/inria-00072047
https://hal.archives-ouvertes.fr


IS
S

N
 0

24
9-

63
99

   
   

 IS
R

N
 IN

R
IA

/R
R

--
45

41
--

F
R

+
E

N
G

ap por t  


de  r ech er ch e 


THÈME 1

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Optimality of the CUSUM Procedure

George V. Moustakides

N° 4541

September 2002





Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 Rennes Cedex (France)

Téléphone : +33 2 99 84 71 00 — Télécopie : +33 2 99 84 71 71

Optimality of the CUSUM Procedure

George V. Moustakides

Thème 1 — Réseaux et systèmes
Projet IRIS

Rapport de recherche n° 4541 — September 2002 — 14 pages

Abstract: Optimality of CUSUM under a Lorden type criterion setting is considered. We
demonstrate the optimality of the CUSUM test for Itô processes, in a sense similar to Lor-
den’s, but with a criterion that replaces expected delays by the corresponding Kullback-
Leibler divergence.
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Optimalité de la Procédure CUSUM

Résumé : On considère l’optimalité de CUSUM avec un critère du type Lorden. On
démontre l’optimalité du test CUSUM pour les processus d’Itô dans un cadre similaire de
Lorden, mais avec un critère qui remplace les délais moyens avec la divergence du Kullback-
Leibler correspondante.

Mots-clés : CUSUM, détection des ruptures, divergence du Kullback-Leibler, détection
séquentielle.
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Optimality of CUSUM 1

1 Introduction.

The cumulative sum (CUSUM) test was proposed by Page (1954) as a means to detect
sequentially changes in distributions of discrete-time random processes. Lorden (1971) in-
troduced a min-max criterion for the change detection problem, and established the asymp-
totic optimality of the CUSUM test under his proposed performance measure. Moustakides
(1986) proved optimality, under Lorden’s criterion, for the i.i.d. case and for known dis-
tributions before and after the change. Ritov (1990) demonstrated a Bayesian optimality
property of CUSUM, based on which he also provided an alternative proof for optimality in
Lorden’s sense. Finally, optimum CUSUM procedures were proposed by Poor (1998) for
exponentially penalized detection delays.

In continuous time, the optimality of CUSUM has been established for Brownian mo-
tion with constant drift by Beibel (1996), in the Bayesian setting of Ritov (1990), that
yielded also optimality in Lorden’s sense, and by Shiryayev (1996). These results should be
compared to the significantly richer and more general ones available for the other popular
sequential test, the sequential probability ratio test (SPRT). In continuous time, the SPRT
was shown to be optimum in Wald’s sense (Wald (1947)) for Brownian motion with con-
stant drift by Shiryayev (1978), page 180. However, when one replaces in Wald’s criterion
the expected delay by the Kullback-Leibler (K-L) divergence, then Liptser and Shiryayev
(1978), page 224, demonstrated the optimality of the SPRT for Itô processes. This result
was subsequently extended by Yashin (1983), Irle (1984) and Galtchouk (2001) to more
general continuous time processes.

It is the goal of this work to demonstrate a similar extension for the optimality of
CUSUM. In particular, we shall show that the CUSUM is optimum in detecting changes
in the statistics of Itô processes, in a Lorden-like sense, when the expected delay is replaced
in the criterion by the corresponding K-L divergence. It should be noted that, for the special
case of Brownian motion with constant drift, the original Lorden criterion and the modified
one proposed here coincide; thus our result provides also a different proof for the Lorden
min-max problem considered in Beibel (1996) and Shiryayev (1996).

2 Assumptions and Background Results.

Let ξ be a continuous time process, and define the filtration F given by Ft
� σ
�
ξs;0 � s � t � .

We are interested in the case where ξ is an Itô process satisfying

dξt
��� dwt � 0 � t � τ

αt dt � dwt � τ � t � (1)
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2 Moustakides

where α is a process adapted to the filtration F ; w is a standard Brownian motion with
respect to the same filtration, and τ � �

0 � ∞ � denotes the time of change of régime, which is
considered deterministic but otherwise unknown. Moreover, we assume that F0 is the trivial
σ-algebra.

Given that ξ is observed sequentially, and assuming exact knowledge of the model (1)
before and after the change, our goal is to detect the change-time τ as soon as possible using
a sequential scheme.

Let us introduce several definitions, assumptions and key results that are necessary for
our analysis. Let � τ denote the probability measure when the change is at time τ and � τ

��� �
the corresponding expectation. With this notation � 0 is the measure corresponding to the
case of all observations being under the alternative model, whereas � ∞ to all observations
being under the nominal one. In other words, � ∞ is the Wiener measure on the canonical
space of continuous functions, and � 0 is the measure induced on this space by the process
wt ��� t

0 asds.
We now need a first condition to ensure that ξ introduced in (1) is well defined. Follow-

ing Øksendal (2000), page 44, we require the process α to be F adapted and to satisfy

� 0

	�

t

0 �αs � ds � ∞ 
 � 1 ��� t � �
0 � ∞ ��� (2)

The next step is to impose conditions that will guarantee the existence of the Radon-
Nikodym derivative d � τ � d � ∞ and validity of Girsanov’s theorem. For this purpose consider
the process

ut
� 


t

0
αsdξs � 1

2



t

0
α2

s ds �
which, because of (1), satisfies

dut
� � αt dwt � 1

2 α2
t dt � 0 � t � τ

αt dwt � 1
2 α2

t dt � τ � t � 0 � t � ∞ (3)

In order that this process be well defined under both hypotheses, again from Øksendal
(2000), page 44, we need to assume that for every 0 � t � ∞ we have

� 0

	�

t

0
α2

s ds � ∞ 
 � � ∞

	�

t

0
α2

s ds � ∞ 
 � 1 � (4)

Since
� � t

0 �αs � ds � 2 � t � t
0 α2

s ds, it is clear that (4) also implies (2).
To ensure now that ut can play the role of log-likelihood between � 0 and � ∞, we need to

assume that eut is a martingale with respect to � ∞. A necessary condition that can guarantee

INRIA



Optimality of CUSUM 3

this fact is, for example, the Novikov condition:

� ∞

	
exp � 
 t

0

1
2

α2
s ds � 
 � ∞ ��� t � �

0 � ∞ � � (5)

or alternatively � ∞

	
exp � 
 tn

tn � 1

1
2

α2
s ds � 
 � ∞ � (6)

where � tn � ∞
n � 0 is a strictly increasing sequence of positive real numbers that tends to infinity

(for details, see Karatzas and Shreve (1988), page 198).
If eut is a martingale with respect to � ∞, then Girsanov’s theorem applies and we can

write
d � 0

d � ∞

�
Ft � � eut � 0 � t � ∞ � (7)

or more generally,
d � τ

d � ∞

�
Ft � � eut � uτ � for 0 � τ � t � ∞ � (8)

Following Liptser and Shiryayev (1978), page 224, we impose a final condition on α

� 0

	 

∞

0
α2

t dt � ∞ 
 � � ∞

	 

∞

0
α2

t dt � ∞ 
 � 1 � (9)

which, as we will see in the next section, ensures a.s. finiteness of the optimal scheme.
To summarize: the process α is required to satisfy (4) and (9); moreover, eut is assumed

to be a martingale with respect to � ∞, with (5) or (6) being sufficient conditions that guar-
antee this property. Let us now present a lemma that will be needed later in our analysis.

Lemma 1 Let (4), (9) be valid, suppose that � eut � 0 � t � ∞ � is a martingale; then we have

� τ

	 

∞

τ
α2

t dt � ∞ ��� Fτ 
 � 1 � � τ-a.s.

for each 0 � τ � ∞.
Proof of Lemma 1: From (9) and (4), it is seen that � 0

� � ∞
τ α2

t dt � ∞ � � 1 holds for every
τ � �

0 � ∞ � , hence also � τ
� � ∞

τ α2
t dt � ∞ � � 1 since � τ � � 0. This suggests

1 � � τ

	 

∞

τ
α2

t dt � ∞ 
 � � τ

	 � τ

	 

∞

τ
α2

t dt � ∞ ��� Fτ 
 
 �
and leads directly to � τ

	�

∞

τ
α2

t dt � ∞ ��� Fτ 
 � 1 � � τ-a.s.
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4 Moustakides

3 Lorden’s Criterion and Proposed Modification.

Detection of the change time τ is performed with the help of a stopping time T . Lorden
(1971), introduced the following maximal possible conditional delay in issuing the alarm,
as a measure of performance for T ,

JL
�
T � � sup

τ � � 0 � ∞ � essup � τ
� �

T � τ ��� �Fτ � � (10)

and suggested the following min-max problem as a criterion for defining an optimal detec-
tion scheme: to minimize JL

�
T � of (10) over all stopping times T of F that satisfy the false

alarm constraint � ∞
�
T �	� γ �

Here γ 
 0 is a given constant. In other words we are interested in the stopping time that has
the smallest worst conditional mean detection delay, under the constraint that false alarms
should occur with a mean period no smaller than γ.

Proceeding along the same lines as in Liptser and Shiryayev (1978), page 224, we pro-
pose the following alternative performance measure

J
�
T � � sup

τ � � 0 �∞ � essup � τ

	 

T

τ

1
2

α2
t dt ��� Fτ 
 � (11)

where integrals are considered zero whenever the upper limit is smaller than the lower. This
gives rise to the min-max optimization problem

inf
T � Jγ

J
�
T � � inf

T � Jγ
sup

τ � � 0 �∞ � essup � τ

	�

T

τ

1
2

α2
t dt ��� Fτ 
 (12)

where Jγ is the class of F -stopping times T that satisfy the false-alarm constraint

� ∞

	 

T

0

1
2

α2
t dt 
 � γ � (13)

Clearly, when α is constant the above criterion and optimization problem of (11)-(13) are
equivalent to the original ones defined by Lorden.

We should mention that the proposed modification is motivated by the K-L divergence.
Indeed, from (8) and by taking (3) into account, we conclude that the K-L divergence can
be written as

� τ

	
log � d � τ

d � ∞

�
Ft � � ��� Fτ 
 � � τ

	 

t

τ
αsdws � 


t

τ

1
2

α2
s ds ��� Fτ 


� � τ

	�

t

τ

1
2

α2
s ds ��� Fτ 
 � for 0 � τ � t � ∞ � (14)

INRIA



Optimality of CUSUM 5

with equality in (14) whenever the displayed quantity is finite.
Remark: In view of (14), one might wonder why not define the performance measure

using directly the K-L divergence, that is,

J
�
T � � sup

τ � � 0 �∞ � essup � τ

	
log � d � τ

d � ∞

�
FT � � 1l � T � τ � ��� Fτ 
 � (15)

instead of the seemingly arbitrary definition of (11). Unfortunately, this approach presents
certain technical difficulties. First, we need to limit ourselves to stopping times that satisfy� i
� � T

0 α2
s ds � � ∞ � i � 0 � ∞, in order to assure validity of (14). Secondly, there is a more

serious problem coming from Girsanov’s theorem: with the usual conditions the equality
d � 0 � d � ∞

�
Ft � � eut is assured only for finite t. Consequently, defining our measure as in

(15) requires to limit even further the class of stopping times to bounded ones. In order to
bypass these two problems, we introduced arbitrarily the measure (11), making only a loose
connection to the K-L divergence. Let us therefore, with a slight abuse of definition, call the
quantities in (11) and (13) the K-L detection divergence and the K-L false alarm divergence
respectively, keeping in mind that there exists a rich class of stopping times for which each
of these quantities indeed coincides with the corresponding K-L divergence.

4 The CUSUM Process.

Let us now introduce the CUSUM process. If mt denotes the running minimum of ut , that
is,

mt
� inf

0 � s � t
us � 0 � t � ∞ �

then the CUSUM process is defined as

yt
� ut � mt � 0 � t � ∞ � (16)

For ν � � 0 � ∞ � a given threshold, the CUSUM stopping time with threshold ν, is defined as

Sν
� inf � t � 0 : yt � ν � � (17)

if the indicated set is not empty, otherwise Sν
� ∞.

At this point, it is appropriate to introduce certain key properties for the two processes
y � m, that are summarized in the following lemma. They are consequences of very standard
results in stochastic analysis (see Karatzas and Shreve (1998), pages 149 and 210).

Lemma 2 Let m � y be defined as above.

RR n° 4541



6 Moustakides

i.) The process y is always nonnegative. The process m is nonincreasing, and flat off the
set � yt

� 0 � ; equivalently, if f
�
y � is a continuous function with f

�
0 � � 0, then


∞

0
f
�
yt � dmt

� 0 � (18)

ii.) If a function f
�
y � is twice continuously differentiable, then

d f
�
yt � � f � � yt � � dut � dmt � � 1

2
α2

t f � � � yt � dt � (19)

With the next theorem we compute the K-L detection and false alarm divergence for the
CUSUM stopping time of (17).

Theorem 1 The CUSUM stopping time Sν is a.s. finite in the sense that� τ
�
Sν
� ∞ �Fτ � � 0 � � τ-a.s. (20)� ∞

�
Sν
� ∞ �Fτ � � 0 � � ∞-a.s. (21)

For any 0 � τ � ∞, the conditional K-L divergence is given by

� τ

	 

Sν

τ

1
2

α2
t dt ��� Fτ 
 � �

g
�
ν � � g

�
yτ � � 1l � Sν � τ � (22)

� ∞

	 

Sν

τ

1
2

α2
t dt ��� Fτ 
 � �

h
�
ν � � h

�
yτ � � 1l � Sν � τ � � (23)

Here the functions g
�
y � � h � y � are defined as

g
�
y � � y � e � y � 1; h

�
y � � ey � y � 1 �

They are both strictly increasing, strictly convex on
�
0 � ∞ � , with g

�
0 � � h

�
0 � � 0 and g

�
∞ � �

h
�
∞ � � ∞.

Proof of Theorem 1: Let Tn denote the stopping time

Tn
� inf � t � τ :



t

τ

1
2

α2
s ds � n

� �
Because of Lemma 1, Tn is � τ-a.s. finite. If S n

ν denotes S n
ν
� Sν � Tn then S n

ν is also � τ-
a.s. finite. Applying Itô’s rule to g

�
yt � and using the observation g � � y � � g � � � y � � 1, we

obtain

� τ
�
g
�
yS n

ν � � g
�
yτ � �Fτ � � � τ

	�

S n

ν

τ

1
2

α2
t dt � g � � yt � αt dwt � g � � yt � dmt ��� Fτ 
 �

INRIA



Optimality of CUSUM 7

On � S n
ν � t � we have yt � ν, consequently

� τ

	�

S n

ν

τ

1
2

α2
t g � � yt � 2dt ��� Fτ 
 � � g � � ν � � 2n � ∞

suggesting that the expectation of the stochastic integral is zero. On the other hand we have
g � � 0 � � 0 and thus � ∞

0 g � � yt � dmt
� 0 from (18). We end up with

� τ
�
g
�
yS n

ν � � g
�
yτ � �Fτ � � � τ

	 

S n

ν

τ

1
2

α2
t dt ��� Fτ 
 � (24)

Now yS n
ν � ν and g

� � � is increasing, therefore

g
�
ν � � g

�
ν � � g

�
0 � � � τ

�
g
�
yS n

ν � � g
�
yτ � �Fτ � � � τ

	 

S n

ν

τ

1
2

α2
t dt ��� Fτ 
 �

Because of Lemma 1, as n tends to infinity, Tn tends to infinity as well and S n
ν tends to Sν.

This yields

g
�
ν � � � τ

	 

Sν

τ

1
2

α2
t dt ��� Fτ 
 � � τ

	
1l � Sν � ∞ �



∞

τ

1
2

α2
t dt ��� Fτ 
 �

Using again Lemma 1 we conclude that � τ
�
Sν
� ∞ �Fτ � � 0 � � τ-a.s. � which is (20).

If we now return to (24); let n � ∞, use monotone convergence on the right-hand side
and bounded convergence on the left, and (20), we can prove (22). Following similar steps
we can show (21) and (23).

We have the following two corollaries of Theorem 1.

Corollary 1 Let T be a stopping time and Sν the CUSUM stopping time with threshold ν.
If Tν
� T � Sν, then

� τ

	 

Tν

τ

1
2

α2
t dt ��� Fτ 
 � � τ

�
g
�
yTν � � g

�
yτ � �Fτ � 1l � Tν � τ � (25)

� ∞

	�

Tν

τ

1
2

α2
t dt ��� Fτ 
 � � ∞

�
h
�
yTν � � h

�
yτ � �Fτ � 1l � Tν � τ � (26)

Proof of Corollary 1: The proof follows by another application of Itô’s rule. Expecta-
tion of the stochastic integral is zero, because for 0 � t � Tν � Sν we have 0 � yt � ν; there-
fore g � � yt � and h � � yt � are again bounded, and from Theorem 1 we have � i

� � Tν
0 α2

t dt �Fτ � � ∞.
Finally, the Stieltjes integral involving dmt is again zero, since g � � 0 � � h � � 0 � � 0.

RR n° 4541



8 Moustakides

Corollary 2 Let T be a stopping time and Tν
� T � Sν. If the function f

�
y � is continuous

and bounded for 0 � y � ν, then� τ
�
f
�
yTν � �Fτ � � � ∞

�
euTν � uτ f

�
yTν � �Fτ � � � ∞-a.s. (27)

Proof of Corollary 2: It should be noted that (27) is not obvious because Girsanov’s
theorem is valid only for bounded stopping times. Let M 
 0 then� τ

�
f
�
yTν � �Fτ � � � τ

�
1l � Tν � M � f

�
yTν � �Fτ � � � τ

�
1l � Tν � M � f

�
yTν � �Fτ �� � ∞

�
1l � Tν � M � euTν � uτ f

�
yTν � �Fτ � � � τ

�
1l � Tν � M � f

�
yTν � �Fτ �� � ∞

�
euTν � uτ f

�
yTν � �Fτ � � � ∞

�
1l � Tν � M � euTν � uτ f

�
yTν � �Fτ �� � τ

�
1l � Tν � M � f

�
yTν � �Fτ ���

Notice now that for Tν � τ � 0 we have uTν � uτ � uTν � mTν
� yTν � ν therefore we obtain

the following bounds for the last two terms

� � τ
�
1l � Tν � M � f

�
yTν � �Fτ � � � max

0 � y � ν � f � y � � � τ
�
Tν 
 M �Fτ �

� max
0 � y � ν � f � y � � � τ

�
Sν 
 M �Fτ �

� � ∞
�
1l � Tν � M � euTν � uτ f

�
yTν � �Fτ � � � eν max

0 � y � ν � f � y � � � ∞
�
Tν 
 M �Fτ �

� eν max
0 � y � ν � f � y � � � ∞

�
Sν 
 M �Fτ ���

Both bounds, because of Theorem 1, tend to zero as M � ∞. This concludes the proof.
Using Theorem 1, the K-L false alarm divergence of Sν satisfies

� ∞

	 

Sν

0

1
2

α2
t dt 
 � h

�
ν � � h

�
0 � � h

�
ν ���

Let ν� be the threshold for which the corresponding CUSUM stopping time satisfies the
false alarm constraint (13) with equality, that is

� ∞

	 

Sν�

0

1
2

α2
t dt 
 � h

�
ν� � � eν � � ν� � 1 � γ � (28)

For every γ there is a unique ν � satisfying (28). The worst K-L detection divergence of Sν�

can be obtained from Theorem 1 using the increase of g
� � � , specifically

J
�
Sν � � � sup

τ � � 0 � ∞ � essup � g
�
ν� � � g

�
yτ � � � g

�
ν� � � g

�
0 � � g

�
ν� � � ν� � e � ν � � 1 �

It is the goal of the next section to show that the CUSUM stopping time with threshold ν �

is in fact the one that solves the min-max optimization problem defined by (12), (13).

INRIA



Optimality of CUSUM 9

5 Optimality of the CUSUM Stopping Time.

To prove the optimality of Sν� , it is sufficient to show that for any stopping time T satisfying
the false alarm constraint (13) we have J

�
T � � g

�
ν � � . We will show this fact following

similar steps as in Moustakides (1986). We first obtain a convenient lower bound for J
�
T � .

Theorem 2 Let T be a stopping time, let Sν be the CUSUM stopping time with threshold ν
and define Tν

� T � Sν, then

J
�
T � � � ∞

�
eyTν g
�
yTν � �� ∞

�
eyTν � �

Proof of Theorem 2: Since T � Tν we have

J
�
T � � J

�
Tν � � � τ

	 

Tν

τ

1
2

α2
t dt ��� Fτ 
 � (29)

J
�
T � � J

�
Tν � � � 0

	 

Tν

0

1
2

α2
t dt 
 � (30)

for any 0 � τ � ∞, thanks to (12). Applying Corollary 1 on the right hand side and Corol-
lary 2 on both sides of (29), we obtain

J
�
T � � ∞

�
euTν � uτ �Fτ � 1l � Tν � τ � � � ∞

�
euTν � uτ

�
g
�
yTν � � g

�
yτ � � �Fτ � 1l � Tν � τ � �

Integrating both sides with � dmτ and recalling that mt is decreasing, then taking expectation
with respect to � ∞, yields

J
�
T � � ∞

	 

Tν

0
euTν � uτ

� � dmτ � 
 � � ∞

	 

Tν

0
euTν � uτ

�
g
�
yTν � � g

�
yτ � � � � dmτ � 
 �

Using from Lemma 2 the fact that the process m is flat off the set � τ � 0 : yτ
� 0 � � � τ �

0 : uτ
� mτ � and also that g

�
0 � � 0, we can write the previous relation as

J
�
T � � ∞

	�

Tν

0
euTν � mτ

� � dmτ � 
 � � ∞

	�

Tν

0
euTν � mτg

�
yTν � � � dmτ � 
 �

which leads to
J
�
T � � ∞

�
eyTν � euTν �	� � ∞

� �
eyTν � euTν � g � yTν � � � (31)

Focusing now on (30), recalling that F0 is the trivial σ-algebra, using Corollaries 1 & 2, and
that y0

� 0, we end up with

J
�
T � � ∞

�
euTν � ��� ∞

�
euTν g
�
yTν � � �
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By adding this relation, term by term, to (31) we obtain

J
�
T � � ∞

�
eyTν � ��� ∞

�
eyTν g
�
yTν � � �

Finally, since eν � eyTν � 1, we conclude that

J
�
T � � � ∞

�
eyTν g
�
yTν � �� ∞

�
eyTν � �

which proves the theorem.
At this point we need the following technical lemma.

Lemma 3 Let T be a stopping time and Sν the CUSUM stopping time with threshold ν, let

Tν
� T � Sν and define the function ψT

�
ν � � � ∞

� � Tν
0

1
2 α2

t dt � � then ψT
�
ν � is continuous and

increasing in ν with ψT
�
0 � � 0 and ψT

�
∞ � � � ∞

� � T
0 0 � 5α2

t dt � .
Proof of Lemma 3: Since for ν � µ we have Sν � Sµ, we conclude that ψT

�
ν � is increas-

ing in ν. By observing that S0
� 0 and S∞

� ∞, we can verify the correctness of the two
values ψT

�
0 � and ψT

�
∞ � . To show continuity, let ν � µ and consider the difference

ψT
�
µ � � ψT

�
ν � � � ∞

	 

Tµ

Tν

1
2

α2
t dt 


� � ∞

	
1l � T � Sν �



Tµ

Tν

1
2

α2
t dt 
 � � ∞

	
1l � T � Sν �



Tµ

Tν

1
2

α2
t dt 


� � ∞

	
1l � T � Sν �



Tµ

Tν

1
2

α2
t dt 
 � � ∞

	 

Sµ

Sν

1
2

α2
t dt 
 � h

�
µ � � h

�
ν � �

where we have used the property that for ν � µ we have Sν � Sµ therefore, on the set� T � Sν � we have that T � Tν
� Tµ, whereas on � T 
 Sν � that Sν

� Tν � Tµ � Sµ. Continuity
of ψT

�
ν � is a consequence of the continuity of h

�
ν � .

We are now in a position to show the optimality of CUSUM. We first observe that we can
limit ourselves to stopping times that satisfy the false alarm constraint (13) with equality.
Indeed, if a stopping time T has � ∞

� � T
0 0 � 5α2

t dt � 
 γ then, from Lemma 3, we conclude
that we can select a threshold ν such that the stopping time Tν

� T � Sν satisfies (13) with
equality. Since T � Tν, this yields J

�
T � � J

�
Tν � , which suggests that Tν is preferable to T .

Theorem 3 Any stopping time T that satisfies the false alarm constraint (13) with equality,
has a K-L detection divergence J

�
T � that is no less than g

�
ν � � .
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Proof of Theorem 3: Based on Theorem 2, it is sufficient to show that for every ε 
 0
we can find a threshold νε such that Tνε

� T � Sνε satisfies� ∞
�
eyTνε g

�
yTνε � �� ∞

�
eyTνε � � g

�
ν� � � ε � (32)

To prove (32), let T be a stopping time satisfying the false alarm constraint with equality and
consider any ε 
 0 then, because of Lemma 3, we can select a sufficiently large threshold
νε such that

γ � � ∞

	 

Tνε

0

1
2

α2
t dt 
 � γ � ε �

From Corollary 1, we have � ∞

� � Tνε
0 0 � 5α2

t dt � � � � h � yTνε � � , which suggests that

� � h � yTνε � � � γ � ε � (33)

Let U
�
Tνε � be the following expression

U
�
Tνε � � � ∞

�
eyTνε

�
g
�
yTνε � � g

�
ν� � � � h

�
yTνε � � h

�
ν� � � � (34)

If we define the function p
�
y � � ey � g � y � � g

�
ν� � � � h

�
y � � h

�
ν� � , it is a simple exercise to

verify that its derivative has the same sign as y � ν � . This suggests that p
�
y � exhibits a

minimum at y � ν� . Since p
�
ν� � � 0 we conclude that p

�
y � � 0, consequently we also have

U
�
Tνε � � 0. Using this fact in (34) along with (33) and recalling from (28) that h

�
ν � � � γ,

yields � ∞
�
eyTνε g

�
yTνε � � � g

�
ν� � � ∞

�
eyTνε � � � ∞

�
h
�
yTνε � � � h

�
ν� �

� g
�
ν� � � ∞

�
eyTνε � � ε � �

g
�
ν� � � ε � � ∞

�
eyTνε � �

where the last inequality holds because ey � 1. This proves the theorem and establishes
optimality of the CUSUM stopping time.

6 Discussion and Examples.

A key property for the validity of our result is (5). In fact this condition imposes a form
of persistency in the difference between the statistics of the two hypotheses, thus ensuring
the a.s. finiteness of the optimum stopping time. There are of course situations where (5)
does not hold, as for example, in transient changes where the process returns to its nominal
statistics after finite time. For such cases CUSUM is not necessarily optimum since the
previous analysis is no longer valid (it is Theorem 1 that fails).
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Extension of our result to multidimensional processes is straightforward. In particular
if the observation is a vector Itô process Ξ of the form

dΞt
��� Atdt � ΣtdWt � 0 � t � τ

Btdt � ΣtdWt � τ � t �
where W is a vector Brownian motion; A � B are adapted vector process and Σ is an adapted
matrix process, then our previous analysis goes through without significant modifications.
The log-likelihood ratio in this case satisfies

dut
� AT

t dWt �
1
2

AT
t Atdt

where superscript “T ” denotes transpose, the “ � ” sign corresponds to the case before the
change, the “ � ” after, and process A is defined as

At
� Σ � 1

t
�
Bt � At ���

Here the role of α2
t plays the quantity A T

t At and as was mentioned above all results go
through without major difficulty.

What is interesting to note in this more general setting is the fact that when A T
t At is

equal to a constant, then the modified criterion is equivalent to the original Lorden criterion.
In other words CUSUM is optimum, in the original Lorden sense, not only for detecting
changes in the constant drift of a Brownian motion but also changes in which the process
AT

t At is constant.
Let us now present two examples that fall into our class of processes (1). Consider

the case where αt
� α
�
t � with α

�
t � a deterministic function of time. This is the prob-

lem considered in Tartakovski (1995), where one is interested in detecting changes in non-
homogeneous Gaussian processes. If for every finite t � 0 we have � t

0 α
�
s � 2ds � ∞ and

limt � ∞ � t
0 α
�
s � 2ds � ∞, then (4), (5) and (9) are satisfied and therefore CUSUM is optimum

in the proposed generalized sense.
A more interesting situation occurs when αt

� � αξt , where α a positive constant. This
corresponds to a standard Brownian motion without drift under nominal conditions and to an
Ornstein-Uhlenbeck process under change. Notice that under � ∞, ξt

� ξ0 � wt is Gaussian
with mean ξ0 and variance equal to t; whereas under � 0, ξt

� ξ0e � αt � � t
0 e � α � t � s � dws is

Gaussian with mean ξ0e � αt and variance
�
1 � e � 2αt � � 2α.

For (4) to be true it is sufficient to have � i
� � t

0 ξ2
s ds � � ∞ � i � 0 � ∞, which can be directly

verified.
To show that eut is a martingale, Corollary 5.16 from Karatzas and Shreve (1988), page

200, applies showing validity of (6).
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For (9), to show first � ∞
� � ∞

0 ξ2
t dt � ∞ � � 1 we observe, using Schwartz inequality, that� t

0 ξ2
s ds � � � t

0 ξsds � 2 � t. If we call zt
� � t

0 ξsds � �
t then zt is Gaussian with mean µt

� c1
�

t
and variance σ2

t
� c2t2, where c1 � c2 constants. If M 
 0 we can then write

� ∞

	 

∞

0
ξ2

s ds � M 
 � � ∞

	 

t

0
ξ2

s ds � M 
 � � ∞

� � zt � � �
M �

� Φ
� � �

M � µt � � σt � � Φ
� � � �

M � µt � � σt � �
where Φ

�
z � is the standard Gaussian cumulative distribution. The last term tends to zero as

t tends to infinity. For a different proof see Problem 6.30 of Karatzas and Shreve (1988),
page 217.

To prove � 0
� � ∞

0 ξ2
t dt � ∞ � � 1, we use Itô’s rule and conclude

zt
� 


t

0
ξ2

s ds � � t � ξ2
t � ξ2

0 � 2



t

0
ξsdws � � 2α �

For the process zt we can then show that its expected value is of the form µt
� c1t � o

�
t �

and its variance σ2
t
� c2t � o

�
t � with c1 � c2 positive constants. We can now use Chebyshev’s

inequality and for any M 
 0 and sufficiently large t (such that µt 
 M) we can write

� 0

	�

∞

0
ξ2

s ds � M 
 � � 0
�
zt � M � � � 0

� � µt � zt

σt
� 2

� � µt � M
σt

� 2 �
� � σt

µt � M
� 2 �

The right-hand side term in the last inequality can be seen to tend to zero as t tends to
infinity. Therefore our optimality result applies to this case as well.
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