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Abstract: Coordinate systems associated to a finite set of sample points have been extensively
studied, especially in the context of interpolation of multivariate scattered data. Notably, Sibson
proposed the so-called natural neighbor coordinates that are defined from the Voronoi diagram of the
sample points. A drawback of those coordinate systems is that their definition domain is restricted
to the convex hull of the sample points. This makes them difficult to use when the sample points
belong to a surface. To overcome this difficulty, we propose a new system of coordinates. Given a
closed surface S, i.e. a (d — 1)-manifold of R?, the coordinate system is defined everywhere on the
surface, is continuous, and is local even if the sampling density is finite. Moreover, it is inherently
(d — 1)-dimensional while the previous systems are d-dimensional. No assumption is made about
the ordering, the connectivity or topology of the sample points nor of the surface. We illustrate our
results with an application to interpolation over a surface.
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Systeme de coordonnées sur une surface: définitions, proprietés
et applications.

Résumé : Nous définissons un systéme de coordonnées pour une surface, c’est-a-dire une variété
(d—1)-dimensionnelle de R?, associé & un échantillon de points de la surface. Ce probléme est bien
étudié si le domaine de définition du systeme de coordonnées est restreint a I’enveloppe convexe
des points de I’échantillon. Notamment, Sibson a proposé les coordonnées naturelles. Boisson-
nat et Cazals ont montré que les coordonnées naturelles ont les bonnes propriétés si la densité de
I’échantillonnage de la surface tend vers I’infini. Dans ce travail, on propose un systeme de co-
ordonnées qui est défini partout sur la surface, il est continu et il est local méme si la densité de
I’échantillonnage est finie. En plus, il est (d — 1)-dimensionnel et pas d-dimensionnel comme les
systemes habituels. Nous appliquons ce systeme de coordonnées a I’interpolation d’une fonction
définie sur une surface.

Mots-clés : gomtrie.algorithmique
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1 INTRODUCTION

Surfaces represented by a set of unordered sample points are encountered in many application areas
such as computer graphics, computer aided design (CAD) and reverse engineering, image process-
ing, and scientific computation. Many algorithms that are applied to sampled surfaces rely on the
definition of a local neighborhood on the surface. Reconstructing the surface from the sample points
is one way to respond to this demand. However, it might be unnecessary and also too costly to
establish a global approximation of the surface. Differently, our method defines, for any point on
a sampled surface, a set of coordinates associated with some neighboring sample points. If the
sampling is sufficiently dense, this coordinate system is provably local on the surface and has good
continuity properties. Moreover, it can be computed efficiently because locality allows efficient
filtering methods. We do not impose any restriction on the genus of the surface, the number of
connected components, nor any other global features of the surface. Uniform sampling is neither
required, and we allow the sampling density to be related to the local curvature of the surface.

1.1 Related Work

In this section, we describe how our work is related to previous work. It is divided in two parts: first,
we outline the work on natural neighbor coordinate systems and, second, we give an introduction to
scattered data interpolation on a surface, which is the application we develop at the end of the paper.

1.1.1 Natural neighbor coordinate systems

Natural neighbor interpolation has been introduced by Sibson [24] to interpolate multivariate scat-
tered data. Given a set of points A = {44, ..., A,}, the natural neighbor coordinate system asso-
ciated to A is defined from the Voronoi diagram of .A. Various papers ([24], [15], [22], [10],[19])
show that it satisfies the following definition by Brown [10].

Definition 1.1 ([10]) A system of coordinates over &/ C R associated with A is a set of continuous
functions s; : U — R, i = 1..n, such that for all X € U,

(i) X =37, si(X)A; (local coordinate property).
(i) Foranyi <mn,s;(A;) = é;;, where §,; is the Kronecker symbol.
(i) Y0, s:(X) =1.

The major drawback to applying the natural neighbor coordinate system to points issued from a
surface comes from the fact that its definition is limited to the convex hull of the sample points. To
avoid this problem, a common solution consists of adding a box enclosing the object. Obviously,
this solution causes problems, e.g. the choice of the size of the bounding box, the number of sample
points taken from it, artifacts arising from the bounding box points, and the augmented computation
cost. In [10], Brown has enlarged the coordinate definition outside the convex hull to cover the union
of the Delaunay balls, which is still too much restrictive in many applications.
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4 Boissonnat & Flototto

A second drawback is that a point is likely to have neighbors that are far away from the point.
Boissonnat and Cazals have shown that the sum of the coordinates associated to those neighbors
that are far away tends to zero when the sampling density increases [6]. However, even though the
influence of the far neighbors is small, the fact that Sibson’s coordinates are not local affects not only
the beauty and rigor of the result, but the time required to compute the coordinates and the exactness
of an interpolation scheme.

For points issued from a sphere, Brown proposes a solution in [9]. While the above discussed
coordinates are defined with respect to the d-dimensional Voronoi diagram of A, Brown defines
natural neighbor coordinates with respect to the geodesic Voronoi diagram on the sphere. This defi-
nition generalizes Sibson’s coordinates in a straightforward manner. Therefore, the basic properties
of definition 1.1 are fulfilled, except the local coordinate property (i) which cannot be fulfilled since
points on the sphere do not belong to the convex hull of their neighbors. The obvious difficulty in
enlarging Brown’s approach to general surfaces is that geodesic Voronoi diagrams are much more
complicated than Euclidean diagrams and difficult to compute [20]. Moreover, in many applications
the surface is not known and neither is the geodesic Voronoi diagram.

In this paper, we suggest another system of coordinates for points on a surface. It is closely
related to natural neighbor coordinates, yet instead of considering the geodesic Voronoi diagram on
the surface, as Brown, or the Euclidean d-dimensional Voronoi diagram of the sample set, as Sibson,
it is defined in the intersection of the tangent plane of each surface point with the Euclidean Voronoi
diagram of the sample set. If the tangent planes are not given as part of the input, they can be
easily estimated from the sample points. The resulting coordinate system is local and it is inherently
(d — 1)-dimensional.

1.1.2 Scattered data interpolation on a surface

In the last part of the paper, we apply the new coordinate system to interpolate a function defined on
a surface. More exactly, we want to approximate ® : S — R where S C R? is a smooth surface,
knowing a sample set {(A;, z;) : A; € S,2; = ®(A4;)} and a query point X € S at which we want
to interpolate ®.

This problem, which is also called scattered data fitting” or *surface on surface’ problem, arises
in a variety of settings. For example in geodesy, geophysics, and meteorology, S is some model
of the earth, and the function to interpolate from a number of discrete measurements represents
temperature, rainfall, pressure, etc. In other contexts, S might be a complicated surface, e.g., the
surface of some mechanical piece in CAD, a molecular surface or the wing of an airplane [5].
Several methods exist to solve this problem. One of the most popular is to enlarge the definition of
splines to treat the case of a non-planar parameter domain. This was first done for the spherical case
in [3]. With this achievement, it suffices to partition a general surface S into a collection of non-
overlapping surface patches, i.e. geodesic triangles, and to define a globally smooth interpolation
function as piecewise polynomials on the patches that are carefully accorded at the boundaries. See
[21] for an introduction to splines on surfaces.

Other methods are radial basis functions, variational methods or multi-resolution methods. See
[16] for a survey of the principal methods for scattered data fitting on the sphere. Foley et al propose
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Surface coordinate system 5

in [18] to map S to the sphere, to apply a known interpolation method on the sphere, e.g. [17], and
to apply the inverse mapping back from the sphere to the surface to get the solution.

In the context of interpolation, our method has several advantages in addition to those mentioned
at the beginning of this section. It applies directly to the point samples without need of a prior
subdivision or triangulation of the surface. The quality of the result can be expressed in terms
of the curvature of the surface and of the sampling density. If the surface is locally planar, the
interpolant has linear precision. If, additionally, the gradient V(®(A;)) of & at the sample points
A;, i = 1..n, is known, we define an interpolant that reproduces exactly a quadratic function —
again if the surface is locally planar. Our method generalizes easily to interpolation of vector-valued
functions, i.e. functions ® : S — R¥,k = 2,3.... We simply interpolate each coordinate of the
result vector independantly as if it were a scalar function. The interpolants are tested in different
settings. Examples are shown in section 5.

1.2 Paper outline

After the introduction, we proceed in section 2 with the definition of some basic concepts, and we
recall some known results that are needed in the sequel. In section 3, we define the T-neighbors
of a surface point X with respect to a sample of the surface. We show that all T-neighbors of X
lie in a small neighborhood around X if the surface is well sampled. In section 4, we define the
T'-coordinate system on the surface with respect to the sample. We show the main properties of
the T'-coordinates; in particular, we show that the coordinate functions have compact supports and
are continuously differentiable almost everywhere on the surface. Although a point on a surface
cannot, in general, be expressed as a convex combination of other points on the surface, we show
in subsection 4.4, that the local coordinate property is approximately satisfied, with an error that
depends on the local curvature of the surface and on the sampling density. In section 5, we describe
the applications of T'-coordinates to scattered data interpolation on a surface, and we show some
experimental results. Perspectives and a conclusion are given in the last section.

2 BASIC NOTATIONS AND RESULTS

In this section, we give the definition of the main ingredients of our framework and recall some basic
results. Notably, we give a short introduction to natural neighbor coordinates for the general case of
points in R?, we define power diagrams and show their relationship to sections of Voronoi diagrams,
and we recall results on sampled surfaces.

2.1 Voronoi diagramsand natural neighbors

Let A = {A;,...,A,} be a set of points in RZ. Without real loss of generality, we can assume
that no d + 2 points lie on the same sphere. The Voronoi cell of 4; is V(4;) = {X € R? :
[|X — Asl| < || X — 4;]] Vji=1,..,n}where||X —Y|| denotes the Euclidean distance between
points X, Y € RZ. The collection of Voronoi cells is called the Voronoi diagram of A or Vor(A).
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6 Boissonnat & Flototto

Let A’ be a subset of points of .4 whose Voronoi cells have a non-empty intersection. The convex
hull conv(A’) is called a Delaunay face, and the collection of Delaunay faces is called the Delaunay
triangulation of A, denoted Del(.A). Under the general position assumption, the d-dimensional faces
of Del(.A) are simplexes, hence the name triangulation. See figure 1.

Figure 1: (a) a Voronoi diagram, (b) the dual Delaunay triangulation.

Given a point X ¢ A, we define Vort = Vor(AU{X}), Delt = Del(AU{X})and V*(X)
and V' *(A4;) to be the Voronoi cells of X and A; in Vor™.

Figure 2: X has five natural neighbors Ag, ..., A4.

Let V(X, A;) = VT(X) N V(A;), the part of the Voronoi cell V(X)) that has been ’stolen’
from V' (A;) at the insertion of X. If V(X, A;) # 0, A; is a natural neighbor of X . Let v;(X) be the
volume of V (X, A;) and v(X) be the volume of V+(X). Figure 2 shows an example. Observe that
if X belongs to conv(.A), the convex hull of A, v(X) is bounded.

Definition 2.1 The natural neighbor coordinates associated to .4 of a point X € conv(.A) are the

functions ¢, (X) = ’j((jf))7i =1l..n.

As already mentioned, the natural neighbor coordinates satisfy the three conditions of Definition
1.1. Moreover, the support A; of the natural neighbor coordinate o, i.e. the set {X € U|o;(X) #
0}, is the interior of the union of the spheres circumscribing the Delaunay simplexes adjacent to A,.

Definition 2.2 The natural neighbors of a point X with respect to .A are the points 4; € A with
oi(X)#0,i=1.n

INRIA



Surface coordinate system 7

Notice that, the natural neighbors of X are exactly the vertices other than X of the simplices of
Delt incident to X.

2.2 Natural neighbor coordinatesin power diagrams and sections of Voronoi
diagrams

In this section, we recall the definition of a power diagram, and we point out the relationship be-
tween k-dimensional sections of Voronoi diagrams in R? and k-dimensional power diagrams. We
state some observations concerning orthogonal spheres, and, at last, we define natural neighbor co-
ordinates in power diagrams and prove their continuity properties.

2.2.1 Power diagrams and sections of Voronoi diagrams

Let B = {By, Ba, ..., B,,} be a set of weighted points (or sites) in R?, B; = (p;,w;) € R? x R
A weighted point B; can also be considered as a sphere with center p; and radius ,/w;. Notice,
that w; might be negative and the associated sphere imaginary. The power distance T';(p) of a point
p € R? with respect to B; is defined as T';(p) := ||p; — p||> — w;. A weighted point (py,w; ) (or the
corresponding sphere) is orthogonal to another weighted point (p2, ws) (or sphere) if T’y (p2) = wo.
Without real loss of generality, we can assume that the weighted points are in general position.
This means that no d + 2 weighted points are orthogonal to the same sphere. The power cell of
B;is P(B;) = {p € R? : Tu(p) < Ty(p) Vj = 1,..,n}. The collection of power cells is
called the power diagram of B or Pow(B). The dual of the power diagram is called the regular
triangulation or Reg(B). The vertices of Reg(B) belong to {p1,...,p,} and, under the general
position assumption, the d-dimensional faces of Reg(B) are simplexes. See e.g. [8] for further
properties of power diagrams and regular triangulations.

Let H be a hyperplane in R?, and let the Voronoi diagram Vor(.A) be defined as in section
2.1. We call Vor'(A) the intersection of the Voronoi diagram with H, Vor'(A) := Vor(A) N H,
VI(Ai) = V(Az) NnH.

Observation 2.3 Vor'(A) is the power diagram of the points A. that are the projection of the
sample points A; € A onto H weighted with w; = —||4; — A%||2.

Proof: Because A’ is the orthogonal projection of A; on H, we knowthatvVX € H : || X — A;||* =
[|X — AL||? + ||A; — AL||>. Therefore, V/(A;) = {X € H : || X — 4| < || X — 4| V) =
Lion}={X € H:||X - A" +||4d: = A|]* < ||X = AL|]> + [[Ai = AL|P V) =1,...,n} =

2.2.2 Properties of orthogonal spheres

We call orthosphere of a d-simplex of Reg(B) the sphere that is orthogonal to the d + 1 weighted
points associated to the vertices of the face. Its center is a vertex of Pow(B). Let the bisector
hyperplane of two weighted points B; and B; be the hyperplane H = {p € R? : T';(p) = T;(p)}.
A (d — 1)-dimensional face of Pow(B) is contained in the bisector hyperplane of its defining sites.

RR n° 4530



8 Boissonnat & Flototto

In the context of this paper, we use power diagrams that correspond to sections of Voronoi dia-
grams. Consequently, we only consider sites with negative or zero weight. They have the following
two properties:

Proposition 2.4 Any sphere orthogonal to a site B; with w; < 0 is real. Furthermore, it contains
p; inits interior if w; < 0 or on its boundary if w; = 0.

Proof: Let O = (p,,w,) be a sphere orthogonal to B; with radius r,. We have ||p, — p:||? — w, =
w; < 0,thus, w, > ||po — pil|? >0, and ||p, — pi|| < 10 = JWo. Ifw; = 0: ||po — pil| = r,.0

Proposition 2.5 All spheres orthogonal to two weighted points By and By withw; < 0andws <0
meet the line (p1p2) passing through p; and p, in the same two points y; and ys.

Proof: We denote by C the (infinite) set of spheres orthogonal to B, and Bs. By proposition 2.4, the
spheres of C are real. Furthermore, notice that they are centered on the bisector hyperplane H of B;
and B, which is orthogonal to (p1p2). See also figure 3.

c

cQ Bl

\

0

Figure 3: Orthogonal spheres to B; and Bs.

Let Cy € C have its center ¢o on (p1p2) and y; be the intersection point of Cy with (p;p2) that
is further from p;. Since Cj is real, its weight is ||co — v1]|?. Let C be any other sphere of C with
center ¢ and weight w... Since Cy and C are both orthogonal to B;, we get:

II” II”

lle = p1|* = we = |lco = pa]]* = [leo = p1|]* = w1 1)

Applying Pythagore’s theorem to the triangle (c, ¢, p1) yields ||c — p1||? = ||co —p1]|* = ||c — ol [
Thus, equation (1) becomes w. = ||co — v1]|? + ||c — co||?. By Pythagore’s theorem in triangle
(¢, co,y1), we deduce w,. = ||c — y1||? which implies that y; lies on C. Similar arguments apply for
y2.00

2.2.3 Natural coordinates in power diagrams

Natural neighbor coordinates in power diagrams are defined very similarly to natural neighbor co-
ordinates in ordinary Voronoi diagrams. The major difference between the coordinates in Voronoi

INRIA



Surface coordinate system 9

diagrams and in power diagrams is due to the fact that a site of a power diagram might have an
empty cell. This implies that the cell of some sites may disappear when inserting a new site, let’s
say X = (px,wx). Nevertheless, the coordinate can be defined as the proportion of volume of the
power cell P(X) which is stolen from some site B; at the insertion of X into Pow(B).

We define Pow™ (B) := Pow(BU{X}) and Reg*(B) := Reg(BU{X}). P*(X) is the power
cell of X in Pow™ (B) and P(B;, X) := PT(X) N P(B;). The volume of P(B;, X) is denoted by
m;(X) and the volume of P(X) is denoted by 7 (X). C is the convex hull of the p;,i = 1..n.

Definition 2.6 The natural neighbor coordinates associated to B of a point X € C with 7(X) # oo

and 7(X) # 0 are the functions \;(X) = ’:((jf)) Ji=1.n.

Definition 2.7 The natural neighbors associated to B of a point X € C with 7(X) # oo and
m(X) # 0 are the points B; € B with A\;(X) # 0,i =1..n.

Notice, that in this case, the natural neighbors of X include not only the vertices other than X
of the simplices of Reg*(B) incident to X but also the vertices that disappear from Reg(B) when
inserting X .

Sibson proved that the natural neighbor coordinates in power diagrams satisfy the three con-
ditions of Definition 1.1 [23]. The following lemma generalizes the work of Piper [22] about the
continuity properties of the coordinate function in Voronoi diagrams to power diagrams. It is re-
stricted to point sets with non-positive weights as it makes use of proposition 2.4. For the following
lemmas, let X = (px,wx) withwx <0, 7(X) # oo, and w(X) # 0, and B be a set of weighted
points with non-positive weights.

Lemma 2.8 The natural neighbor coordinate \;(X) of X associated to B is C° continuous over C
and C* continuous over C except at a finite set of points.

Proof: As Farin noticed in [15], the natural neighbor coordinate is a rational function of X within
a cell of the arrangement of the Delaunay spheres or orthospheres in our case (which are real by
proposition 2.4). This is due to the fact that, in each cell, the natural neighbors are fixed, and the
vertices of P(B;, X) are rational functions of X. Therefore, 7;(X) which is the volume of P(X, B;)
is a rational function of X. Since by assumption, the volume function 7(X) = ) 7;(X) does not
vanish, the differentiability of the normalized coordinate A; follows from the differentiability of the
5.

When X crosses the boundary of an orthosphere, the rational function changes. To prove that
m; is C'! continuous on the orthosphere, it suffices to prove that the restriction of X to a line that
intersects the orthosphere transversally is C'! continuous. Following Piper [22], we restrict 7; to a
straight line I through p;. For power diagrams in general this is not sufficient because such a line
might be tangent to an orthosphere orthogonal to B;. However, this is different if the weights are
non-positive because we know from proposition 2.4 that p; lies inside or on the boundary of any
sphere orthogonal to B;.

Piper’s proof can be generalized as follows: We consider the volume v;(X) of the intersection
of the bisector hyperplane of B; and X with P(B;). This volume varies continuously when px
moves on [ except when the bisector contains a (d — 1)-dimensional face of P(B;). This happens
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10 Boissonnat & Flototto

on one point ¢;; on each ray from p; to p; where p; is the center of a neighbor B; of B; in Reg(B).
Precisely, €;; is the intersection point of the spheres orthogonal to B; and B; with the line (p;p;)
further to p; as described in proposition 2.5. It is a vertex of the arrangement of orthospheres. If
wx = wj, €;; = p;. Since m;(X) is obtained by integrating v;(X) over I, the C° continuity of
the restriction of v; to I implies the C'* continuity of the restriction of «; to I. It follows that 7; and
consequently \; are C* continuous on C \ &; with &; := {e;;| B; neighbor of B, in Reg(B)}.

In order to prove the C° continuity at the points &;, the same argument as for natural coordi-
nates in Voronoi diagrams can be used [15] : m;(X) is continuous everywhere except if p; = px
and w; = wx. Then, m;(X) is equal to the volume of P(B;). When X approaches B; but
B; # X, the bisector of B; and X intersects P(B;), and m;(X) is just a fraction of the volume of
P(B;). However, the normalized coordinate function \; is continuous because limx_. g, A;(X) =
limx_,p, mj(X) = 0, as follows from the definition of =, for all j # 4. Since Y- ; Ai(X) = 1,
we deduce lim x _, g, A;(X) = 1, which shows that A, is continuous everywhere in C. O

2.3 Sampled surfaces: defi nitions and results

In this section, we consider the case where the sample points are taken from a smooth surface S,
i.e. atwice-differentiable surface. We assume the first and the second derivative of S at X to be
continuous and the third derivatives to exist for all X € S. We give a definition of what we call the
sampling density of S and we recall several results about the local behavior of the surface samples,
notably from [4] and [6].

2.3.1 Voronoi diagram on a surface

We first define the Voronoi diagram of a set of points restricted to a surface, following previous work
by Chew [12] and Edelsbrunner and Shah [14].

Definition 2.9 (Restricted Voronoi diagram, Chew)
The Voronoi diagram of A restricted to S is the (curved) cell complex obtained by intersecting each
face of Vor(A) with S. We denote it by Vors(.A).

We denote by Vs(A;) the Voronoi cell of Vors(.A) consisting of the points of S that are closer
to A, (for the Euclidean distance) than to any A;, j # 4, . A vertex of Vs(A4,) is the intersection
of an edge of V' (A;) with S. Hence it is the center of a ball passing through d points of .4 and not
enclosing other points of A.

Definition 2.10 (Restricted Delaunay triangulation, Chew)
The Delaunay triangulation of A restricted to S is the subcomplex of Del(.A) consisting of the faces
of Del(.A) whose dual Voronoi edges intersect S. We denote it by Dels(.A).

INRIA



Surface coordinate system 11

2.3.2 Medial axis and local feature size

Let F C R? be a compact object, S its boundary. We call vy the outward unit normal to S at X.
The following definitions allow to characterize a sampling of a surface. See [25] and [4] for basic
results on properties of the medial axis.

Definition 2.11 (Amenta & Bern)

1. (Medial axis) The medial axis of a surface S in R? is the closure of the set of points with more
than one closest pointon S.

2. (Medial ball) A ball that is centered on the medial axis, tangent to the surface and whose
interior does not intersect the surface is called a medial ball.

3. (Local feature size) The local feature size 1fs(X ) of a point X € S is the least distance from
X to the medial axis of S.

4. (e-sample) A set of sample points .4 of S is said to be an e-sample of S, € < 1, if every point
X € S has a sample point at distance at most € 1fs(X).

The following proposition from Boissonnat and Cazals will be useful in section 3.2. [6]

Lemma 2.12 [6, proposition 14]
Let B(X,r) be a ball centered at X with radius 7. Forany X € Sandanyr < Ifs(X),SNB(X,r)
is a topological (d — 1)-ball.

2.3.3 Properties of well sampled surfaces

In this section, we mainly recall some results of Amenta and Bern [4].
The first lemma states that the local feature size is Lipschitz.

Lemma 2.13 [4, lemma 1]
For any two points X, Y € S, lfs(X) <Us(Y') + || X = Y|

It follows that, if A is a e-sample, the maximum distance between X ¢ A and the closest sample
point A; € Ais =1fs(4;).

Considering two points on the surface that are close, Amenta and Bern show that the angle
between the line segment connecting the two points and the normal at the points is large, whereas

the angle between two normals is small.

Lemma 2.14 [4, lemma 2]
For any two points X and Y on S with || X — Y|| < p lfs(X), the smaller angle between the line
segment [X'Y] and the normal to S at X is at least 5 — arcsin(%).

Lemma 2.15 [4, lemma 3]
For any two points X and Y on S with || X —Y|| < p1fs(X), p < 1, the angle between the normals
to S at X and at Y is at most ﬁ.

RR n® 4530



12 Boissonnat & Flototto

Since the Voronoi diagram of an e-sample consists of long and skinny cells, the normal direction
atapoint X € S can be estimated from the Voronoi diagram of Vor(AU{X }). To be more specific,
we recall the definition of a pole.

Definition 2.16 The pole px of X is the Voronoi vertex of V' (X) which is furthest from X.

As stated in the next lemma, the line passing through X and its pole provides a good approxima-
tion of the (non-oriented) direction of nx, the normal to S at X. Consequently, the plane Tx that
contains X and is orthogonal to vx approximates well the tangent plane to S at X

Lemma 2.17 [4, lemma 5] The smaller angle between nx and the line passing through X and its

pole is at most 2 arcsin( ;).

In the sequel, we will need the following lemma that states that the tangent plane of a point
X € S cannot be parallel to the bisector of two sample points that are at distance at most plfs(X)
from X, for p < 1.

Lemma 2.18 The angle between the tangent plane T'x to S at X € S and the bisector of two
sample points A; and A; that are at distance at most plfs(X) from X, p < i, is at least /2 —
arcsin(%) — £

1-3p°

n; ~.’ T
4
Al . [e% AJ
~ ®
.
S Ta;
.
.
S Tz

Figure 4: Bounding the angle between the normal n, and the segment [A; 4,].

Proof: See figure 4 for notations. We derive a lower bound for the angle o between the vector ,rA;
and the surface normal 7; at A; and an upper bound for the angle 3 between the normals at A; and
X. The angle between nx and m is at least o — 3.

In order to bound «, we apply lemma 2.14. The distance between the sample points is bounded
by [|Ai — A;|| < ||Ai — X|| + ||4; — X|| < 2plfs(X). Using lemma 2.13, we get lfs(X) <
1fs(A;) + plfs(X) and Ifs(X) < 1 1Ifs(4;). Hence, ||4; — 4;|| < i—Pplfs(Ai). It follows from

= 1-p
Lemma 2.15 that o is at least 7/2 — arcsin(12). The angle 3 between the normals at A; and X
is at most 1f3p ifp< % (lemma 2.15). Concluding, we geta — 8 > w/2 — arcsin(ﬁ) — 1_"3p,

provided that p < 3.0

INRIA
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Lemma 2.19 Forany p < 5775, the projection onto T'x of the intersection of the ball B(X, plfs(X)
with S'is 1-1.

Proof: By Lemma 2.15, for any point Y at distance at most plfs(X) from X, the angle between the
norr7nals to Sat X and at Y is at most ﬁ. The projection is 1-1 if 17’;&, <F=p<g5m=~
0.27.

3 SURFACE NEIGHBORS

With this section begins the core part of the paper in which we define a local neighborhood of a
point X of a smooth surface S without boundary with respect to an e-sample .A of S. In order not
to compute geodesic Voronoi diagrams on S, we approximate S locally by the tangent plane T'x
of X to S. We determine the natural neighbors of X in the Voronoi diagram Vor(.A) restricted to
Tx, and we call them T-neighbors of X. In the remainder of this section, we formally define the
T'-neighbors of a point X € S and prove that they are close to X .

3.1 Definition of T-neighbors

In a first time, we assume that for each point X € S, the normal nx to S at X is known, and
therefore, the tangent plane T'x at X.

Let Vor'(\A) be the intersection of Vor(.A) with the tangent plane T'x. The Delaunay triangu-
lation restricted to T'x that consists of the faces of Del(.A) whose dual Voronoi edges intersect T'x
is called Del’(A). Alternatively, Vor'(A) is the (d — 1)-dimensional power diagram of the points
A that are the projection of the sample points A; € A onto T'x weighted with w; = —||4; — A}||2.
Let Reg’(.A) be the regular triangulation dual to Vor’(A). Since two cells of Vor'(A) are adjacent
iff their corresponding cells in Vor(.A) are adjacent and intersect T'x, Reg’(.A) is the projection of
Del'(A) onto T'x.

Definition 3.1 (T-neighbor of X) The T-neighbors associated to .4 of a point X € S are the
sample points 4, € A such that their projection A’ is a natural neighbor of X in Vor'(A).

To see that the concept of T-neighbors is well-defined, we make two observations: First, the
definitions of section 2.2 assume general position of the point sites. The case that two sites have the
same position and the same weight is excluded. In our context, this occurs if the bisector of two
T-neighbors A;, and A; of X coincides with T'x: Ay and A; are projected at the same position, and
they have the same weight because they are at the same distance to the tangent plane but on opposite
sides. However, without real loss of generality, we can assume that no bisector of two sample points
is tangentto S.

Notice, still, that we can easily show that the angle between T'x and the bisector of A, and A4; is
strictly positive, if e < §: in the remainder of this section, we show that A, and A; are at distance

at most \/%lfs(X) to X (lemma 3.3), thus, lemma 2.18 applies with p = \/%
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14 Boissonnat & Flototto

Second, we need the following lemma to show that X lies in the convex hull of the projection of
its T-neighbors. Equivalently, X lies in the convex hull of its natural neighbors in Vor'(.A), which
in turn is equivalent to the fact that V' (X) is bounded.

Lemma 3.2 X belongs to the convex hull of the projection of its T-neighbors on T'x.

Proof: For a contradiction, assume that V/(X) is unbounded. Then the interior of V/(X) contains a
point at infinity p... Since, among the points of AU {X }, X is the closest to p., the halfspace H*
that contains p., and is limited by the hyperplane H passing through X and normal to X p, does
not contain any point of .A. See figure 5.

Tx Pog

71D
S

H

Y

Figure 5: H* must contain sample points.

The medial ball passing through X and lying in the region limited by S is centered at a point
¢ € H. cis a point of the medial axis of S. Let y be a point on the intersection of S with the ray
issued from ¢, orthogonal to H and contained in H*. Such a point exists if S has no boundary. We
have ||y — ¢|| < Ifs(y) and forany A; € A, ||y — As|| > ||y — c||- This contradicts the fact that .A is
an e-sample withe < 1. O

Figure 6: Natural neighbors A" and T-neighbors 7 of X
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Surface coordinate system 15

In figure 6, a schematic drawing illustrates that some of the natural neighbors of X which are
highlighted in the picture can be far away from X on “the other side” of S — separated from X by
the medial axis of S. The T-neighbors are the subset of the natural neighbors that are close to X on
S. This is what we prove in the next section.

If the normal at X is not known (this may be the case when the surface is only known at a finite
set of points), we can approximate the tangent plane T'x by the plane T'x that passes through X and
is orthogonal to the vector joining X to its pole. We can define T-rlgighbors in very much the same
way as T-neighbors : the only difference is that T'x is replaced by T'x.

3.2 Locality of the T-neighbors

We now derive a bound on the distance between a point X € S and its T'-neighbors with respect to
the local feature size 1fs(X). The proof of the lemma is closely inspired from [4, lemma 5].

Lemma 3.3 Let A be an e-sample of S and X € S.
(a) The T-neighbors of X are all contained in a ball of radius —2<1fs(X) centered at X.

5 V1-2¢
(b) The T-neighbors of X are contained in a ball of radius
2¢
Ifs(X
cos(3 arcsin( %)) 5(X)

centered at X.
(c) In both cases, the T-neighbors of X are contained in a ball of radius 2¢(1 + O(e)) lfs(X).

Proof: Let v be a vertex of V/(X) = V*+(X) N Tx. We derive an upper bound on the distance
between X and v. Because V'(X) is bounded by the (intersection with T'x of the) bisectors of
X and its T-neighbors, the distance between X and its T-neighbors is at most twice the distance
between X and v.

Let B; and B be the two balls of radius 1fs(X) that are tangent to S at X. Assume without loss
of generality that B; and v are on opposite sides of S. Let « be the angle Zvm; X where m; is the
center of B;. We find the same angle o = ZvX ¢’ where ¢’ is the orthogonal projection of X onto
the line segment vm . See figure 7.
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16 Boissonnat & Flototto

Figure 7: For the proof of lemma 3.3(a)

Since v and m; lie on different sides of S, the line segment vmy must intersect S. Let ¢ be
such an intersection point. We call B(v) the ball with center v and radius ||X — v||. Since v €
V+(X), B(v) is empty of sample points. Because B is also empty of sample points, X is the
point of A U {X} that is closest to ¢. It follows that || X — ¢|| < < 1fs(X). On the other hand,

—€

[|1X —q|| > [|X = ¢'|| = sina ifs(X). Hence, o < arcsin(=). From the triangle vX¢’, we

know that ||X — v|| = ”)C(qua'” < Hjis_;’”. With cosa > cos(arcsin($£)) = H=2¢, we get
[|X —v|| < NE=T Ifs(X) = €(1 + O(e))lfs(X).

Figure 8: For the proof of lemma 3.3(b)

(b) We consider a vertex v of V/(X) = V+(X) N T(X). Let 3 be the angle between T'(X) and
Tx. From lemma 2.17, we know that 3 < 2arcsin(1=;). See figure 8 for notations. We define ¢ as
before, and we obtain the same bounds ||.X — ¢|| < ;= 1fs(X) and a = Zvm1 X < arcsin(%;).

1—e
Lety = ZmivX = § —a — B> § — 3arcsin(7%;) and siny > cos(3 arcsin(7%;)).
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From triangle vX ', we know that || X — v|| = 1£=XIl < [IX=d| <

siny — siny — cos(3arcsin(1=))
e(1+ O(e)) Us(X). O
The following lemma states that X and all its 7"-neighbors are contained in a small topological
ball, if € < 0.3. It is a direct consequence of lemma 3.3.

Ifs(X) =

Lemma 3.4 Let B(X,r) be a ball centered at X with radius r = % ifs(X) . Ife < \/54_1,
B(X,r)n S isatopological (d — 1)-ball that contains all the T-neighbors of X.

Proof: By lemma 3.3, all the T-neighbors of X are contained in a ball B(X,r) centered at X of

radiusr = \/% Ifs(X). With lemma 2.12, SN B(X, R) is a topological (d—1)-ball if r < 1fs(X),

which is true for e < @ ~0.3.0

4 SURFACE COORDINATE SYSTEM

We can now define a surface coordinate system associated to a sample set .A. Similarly to the
T-neighbors, it is defined in the tangent plane of each surface point and consequently called 7'-
coordinate system. In the rest of the section, we show some properties of 7-coordinate systems : we
show that the support of the T-coordinates is local in subsection 4.2, study their continuity properties
in subsection 4.3, and prove in subsection 4.4 that the local coordinate property is approximately
satisfied, with an error that depends on the local curvature of the surface and on the sampling density.
The results for T'x -coordinates, the generalization of T'-coordinates to estimated tangent planes, are
asymptotically identical. We do not give the proofs because they can be easily deduced by applying
lemma 3.3(b) and (c).

4.1 Definition and basic properties

The same definitions as in section 3 apply.

Definition 4.1 (T-coordinate associated to .4 ) The T-coordinate 7(X) of a point X of S is
the natural neighbor coordinate \;(X) of X associated to A’ in the power diagram Vor'(A), i =
1,...,n.

By construction, the T'-coordinates 7; fulfill properties (4¢) and (i77) of a system of coordinates
over S associated to LA as they are listed in definition 1.1. The local coordinate property (i) is
satisfied for the projected sample points A’. With respect to .A, the local coordinate property is only
true if the surface is locally planar so that all T-neighbors of X lie in the tangent plane T'x.

4.2 Locally bounded support

Let A; denote the support of 7, i.e. the subset of the points X € S such that 7;(X) # 0. In order
to show the locality of A; on S, we apply the bound on the distance between a point X € S and its
T-neighbors.
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18 Boissonnat & Flototto

Lemma 4.2 The support A; of 7; is contained in a ball of radius 125-1fs(A;) centered at A;.

Proof: Applying lemma 3.3 and lemma 2.13, we obtain || X — A4;|| < 6 Ifs(X) < %lfs(Ai) with

§ = —Z5=, which is at most 25 1fs(4;).0

4.3 Continuity of the coordinate function

In this section, we study the continuity of the function 7; when X moves on S. Let us first state the
lemma:

Lemma 4.3 The T-coordinate 7;,% = 1, ..., n, iS continuous everywhere on S.

Proof: Assume that S is parameterized by (u,v). The coordinate function 7;(X) is, by definition,
equal to the natural neighbor coordinate A;(X (u,v)) in the power diagram Vor'(A U X). When
X moves on S, the projected sample points change their position and their weight continuously.
Indeed, since S is smooth, the projection onto the tangent plane is a smooth mapping. The weight
of A, isgiven by :

wi(u,v) = —||4; — Al(u,v)||* = —(4; X (u,v) nX(uiv))Q.l

_
By assumption, X (u,v) is twice differentiable. The normal nx (u,v) is C* continuous.? The same
_
is true for the position of A.(u,v) since A}(u,v) = A;—||4; — A} (u,v)||nx(u,v). Recall also from
lemma 3.2, that X is always in the convex hull of the projected sample points. Consequently, the
T-coordinates are continuous on all of S because the natural neighbor coordinates are continuous as
described in section 2.2.00

Lemma 4.4 The T-coordinate 7;,% = 1, ..., n, is continuously differentiable everywhere on S except
at the sample points and at the points X € S such that T'x contains a (d — 2)-dimensional Voronoi
face of the Voronoi cell V(X)) in Vor(AU {X}).

Proof: Consider the power diagram Vor'(A U {X}). By lemma 2.8, 7; is C' continuous except at
a finite number of points. Recall from the proof of lemma 2.8 that there is a C'* discontinuity at the
sample points. Still, we want to characterize all points of C'! discontinuity with respectto Vort (A).

For convenience, we adopt the terminology associated to R® and call a (d — 2)-dimensional face
an edge. The natural neighbor coordinate 7; is not continuously differentiable at a point X such that
the bisector of X and A; contains an edge of V'(A) say V'(A}) N V'(A’) (see also the proof of

lemma 2.8). This means that a point v of this edge has equal power with respect to X, A;, and A’.

But, by definition of Vor’(A U {X }), this means also that v is at equal distance from A:, A, and
X . Consequently, the Voronoi edge of V'(X) is an edge of Vor(A U {X}). This edge is therefore

contained in T'x.0O0

1We denote the scalar product of two vectors by 7 = ¢ .
X () = |§"ﬁ§“‘ where X, = 2% (x, = 2X) s the first derivative of X (u,v) with respect to u (with respect
to v).
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4.4 Thelocal coordinate property

In this section, we bound the error committed with respect to the local coordinate property, that is
e(X) = ||X =Y, 7:(X)A;||. This corresponds to bounding the distance of a T-neighbor of a point
X € S to the tangent plane T, since X = 3. m(X)AL = 3. 7(X)(4; + ||A;i — Al||ng) or

- - —_—
X =Y, m(X)(A; — ||A; — Al||n,) depending on the sign of AL A7
Proposition 4.5
X =) 7i(X)A; + O()fs(X) .

Proof: It is sufficient to prove that the distance between a T'-neighbor 4A; € A of X € S and its
projection A’ on the tangent plane T'x, is bounded by

2
14: — 4] < T2 5(X) = O()ls(X).
— 4€
It is easy to see that ||4; — Al|| = ||Ai — X||sin® where § = £A; X A}. Since A; does not
belong to the two balls of radius lfs(X) centered at X, sin§ < ”2‘;‘;'3?;)”. With lemma 3.3, we have

[|Ai — X|| < \/%lfs(X) which implies the inequality above and the proposition. O

5 APPLICATION: INTERPOLATION

As mentioned in the introduction, we apply the T-coordinates to interpolate a function which is
defined on a surface but only known at some points. In section 5.1, we define three types of in-
terpolants. They are tested in different experimental settings as described in section 5.2. In section
5.2.4, we visualize the coordinate function ;. Some notes on the implementation are given in section
5.3.

5.1 Interpolating afunction on S

In this section, the previously defined T'-coordinate system is used to define an interpolant for func-
tions defined on smooth surfaces. More exactly, we want to approximate ® : S — R where S C R¢
is defined as before. We assume that an e-sample A of S with function values {(4;,z;) : A; €
A, z; = ®(A;)} is given. The interpolation is carried out for a point X € S.

5.1.1 Linear precision

For a point X € S, we compute its T'-coordinates within its tangent plane T'x. The interpolation of
®(X) is given as the linear combination of the function values of the T'-neighbors weighted by the
coordinates:
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20 Boissonnat & Flototto

I°(X) =) m(X)z.
Assume that S is locally flat and identical to a plane H. At any point X of S where the T-
neighbors of X are all in H, the interpolant has linear precision. Indeed, if z; = a + bA; for all
T'-neighbors of X, we have

I°(X) =Y n(X)(a+bAi) = a+bX

by the local coordinate property. If S is not flat around X, we saw in section 4.4 how the error can
be bounded with respect to lfs(X).
Let ®(A;) = a + bA; be a linear function. We have I°(X) = >, 7:;(X)(a + bA;) = a + bX +

)
be(X)nx where e(X) = 3, (X )(ALA; * ny) = O(e?)fs(X). Hence,
I°(X) = ®(X) + O(e?).

5.1.2 Quadratic precision

We can also define an interpolant that reproduces a quadratic function ®(X) = a + b*X + X*QOX.
As additional input, we assume the gradients g; = V(®(A4;)) of & at the sample points 4;,7 = 1..n,
to be known. The interpolant is defined as follows:

I'X0) = 3 (X + 504X - A)

Assume again that S is locally flat and identical to a plane H. At any point X of S where the
T-neighbors of X are all in H, the interpolant has quadratic precision. Indeed, if z; = ®(4;) =
a+btA; + ALQA;, g; = b+ 2QA;, and applying the local coordinate property, we obtain:

'X)=a+b' X +X'0X.
If S is not flat around X, we have :
I'NX)=a+b'X + (X +e(X)nx) OX.

where e(X) is defined as in the previous case. Thus, the error of the interpolant is ||®(X) —
IN(X)|| = e(X)nxtQX, which is O(e?) inside any bounded domain.

In this context, we also implemented the so-called Z* interpolant proposed by Sibson [24] which
we adapted to our setting by replacing the natural neighbor coordinates with the T'-coordinates. This
interpolant does not recapture general quadratic functions but only spherical quadrics of the form
®(X) = a +b'X + X*X. Sibson showed that it is C* continuous with gradient g; at A;. His
proof relies on the local coordinate property of the natural neighbor coordinates. Consequently, in
our case, an error is introduced depending on the local feature size. Using our terminology, Sibson’s
interpolant writes:

i (X)) Ay =X LT (XA —x |2 (X)) (25 +9,(X—A;
ZiTil )HX HIO(X)+Z (9] I EiT( )(zi+9:( )

s, X)) s, 7 (X) [1A; —X11
Zl(X) — t A = XTI v 1A =XTI
i T’(Xll,‘(};(’)_x‘l +3, Ti(X)||Ai—X |2

P, T Sl
i T7a; —xT]
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5.2 Experimental results
5.2.1 Functionsin 3D

We assume that we are given a real-valued function f(X) that can be evaluated at all points X € S.
For example, we interpolated the following three functions on the sphere:

o fi(z,y,2) =42 + y* + 624,

o folx,y,2) = e 2((z—1)*+y%+27) +05 e~z +(y—0.7)+(2—-0.7)%)
—0.25 e~ 4=+ (0.1 +(z40.7))

o fs(z,y,2) =1+ 2% + €2 + 2= + 10zyz.

The functions f> and f5 are test functions from [18] and [2].

To visualize the result, we deformed the sphere at each point along its normal by the amount of
the corresponding interpolation result. In figures 9(a), 10(a), and 11(a), the error statistics are de-
picted together with the exact result of the function application where the function is evaluated at the
6000 points of the sphere model and the sphere is deformed correspondingly. For each interpolant,
mean and maximum errors are given with respect to the absolute difference between the actual and
the interpolated function value on the 6000 evaluation points. In the plots, the three lower curves
correspond to the mean error while the three upper curves correspond to the maximum error. In
all cases, the linear interpolant 7° is the least accurate concerning mean as well as maximum error.
The quadratic interpolants 7t and Z* achieve comparable results, yet, Z* yields to be slightly better
than the simpler quadratic interpolant I'. Figures 9, 10, and 11 (b) and (c) show the result of the
interpolation on the 6000 sphere points given function values at 50 and 250 of the 6000 points.

100 200

nur%gr of sanple poi 1nolog

Figure 9: f1 (a) exact model and error statistic, interpolation with (b) 50, (c) 250 sample points.

RR n° 4530



22 Boissonnat & Flototto
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Figure 10: f, (a) exact model and error statistic, interpolation with (b) 50, (c) 250 sample points.
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Figure 11: f3 (a) exact model and error statistic, interpolation with (b) 50, (c) 250 sample points.

5.2.2  Functions on parameterized surfaces

In this section, we suppose that we are given a parameterized surface S and a function h(u,v) :
S — R defined on S. We evaluate S on a regular grid of 40000 points (which is for numerical
reasons slightly perturbed). The function is evaluated on a random subset of the grid points (in
parametric space). The gradient needs to be expressed with respect to the Cartesian coordinates
(95 = (5258 (wi, ;) + 52 5 (i, v:), T2 G0 (ws, v5) + 3238 (wi, v3), G2 5o (wiy vi) + 52 G (us, 04)).
We use interpolants 7°, I* and Z! to estimate the function value on the remaining grid points. Some
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of the results as well as an error statistic are shown in figure 12. The surfaces are deformed by the
function value in direction of the surface normal. The error statistic has the same interpretation as

those in section 5.2.1.

Figure 12: Interpolation of h(u,v) = 0.6 cos(6v) on the torus with (a) 100 regularly spaced sample
points (shown in red), (b) 500, (c) 1000 and (d) 4000 random sample points.
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Figure 13: Exact model and error statistic of figure 12.
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5.2.3 Vector fields on parameterized surfaces

The interpolation of vector fields, i.e. functions that are defined from the surface to a higher di-
mensional space, can be treated in the same way as scalar functions by interpolating each coordi-
nate of the result separately with one of the interpolants presented in section 5.1. For example, let
v:8 — R with v(u,v) = (vz(u,v),vy(u,v),v,(u,v)), then, v,, v,, and v, are interpolated in-
dependently. The error of the interpolation is measured by the squared distance between the vector
obtained by applying the function on a point X and the interpolation result at X. Figure 14 shows
the interpolation of v(u,v) with v,(u,v) = —cos(u) cos(v), vy(u,v) = —cos(u) sin(v), and
v, (u,v) = —sin(u) on the cylinder. The setting is the same as in the previous section: the function
as well as the function gradient is known on a subset of the 40000 grid points, and the interpolants
are evaluated on the rest of the grid points. For surfaces with boundary, all boundary points are
part of the sample points. To visualize, we translate each grid point by the vector resulting from
the interpolation or the function application. Concerning the error statistics, figure 15, this time the
mean error of the I° interpolant is worse than the maximum error of I* and Z*. Other than that, the
interpretation is the same as in the previous sections.

Figure 14: Interpolation of h(u,v) = 0.6 cos(6v) on the torus with (a) 100 regularly spaced sample
points (shown in red), (b) 500, (c) 1000 and (d) 4000 random sample points.
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Figure 15: Exact model and error statistic for figure 12.

5.2.4 Visualization of the coordinate function

In order to demonstrate the locality and the smoothness of the T-coordinate, we visualize the coor-
dinate function r; with respect to a sample point A; on a parameterized surface S. Figure 16 shows
an example of the cylinder from two different viewpoints and of the torus. r; is computed on a (per-
turbed) regular grid of 40000 points with respect to a subset of 100 regularly placed sample points.
Each grid point is translated by the value of the coordinate 7; in direction of the surface normal at
that point. Of course, A; itself has the highest value for 7; (;(A4;) = 1). Notice the locality of the
coordinate function, as well as the C* discontinuity on the sample point 4; itself.

Figure 16: The coordinate function 7; on the cylinder and the torus.

RR n° 4530



26 Boissonnat & Flototto

5.3 Implementation

The implementation is based on the Computational Geometry Algorithms Library CGAL [11]. It
makes use of the two-dimensional regular triangulation, the three-dimensional Delaunay triangula-
tion as well as the polyhedral surface class provided by CGAL.

Table 1 indicates the running time for the examples depicted in section 5.2.2. The models contain
40000 grid points. The number of sample points varies from 100 to 4000. For comparison, the
running time of the Delaunay triangulation of the 40000 grid points is shown in the second column.
The remaining columns show the running time for the interpolation on the 40000 grid points with
respect to n sample points, n= 100, 500, 1000, 2000, and 4000. The experiments were run on a PC
computer with Pentium 111 bi-processors at 730 MHZ, 640 MB main memory. Further details on the
implementation can be found in a companion paper [7] that will appear soon.

Model | DT | 100 | 500 | 1000 | 2000 | 4000
Cylinder | 468 | 227 | 362 | 439 | 551 | 766

Sphere | 309 | 566 | 571 | 496 | 445 | 392

Torus 277 | 185 | 285 | 333 | 394 | 470

Table 1: Running time in seconds.

6 CONCLUSION AND FUTURE WORK

The T-neighborhood and the T'-coordinate system are associated to a set of sample points from a
surface equipped with normal vectors. We show that the neighbors as well as the coordinate system
are local on the surface when the surface is well sampled. The coordinate system is continuous
everywhere on the surface. It is continuously differentiable except at a finite number of surface
points. Furthermore, we show the application of the coordinate system to different problems related
to interpolation. In the near future, we plan several extensions of our method: In order to simplify the
presentation in this framework, we restricted ourselves to (d—1)-manifolds, yet, the same definitions
apply to all smooth k-manifolds, & < d, of RY. For the same reason, we did not generalize the
definitions to manifolds with boundary. Also, in [19] coordinate systems with higher continuity
were defined which generalize Sibson’s coordinates. The same technique can be applied to T'-
coordinates. In addition, we will concentrate on the question of efficiency: due to the proved locality
of the T-neighbors, efficient filtering methods will considerably speed up computation time. See
[13] for relevant work on this question. Last but not least, we plan to develop further applications
e.g. around texture mapping, surface reconstruction, and point set surfaces as they are recently
emerging in computer graphics, see for example [1].
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