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Abstract: An important and unsolved problem today is the automatic quantification of the
quality of video flows transmitted over packet networks. In particular, the ability to perform
this task in real time (typically for streams sent themselves in real time) is specially interesting.
The problem is still unsolved because there are many parameters affecting video quality and
because their combined effect is not well identified and understood. Among these parameters we
have the source bit rate, the encoded frame type, the frame rate at the source, the packet loss
rate in the network, etc. Only subjective evaluations give good results but, by definition, they
are not automatic. We previously explored the possibility of using Artificial Neural Networks to
automatically quantify the quality of video flows and we showed that they can give results well
correlated with human perception.

In this paper, our goal is twofold: First, we report on a significant enhancement of our method
by means of a new neural approach, the Random Neural Network model. Second, we follow our
approach to study and analyze the behavior of video quality for wide range variations of a set
of selected parameters. This may help in developing control mechanisms in order to deliver the
best possible video quality given the current network situation, and in better understanding of
QoS aspects in multimedia engineering.

Key-words: Packet video, Random Neural Networks, Real-time video transmission, Video
quality assessment.
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Une étude de la qualité de la vidéo temps réel employant
Random Neural Networks

Résumé : Un probléme important et non résolu efficacement jusqu’aujourd’hui est 1’évaluation
automatique de la qualité de flux vidéo transmis sur des réseaux de paquet, telle que percue par
l'utilisateur. La capacité de faire cette tache en temps réel (typiquement pour des flux de type
temps réel) est particuliérement intéressante. Le probléme est toujours non résolu parce qu’il y
a beaucoup de paramétres affectant la qualité de la vidéo et parce que leurs effets combinés ne
sont pas bien identifiés et compris. Parmi ces paramétres, nous avons le débit de la source, le
type d’encodage d’images, le débit des trames, le taux de perte dans le réseau, etc. Seulement
des évaluations subjectives donnent de bons résultats, mais, par définition, elles ne sont pas au-
tomatiques. Nous avons précédemment exploré la possibilité d’employer les réseaux de neurones
artificiels pour automatiquement évaluer quantitativement la qualité de flux vidéo et nous avons
montré qu’ils peuvent donner des résultats bien corrélés avec la perception humaine.

Dans ce papier, notre but est double : d’abord, nous présentons une amélioration significative
de notre méthode en utilisant une nouvelle approche neuronale, le modéle de réseaux de neurones
aléatoires. Ensuite, nous utilisons notre approche pour étudier et analyser le comportement de
la qualité vidéo pour des variations importantes d’un jeu de parameétres préalablement choisis.
Cela peut aider & développer des mécanismes de contréle pour livrer la meilleure qualité vidéo
possible étant donné la situation actuelle du réseau, et & une meilleure compréhension des aspects
QoS dans l'ingénierie multimédia.

Mots-clé : Paquets vidéo, réseaux de neurones aléatoires, transmission de vidéo temps réel,
évaluation de la qualité de la vidéo.
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1 Introduction

Even though the main concern of multimedia QoS is to maximize the quality of the data delivered
to the destination points, most of the current discussions are concentrated on finding a way to
keep within certain limits some of the network parameters (e.g., packet loss rate and delay
variation), and little attention has been paid to the quality perceived by the end-users of the
applications running over the network.

There are several parameters that affect the quality (quality-affecting parameters) of video
transmission over packet networks. We can classify them as follows:

e Coding and compression parameters: They control the amount of quality losses that take
place during the encoding process; so they depend on the type of the encoding algorithm
(MPEG, H26x, etc.), the output bit rate, the frame rate (the number of frames per sec.),
the temporal relation among frame types, etc.;

e Network parameters: They are a result of packetization of the video stream and the trans-
mission through the network, such as the packet loss rate, the loss distribution, the delay,
the delay variation (jitter), etc.;

e Other parameters like the nature of the scene (e.g. amount of motion, color, contrast,
image size, ...) can also have an impact on the human perception of the flow. Last, it is
possible that some other characteristics of the user population itself such as the age or even
social and economic factors have some impact on the perceived quality.

The analysis of the video quality can be done using either objective tests or subjective ones.
Objective tests are usually explicit functions of measurable parameters related to the encoder or
to the network [26]. Subjective tests are based on evaluations made by human subjects under well
defined and controlled conditions [7], [27]. Obviously, the reference is the end-user’s perception,
which is directly captured by subjective tests. Concerning available objective tests, it is well
known that they do not always correlate very well with human perception [35], [19], [32].

Some existing objective methods are MSE (Mean Square Error) or PSNR (Peak Signal to
Noise Ratio) which measure the quality by simple pixel-to-pixel comparisons. There are other
more complicated methods such as the moving picture quality metric (MPQM) and the nor-
malized video fidelity metric (NVFM) [38], [39]. A state of the art for objective video quality
assessment methods is [26].

Subjective quality assessment methods [8], [19], [7], [37], [27], measure the overall perceived
video quality. They are carried out by human subjects. The most commonly used one for video
quality evaluation is the Mean Opinion Score (MOS) [7], [27], recommended by the ITU. It
consists of having a set of subjects view the distorted video sequences in order to rate their
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4 Mohamed, Rubino

quality, according to a predefined quality scale. That is, human subjects are trained to build a
mapping between a set of processed video sequences and the quality scale. Although MOS studies
have served as the basis for analyzing many aspects of signal processing, they present several
limitations: a) very stringent environments are required; b) the process can not be automated; c)
it is very costly and time consuming, making very difficult to repeat it frequently. Consequently,
it is impossible to use it in real-time quality assessment. On the other hand, the disadvantages
of objective methods are: a) they do not always correlate well with human visual perception®; b)
they require high calculation power, and are time consuming (they usually operate at the pixel
level); c) it is very hard to adapt them to real-time quality assessment, as they usually work
on both the original video sequence and the transmitted/distorted one; d) as stated before, it is
difficult to build a model that takes into account the effect of many quality-affecting parameters,
specially network parameters.

Previous studies either concentrated on the effect of network parameters without paying
attention to encoding parameters, or the contrary. Papers that consider network parameters
and use subjective tests for the evaluation restrict the study to only one or two of the most
important ones. For example, the Loss Rate and Consecutive Lost Packet metrics are studied
in [17], while [38] studies mainly the effect of Bit Rate and [15] works only on the effect of Frame
Rate, etc. Other examples are [9], [19], [32], [30] (see Section 2 for more details). The main
reason for this is the fact that subjective quality tests are expensive to carry out. Moreover, to
analyze the combined effect, for instance, of three or four parameters, we need to build a very
large set of human evaluations in order to reach a minimal precision level. Concerning objective
approaches, there is no previously published objective quality test that can take into account the
direct influence on the quality of the whole set of parameters simultaneously.

In this paper, we propose an approach that, first of all, can evaluate the combined effect of an
arbitrary number of parameters on the quality of a video sequence. Moreover, our method has
two supplementary properties: (i) it correlates well with the results obtained from subjective tests
(because, as we will see, it is in fact based on them) and (ii) it can work automatically and in real
time. Specifically, we build a tool that takes as input the values of a set of parameters associated
with the encoder and with the network used to transmit the video stream, and correspondingly
quantifies the video quality. The tool is based on a neural network trained with the results
of previously performed subjective tests, in which wide ranges of the selected parameters and
real network conditions are considered. In [25], we proposed to use standard Artificial Neural
Networks (ANN) to evaluate video quality as a function of certain quality-affecting parameters.

Here, we report on a significant enhancement of this method, obtained by using a different
type of neural network called Random Neural Network (RNN). This recently invented tool [11],
[13], [12] appears to capture with higher accuracy and in a more robust way the function mapping

!By the way, this claim comes from comparing the results to those obtained from subjective methods.
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the various involved parameters to the quality metric. This is partly due to nice mathematical
properties exhibited by RNN, which makes one of their main differences with ANN.

In addition, we use our tool to study and analyze the impact of certain quality-affecting
parameters (the source bit rate, the encoded frame type, the frame rate, the packet loss rate,
and the loss burst size) on real-time video quality. The possibility of performing this type of
analysis is another contribution of the approach developped here.

The organization of the rest of our paper is as follows: in Section 2, we give a brief overview
of related works. Section 3 summarizes our previously proposed model to evaluate real-time
video quality, introduces the theory of RNN, compares both RNN and ANN, and mentions some
benefits of our model. Section 4, presents the subjective quality tests. In Section 5, we describe
the quality-affecting parameters and the MOS test we carried out. Finally, in Section 6, we study
the impact of the quality-affecting parameters on video quality.

2 Related Works

In [9], the authors study the effect of both loss and jitter on the perceptual quality of video. They
argue that, if there is no mechanism to mask the effect of jitter, the perceived quality degrades
in the same way as it degrades with losses. In [34], [17], [19], [36], [37] and [32], the effect of
audio synchronization on the perceived video quality is analyzed (for instance, by quantifying the
benefits of audio synchronization on the overall quality of the flow). The main goal of [15] is to
study the effect of the frame rate for different standard video sequences on the overall perceived
quality. A related work is [30] where the effect of FEC (Forward Error Correction) and Frame
Rate on the quality is the subject of the study. The work presented in [6] is a study of the packet
loss effects on MPEG video streams. The authors consider the effect of loss rate on the different
types of MPEG frames. In [38] and [26], a study of the effect of bit rate on the objective quality
metrics (PSNR, NVFM, and MPQM) is presented. The effect of the number of consecutively
lost packets on video quality is analyzed in [17].

The authors of [20] study the effect of packet size and the distribution of I-frames in the
layered video transmission over IP networks. In [8] the analysis goes deeper: the authors present
a study of the effect of motion on the perceived video quality. In [29], a dynamic bit-rate
prediction method is proposed. It consists of predicting the bit-rate for future frames based on
the past information and dynamically change the quantization parameter if the estimated bit
rate exceeds certain threshold so that the encoder output’s objective quality remains constant.
In [18], another objective video quality assessment method is proposed, based on the evaluation of
the quality of each frame separately. The idea is to compute a weighted mean of these individual
frame values, taking into account the short-term characteristics of human memory.
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6 Mohamed, Rubino

The work in [28] presents a methodology for video quality assessment using objective pa-
rameters based on image segmentation. An image encoded by MPEG-2 is segmented into three
regions: plane, edges, and texture; then, a set of objective parameters is assigned to each region.
After that, a perceptual-based model is defined by computing the relationship between objective
measures and results of subjective tests. In [40], a de-jittering scheme is proposed to compensate
the effect of delay variation for the transport of MPEG-4/2 video streams. Furthermore, in [40],
an algorithm to protect the packet-loss resilience is proposed. It is based on the switching be-
tween Inter/Intra macro-bloc encoding. Although the main goal of the works presented in [35],
[19] and [32] is to develop objective methods that give good correlation with subjective evalu-
ations, the results obtained clearly show that the two types of outputs do not always correlate
well.

In previous work, we showed how to use ANN to measure audio quality in real time when
this audio is transmitted over a packet network [23]. Based on this technique, we developed a
new control mechanism that permits a better use of the given bandwidth and the delivery of
the best possible audio quality given the current network situation [24]. Then, we proposed a
tool to evaluate video quality in real time when this video is subjected to wide range variation
of certain network and video parameters [25]. The present paper extends and improves some of
these works, in the specific case of video streams.

Concerning the specific neural approach followed in the present paper, based on the RNN
model, it is important to mention that RNN are used in several related problems. For example,
they are used in video compression with compression ratios that range from 500:1 to 1000:1 for
moving gray-scale images and full-color video sequences respectively [10]. They are also used as
decoders for error correcting codes in noisy communication channels [2|. Furthermore, they are
used in a variety of image processing techniques which go from image enlargement and fusion to
image segmentation [14]. A survey of RNN applications is given in [4].

3 Automatic Measuring of Video Quality in Real Time

In this Section, we summarize our proposal to evaluate video quality in an automatic way, in
real time if necessary, and with results close to those that can be obtained from subjective tests.
Then we briefly describe the fundamentals of RNN. After that, we compare ANN and RNN for
the sake of our study. Finally, possible applications for our method are proposed.

INRIA
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3.1 Summary of the Neural Network approach

In this Section, we describe the overall steps to be followed in order to build a tool to automati-
cally assess (and in real time if necessary) the quality of video streams transmitted over packet
networks. The automatic evaluation is performed by a suitable trained Neural Network (NN).

We must first choose the most a priori effective quality-affecting parameters corresponding
to the type of video application and to the network that will support the transmission. Then,
for each parameter we must select the most frequent occurrences of its values and identify their
ranges. For example, if the percentage loss rate is expected to vary from 0 to 10%, then we
may use 0, 1, 2, 5, and 10 % as typical values for this parameter. If we call configuration of
the set of quality-affecting parameters, a set of values for each one, the total number of possible
configurations is usually large. We must then select a part of this large cardinality set, which
will be used as (part of) the input data of the NN in the learning phase.

To generate a video database composed of sequences corresponding to different configurations
of the selected parameters (called “Distorted Database”), a simulation environment or a testbed
must be implemented. This is used to send video sequences from the source to the destination
and to control the underlying packet network. Every configuration in the defined input data must
be mapped into the system composed of the network, the source and the receiver. For example,
working with IP networks, the source controls the bit rate, the frame rate and the encoding
algorithm, and it sends RTP video packets; the routers’ behavior contribute to the loss rate and
the loss distribution, together with the traffic conditions in the network. The destination stores
the transmitted video sequence and collects the corresponding values of the parameters. Then,
by running the testbed or using the simulations, we produce and store a set of distorted video
sequences along with the corresponding parameters’ values.

After completing the Distorted Database, a subjective quality test must be carried out. There
are several subjective quality methods in the recommendations of the ITU-R [7, 27]. We selected
to use Degradation Category Rating (DCR), discussed in Section 4. A group of human subjects
is then invited to evaluate the quality of the video sequences (i.e. every subject gives each video
sequence a score from a predefined quality scale). The subjects must not establish any relation
between the sequences and the corresponding parameters’ values.

The next step is to calculate the MOS values for all the video sequences. Based on the scores
given by the human subjects, screening and statistical analysis should be carried out to remove
the grading of the individuals suspected to give unreliable results [7]. After that, we store the
MOS values and the corresponding parameters’ values in a second database (which we call the
“Quality Database”).

In the third step, a suitable NN architecture and a training algorithm must be selected. The
Quality Database is divided into two parts: one to train the NN and the other one to test its
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8 Mohamed, Rubino

accuracy. The trained NN will then be able to evaluate the quality measure for any given values
of the parameters.

To put this more formally, we build a set S = {01,09,---,05} of video sequences that have
encountered varied conditions when transmitted and that constitute the “training part” of the
Quality Database. A second part of the data base, the set S’ = {o],0%,---,0%}, called the
“validation part” of the Quality Database, is reserved. We also define a set P = {my,ma, -+, 7p}
of parameters such as the bit rate of the source, the packet loss rate in the network, etc. Then,
we denote by v,s the value of parameter 7, in sequence o, and by V the matrix V' = (v,s). For
s =1,2,---,8, sequence oy receives the MOS evaluation ps € [0, M] from the subjective test
phase. The goal of the NN is to find a real function f having P real variables and with values
in [0, M], such that

(i) for any sequence s, f(vis,--+,VpPs) R s,

(ii) and such that for any other vector of parameter values (vq,---,vp), f(v1,---,vp) is close
to the MOS that would receive any video sequence for which the selected parameters would
have those specific values vy, -, vp.

When such a function f is built (f is actually the final NN obtained when the convergence
criteria is satisfied), we test it using the validation part of the Quality Database. If for any
sequence o, € §' we have f(vis,---,vps) & fis, then the training process ends. Otherwise, we
must go back to the first phase, probably to use more data or to change some parameters of the
neural network and build another function f.

The final tool is then composed of two modules: the first one collects the values of the selected
quality-affecting parameters. The second one is the trained NN that will take the given values
of the quality-affecting parameters and correspondingly computes the MOS quality score.

3.2 Random Neural Networks

The method we propose uses a new family of neural networks, the so called Random Neural
Networks, recently invented by Erol Gelenbe in [11], [13], [12]. This choice was suggested by the
success of this approach in many different areas [10], [2], [14], [4], ...

Gelenbe’s idea can be described as a merge between the classical Artificial Neural Networks
(ANN) model and queuing networks. Since this tool is a novel one, let us describe here its main
characteristics. RNN are, as ANN, composed of a set of interconnected neurons. These neurons
exchange signals that travel instantaneously from neuron to neuron, and send and receive signals
to and from the environment. Each neuron has a potential associated with, which is an integer
(random) variable. The potential of neuron i at time ¢ is denoted by g;(¢). If the potential of
neuron % is strictly positive, the neuron is ezcited; in that state, it randomly sends signals (to

INRIA
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other neurons or to the environment), according to a Poisson process with rate r;. Signals can
be positive or negative. The probability that a signal sent by neuron ¢ goes to neuron j as a
positive one, is denoted by pz‘-':j, and as a negative one, by D, j; the signal goes to the environment
(that is, it leaves the network) with probability d;. So, if N is the number of neurons, we must
have forallz=1,---, N,

N
di+ 3 (vl +pi5) =1
j=1
When a neuron receives a positive signal, either from another neuron or from the environment,
its potential is increased by 1; if it receives a negative one, its potential decreases by 1 if it was
strictly positive and it does not change if its value was 0. In the same way, when a neuron sends
a signal, positive or negative, its potential is decreased by one unit (it was necessarily strictly
positive since only excited neurons send signals)?. The flow of positive (resp. negative) signals
arriving from the environment to neuron 4 (if any) is a Poisson process which rate is denoted by
A (resp. A;). It is possible to have A" = 0 and/or \; = 0 for some neuron i, but to deal with
an “alive” network, we need Zfil )\:r > (. Finally, we make the usual independence assumptions
between these arrival processes, the processes composed of the signals sent by each neuron, etc.
The discovery of Gelenbe is that this model has a product form stationary solution. This
is similar to the classical Jackson’s result on open networks of queues. If process ¢ (t) =
(q1(),---,qn(t)) is ergodic (we will say that the network is stable), Gelenbe proved that

N
lim Pr(q(t) = (n1,---,nn)) = H(l — 0i)o;" (1)

t—o00 -
=1

where the g;s satisfy the following non-linear system of equations:

T+
for each node 7, ;= —2—, (2)
r; + T
N
for each node i, T;" =\ + Z QjTjP}ti, (3)
i=1
and
N
for each node i, T, =\ + Z erjpj_,i' (4)

?In the general mathematical model, loops are allowed, that is, it i:slpossible to have p;-’; >0 or p;; > 0. In our
application, we set p;.'; =p,. =0.

11
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Relation (1) tells us that g; is the probability that, in equilibrium, neuron 4 is excited, that is,
oi = lim Pr(g;(t) > 0).

Observe that the non-linear system composed of equations (2), (3) and (4) has 3N equations
and 3N unknowns (the g;s, the T;'s and the T} s). Relations (3) and (4) tell us that 7" is the
mean throughput of positive signals arriving to neuron ¢ and that 7} is the corresponding mean
throughput of negative signals (always in equilibrium). Finally, Gelenbe proved, first, that this
non-linear system has a unique solution, and, second, that the stability condition of the network
is equivalent to the fact that, for all node 7, g; < 1.

Let us describe now the use of this model in statistical learning. Following previous applica-
tions of RNN, we fix the A;"s to 0 (so, there is no negative signal arriving from outside). As a
learning tool, the RNN will be seen as a black-box having N inputs and N outputs. The inputs
are the rates of the incoming flows of positive signals arriving from outside, i.e. the )\;Ls. The
output values are the g;s. In fact, in applications, most of the time some neurons do not receive
signals from outside, which simply corresponds to fixing some )\j's to 0; in the same way, users
often use as output only a subset of g;s.

At this point, let us assume that the number of neurons has been chosen, and that the
topology of the network is selected; this means that we have selected the pairs of neurons that
will exchange signals, without fixing the values of the rates r; and the branching probabilities
pt. and p;..

0] 0]

Our learning data is then composed of a set of K input-output pairs, which we will denote
here by {(z®),7®), k =1,--., K}, where ) = (azgk),---,xg\]]c)) and §® = (ygk),---,y](\l]c)).
The goal of the learning process is to obtain values for the remaining parameters of the RNN
(the rates r; and the branching probabilities p;,rj and p; ;) such that if, in the resulting RNN, we

set A\ = ng) for all 4 (and A; = 0), then, for all 7, the steady-state occupation probability g; is

close to ygk). This must hold for any value of k € {1,---, K}.
To obtain this result, first of all, instead of working with rates and branching probabilities,
the following variables are used:

+ — .t — T
Wij = TPy and w5 =Tip ;.

This means that w;’L P (vesp. w; ]-) is the mean throughput in equilibrium of positive (resp. neg-
ative) signals going from neuron i to neuron j. They are called weights by analogy to standard
ANN. The learning algorithm proceeds then formally as follows. The set of weights in the
network’s topology is initialized to some arbitrary positive value, and then K iterations are per-
formed which modify them. Let us call fw: (0) and w; ]-(O) the initial weights for the connection
between 7 and j. Then, fork=1,---, K, the set of Wei,ghts at step k is computed from the set of

INRIA
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weights at step k — 1 using a learning scheme, as usual with neural networks. More specifically,

denote by R(*~1) the network obtained after step k— 1, defined by weights w+ *=1) and w; ](k b,

When we set the input rates (external positive signals) in RE=1) to the xz(k)s values, we obtain

the steady-state occupations ggk)

s (assuming stability). The weights at step k are then defined

by
+ (k) T (k-1) ol %) (k) 90
Wi,j i —n)_ale”’ —y )8w—+’ (5)
=1 2]
SR )N ) (k) 00
wig o =wi =0y ale =y ) (6)
=1 8wi,j

where the partial derivatives don/0wy, , (‘4' being ‘+’ or ‘~’) are evaluated at g5 = ng) and

Wiy g = w:n(,’,ifl). Factor ¢; is a cost positive term allowing to give different importance to different
ouput neurons. If some neuron ! must not be considered in the output, we simply set ¢ = 0. In
our cases, we have only one output neuron, so, this factor is not relevant; we put it in (5) and (6)
just to give the general form of the equation. This is a gradient descent algorithm, corresponding

to the minimization of the cost function

N
—ch _yl ) .
=1

Once again, the relations between the output and the input parameters in the product form result
allows to explicitly derive a calculation scheme for the partial derivatives. Instead of solving a
non-linear system as (2), (3) and (4), it is shown in [13] that here we just have a linear system

+()

N[ —

i *) ig negative. Since this is not allowed in the model, the weight is set to 0 and it is no more
concerned by the updating process (another possibility is to modify the 7 coefficient and apply
the relation again; previous studies have been done using the first discussed solution, which we
also adopt).

Once the K learning values have been used, the whole process is repeated several times, until
some convergence conditions are satisfied. Remember that, ideally, we want to obtain a network
able to give output ¢ *) when the input is Z(¥), for k = 1,---, K. The link with the notation
in previous section is simply the following: K is the size of the training part of the Quality
Database; for k =1,2,---, K, wgk) = v; and for the (scalar) output, y*) = 1.

As in most applications of ANN for learning purposes, we use a 3-level network structure:
the set of neurons {1,---, N} is partitioned into 3 subsets: the set of input nodes, the set of
intermediate or hidden nodes and the set of output nodes. The input nodes receive (positive)

to be solved. When relations (5) and (6) are applied, it may happen that some value w,
'w-_j
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signals from outside and don’t send signals outside (that is, for each input node 4, )\;L > (0 and
d; = 0). For output nodes, the situation is the opposite: A = 0 and d; > 0. The intermediate
nodes are not directly connected to the environment; that is, for any hidden neuron 4, we have
/\:r = A\, = d; = 0. Moreover, between the nodes inside each level there are no transitions.
Last, input neurons are only connected to hidden ones, and hidden neurons are only connected
to output ones.

This is a typical structure for neural networks used as a learning tool. Moreover, RNN math-
ematical analysis (that is, solving the non-linear and linear systems) is considerably simplified in
this case. In particular, it can easily be shown that the network is always stable. See again [13]
or [12] for the details.

3.3 Comparison between ANN and RNN

In this subsection, we compare the two considered types of neural networks: Artificial Neural
Networks (ANN) and Random Neural Networks (RNN), in the context of our specific problem.

We used the Neural Networks MATLAB Toolbox when working with ANN, and a MATLAB
package [3] for RNN. We observed that the ANN training process was relatively faster than that
of RNN. However, during the run-time phase, RNN outperformed ANN in the total calculation
time. This is because in the RNN’s three-level architecture, the computation of the output g,
for the unique output neuron o is done extremely fast: the non-linear system of equations (2),
(3) and (4) allows, in this topology, to compute the g;s of the input layer directly, and of hidden
layer neurons from the values for input layer ones. To be more specific, for each input neuron 3
we have

A

T + A, ’

0; =

(where, actually, we choose to set A\, = 0), and for each hidden layer neuron h,

Z in;,Lh

input neuron ¢

On = —.
Th + Z QiW; p,

input neuron

The output of the black-box is then g,, given by

Y. onwi,

hidden neuron h

Qo = —.
o+ Y, onwy,

hidden neuron h
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(The cost of computing the output g, is exactly 2I H +3H + 1 products (or divisions) and H +1
sums, where I is the number of input neurons and H is the number of hidden ones.)

ANN’s computations are slower because they involve more calculations per neuron in the
architecture. This makes RNN particularly attractive for using them in contexts with real-time
constraints, or for lightweight applications. This can be important in some kind of network appli-
cations; for example, in [21], an ANN packet-loss predictor is proposed for real-time multimedia
streams. The prediction precision is good, but the calculation time is much more than the next
packet arrival time which makes the system useless unless for very powerful computers.

The most important feature of RNN we found for our problem is that it captures very well
the mapping from parameters’ values to the quality evaluation. This concerns also their ability
to extrapolate in a coherent way for parameters’ values out of the ranges used during the training
phase. For instance, this led in [2] to build a zero-error channel decoder.

It is well known that the most common problems of ANN’s learning are the overtraining and
the sensitivity to the number of hidden neurons (the choice of the optimal number is difficult;
one usually use heuristic methods for this). The overtraining problem makes the NN memorize
the training patterns, but gives poor generalizations for new inputs. Moreover, if we can not
identify some near-optimal number of hidden neurons, the performance may be bad for both
the training set and the new inputs. There exist some heuristic methods aimed to find rough
approximation of the optimal number of hidden neurons, but they work well for some problems
and fail for others (see [5| for more details). Fig. 1 shows an example of an over-trained ANN
network, where we can see irregularities, bad generalizations and bad capturing of the function
mapping (see Subsection 6.3 for a comparison with RNN).

We trained different architectures (varying the number of hidden neurons) for both ANN and
RNN, with the same data (described in Section 5) and the same mean square error threshold.
Let us look, for instance, at the behavior of the quality as a function of the normalized bit
rate BR (the 4 remaining variables were set to their most frequent observed values). In the
database, BR varies between 0.15 to 0.7. In Fig. 2 and Fig. 3, we depict the ability of both
neural networks (ANN and RNN) to interpolate and extrapolate the results when BR varies
from zero to its maximum value 1. Both figures show that RNN captures the mapping between
the input and output variables, and that RNN is not very sensitive to the number of hidden
neurons. While ANN gives quite different approximations for small changes in the size of the
hidden layer. Moreover, if the optimal ANN architecture can not be identified, its accuracy
may be bad. Let us look now at the extreme values. If BR=0.0, the output should be around
one, while for BR=1.0, the output should be between 8.5 and 9.0 on the y-axis. For the case
of ANN, as shown in Fig. 3, when the number of hidden neurons changes from four (optimal
experimentally) to five, the generalization is bad, specially when BR goes to zero, where the
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output is 3.2 instead of 1. As said before, RNN is much less sensitive to this factor, at least in
our applications.

BR=0.7, FR=30 fps, RA=0.1

MOS

CLP

T T
—— RNN-3h
¢ RNN-4h
H —— RNN-5h
+ RNN-7h
—=— ANN-10h

@

MOS value
S [ (2] ~
T T T T

w
T

N
T

I I I I I I I I
[0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BR

Figure 2: Performance of RNN to interpolate and extrapolate for different number of hidden
neurons. The number of hidden neurons goes from 3 (code ‘3h’) to 10 (code ‘10h’).
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& *$;***********

MOS Value

P I . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BR

Figure 3: Performance of ANN to interpolate and extrapolate for different number of hidden
neurons. The number of hidden neurons goes from 2 (code ‘2h’) to 10 (code ‘10h’).

3.4 Applications of Our Model

Let us briefly discuss here on the benefits from having a tool to automatically measure (and, if
useful, in real time) video quality:

e In video conferencing and in the majority of video applications, at both end-user sides, such
a tool can be used to monitor in real time the received video quality for control purposes.
For example, changing the bit rate, using another codec, changing the frame rate, using
some kind of FEC, changing the playback buffer size, etc. are possible decisions that can
be taken to improve the quality or to maintain it at a certain level.

e Based on the ability of video quality measurement in real time, operators could use quality
as a criteria for billing.

e The applications that transmit video over packet networks can use this tool to negotiate
the best configuration to maximize the quality.

e It can help also in the encoding process, as quality in encoders is also a way to “fit”
the stream into the available global channel bandwidth. In video codecs using temporal
compression (ex: MPEG, H.261, H.263...), a quality factor parameter is usually used to
reduce the output stream bandwidth and to reduce, at the same time, the assessed quality
(yet before any transmission). It will be even more interesting to have the history of all
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the important parameters (network and video) to compress the video signal rather than
only the PSNR (Peak Signal to Noise Ratio) objective measure (which is poorer in quality
and time consumption than our approach).

4 Subjective Quality and MOS Calculations

As mentioned in the introduction, the main drawback of objective quality tests is that they do
not correlate well with human perception. To evaluate the quality of video systems (codecs,
telecommunications, television pictures, etc.), a subjective quality test is generally used. In this
kind of test, a group of human subjects is invited to judge the quality of the video sequence
under different system conditions (distortions). There are several recommendations [7], [27] that
specify strict conditions to be followed in order to carry out subjective tests. The main subjective
quality methods are Degradation Category Rating (DCR), Pair Comparison (PC) and Absolute
Category Rating (ACR). In our case, subjective tests were done using DCR.

In the DCR subjective quality test, a pair of video sequences is presented to each observer, one
after the other. The observer must see the first one, which is not distorted by any impairment,
and then the second one, which is the original signal distorted by some configuration of the set
of chosen quality-affecting parameters. Fig. 4 shows the sequence and timing of presentations
for this test. The time values come from ITU-R recommendation [7].

The observer is asked to assess the overall quality of the distorted sequence with respect to
the non-distorted one (the reference sequence), using a grade from one to nine corresponding to
his/her mental measure of the quality associated with. It should be noted that there exist several
quality scales. We chose this nine-grade one as a tradeoff between precision and dispersion of
the subjective evaluations. Fig. 5 depicts the ITU-R nine-grade scale.

Following the ITU-R recommendations, overall subjective tests are to be divided into multiple
sessions; each session should not last more than 30 minutes. Several dummy sequences are to
be added in every session (about four or five) for training purposes. These sequences should
not be taken into account in the calculation. They are used to learn the observers how to give
meaningful rates.

Let us denote by N the number of observers in the chosen subjective method and by u;s the
evaluation of sequence o, made by user i. The set of values (u;s)i=1,.... ;v Will probably present
variations due to the differences in judgment between subjects. Moreover, it is possible that some
observers do not pay attention enough during the experiment, or behave in some unusual way
face to the sequences; this can lead to inconsistent data for the training phase. Some statistical
filtering is thus necessary on the set of brute data. The most widely used reference to deal with
this topic is the Recommendation of ITU-R BT.500-10, [7]. The described procedure allows to
remove the ratings of those subjects who could not conduct consistent scores.
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| T 1 T T T 1 T T
presentation of sequence n | presentation of sequence n+ 1 |

t1: display of original sequence =~ 10 sec. 12: gray screen = 2 sec.
t3: display of distorted sequence ~ 10 sec. t4: voting phase < 3 sec.

Figure 4: Presentation structure of video sequences to the set of human observers in a DCR
subjective quality test experiment.

9 o  Imperceptible

g 4

7 4  Perceptible, but not annoying
6 4

5 4 Slightly annoying

4 4

3 1  Annoying

2 o

1 L Very annoying

Figure 5: The I'TU-R nine-point quality scale

First, denote by s the mean of the evaluations of sequence o5 on the set of observers, that
is,

1 N
Uy = szzluzs (7)
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Denote by [as — As, Us + Ag] the 95%-confidence interval obtained from the (uis), that is, As =

1.9605 /v N, where
N _
B (uis — Us)2
53 - \JZ N-—-1 °

=1

As stated in [7], it must be ascertained whether this distribution of scores is normal or not
using the G, test (by calculating the “kurtosis” coefficient of the function, i.e. the ratio of the
fourth order moment to the square of the second order moment). If 35 is between 2 and 4, the
distribution may be taken to be normal. In symbols, denoting fas = m4s/m3, where

1 N

Mygs = N Z:Zl(uzs - ﬂs)z;

if 2 < a5 < 4 then the distribution (u;s)i=1,...,nv can be assumed to be normal. For each subject
1, we must compute two integer values L; and R;, following the following procedure:

set Ly =0and R; =0
for each sequence o5 € S = {01,---,05}
if 2 < B95 < 4, then
if ujs > us+ 205 then R, = R; +1
if u;s <ug—20d0g then L; = L; +1
else
if ujs > s + /2005 then R; = R; + 1
if ujs < s — /2085 then L; = L; + 1

Finally, if (L; + R;)/S > 0.05 and |[(L; — R;)/(L; + R;)| < 0.3 then the scores of subject ¢ must be
deleted. For more details about this topic and the other methods of subjective tests see [7, 27].

After eliminating the scores of those subjects who could not conduct coherent ratings using
the above technique, the mean score should be recomputed using Eq. 7. This will constitute the
MOS database that we will use to train and test the NN.

5 Parameters Description and MOS Tests

To generate the distorted video sequences, we used a tool that encodes a real-time video stream
over IP networks into the H263 format [16], simulates the packetization of the video stream,
decodes the received stream, and allows us to simulate the network transmission conditions
(packet loss process, etc.). The encoder can also be parameterized, in order to control the bit
rate, the frame rate, the intra macro blocs refresh rate (i.e. it encodes the given macro bloc into
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intra mode rather than inter mode - this is done to make the stream more resistant to losses
[22]), image format (QCIF, CIF, ...), etc. The packetization process is in conformance with
RFC 2429 [1].

In the esperiments reported here, we employed a standard video sequence called stefan widely
used to test the performance of H26x and MPEG4 codecs. It contains 300 frames encoded at 30
frames per sec., and lasts® 10 sec. The format of the encoded sequence is CIF (352 lines x 288
pixels). The maximum allowed packet length is 536 bytes, in order to avoid the fragmentation
of packets between routers. For the presentation done in this paper, we used one single sequence
for the tests to avoid any kind of semantic dependencies between the contents of the images and
the evaluation made by the human subjects. The same procedure can be followed with any other
sequence or set of sequences as well.

5.1 The Quality-Affecting Parameters

We present here the quality-affecting parameters that we consider having the highest impact on
the quality:

e The Bit Rate (BR): this is the rate of the actual encoder’s output. It is chosen to take
four values (256, 512, 768 and 1024 KBps.). With respect to quality, not all the scenes
behave the same face to compression, depending on the amount of redundancy in the scene
(spatial and temporal), as well as the image dimensions. All video encoders use a mixture
of lossless and lossy compression techniques. Lossless compression does not degrade the
quality, as the process is reversible. Lossy compression degrades the quality depending
on the compression ratio needed by changing the quantization parameter of the Discrete
Cosine Transform (DCT). For details about video encoding, see [16]. If the video is encoded
only by lossless compression, the decoded video will have the same quality as the original
one, provided that there is no other quality degradation. In our method, we normalize the
encoder’s output in the following way. If BRmax denotes the bit rate after the lossless
compression process and BRout is the final encoder’s output bit rate, we select the scaled
parameter BR = BRout/BRmax. In our environments, we had BRmax = 1430 KBps.

e The Frame Rate (FR): this is the number of frames per second. The original video sequence
is encoded at 30 fps. The distorted sequence can be encoded at one of the following values:
6, 10, 15 and 30 fps. The encoder does this by dropping frames uniformly.

e The Loss Rate (LR): the simulator can drop packets randomly and uniformly to satisfy a
given percentage loss rate. For this parameter, we selected five values: 0, 1, 2, 4 and 10

3This follows ITU recommendations, as usual in the area.
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%. This is because loss rates higher than 10 % drastically reduce video quality. In the
networks where the LR is expected to be higher than this value, some kind of FEC [33]
should be used to reduce the effect of losses.

e The number of Consecutively Lost Packets (CLP): we chose to drop packets in bursts of 1
to 5. The choice of 5 as upper limit for this parameter comes from real measurements that
we performed before [23]. Regarding the loss model (LR and CLP), we used the same one
as [17].

e The ratio of the encoded intra macro-blocs to inter macro-blocs (RA): the encoder can
change the refresh rate of the intra macro-blocs in order to make the encoded sequence
more or less sensitive to packet losses [22]. This parameter takes values that vary between
0.05 and 0.50 depending on the BR and the FR. We selected five values for it.

The delay and the delay variation are indirectly considered: they are included in the LR
parameter. Indeed, if a de-jittering mechanism with a strict playback buffer length is used, then
all the packets arriving after a predefined threshold are considered as lost. Hence, in this way,
all delays and delay variations are mapped into loss. This is confirmed in [40]. In addition, the
authors argue that the effect of delay and delay jitter can be reduced by the MPEG decoder
buffer at the receiver. This is also valid for H263 decoder buffer. A similar de-jittering scheme for
the transport of video over ATM is given in [31]. As stated, the author argues that the scheme
can be easily adapted to IP networks. Other study about jitter is given in [41] where it is stated
that the jitter affect the decoder buffer size and the loss ratio in a significant way.

The whole set of configurations of these 5 parameters has 2000 elements. To build the
Distorted Database, we first selected a default value for each parameter (the most frequent
observed value). Then, for each possible selection of 3 parameters among the 5 (10 possibilities),
we set the 3 parameters to their defaults values, and we built all the possible combinations of
the remaining 2. In this way, a list of configurations was defined, containing many duplications.
Once these duplications removed, we obtained a set of 94 different configurations.

5.2 Subjective Quality Test and the RNN Architecture

The subjective quality test is in conformance with the method Degradation Category Rating
(DCR), with a quality scale consisting of 9 points (see Section 4). We divided the test into two
sessions, and added 5 distorted sequences to the first session and 4 to the second one. These nine
sequences were not considered in the MOS calculation since they are used as a training phase
for the human subjects. At the same time, they are used to verify how reliable is the person
carrying out the test, as they are replicated from the real 94 samples.
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We invited 20 subjects to perform the subjective tests. After that, a statistical analysis of the
results was performed; as a consequence, we discarded the notes of two subjects (refer to Section 4
for more detail). Then, we calculated the MOS scores and the corresponding parameters’ values
used to train and test the RNN.

As explained in Subsection 3.1, we divided the database into two parts: one to train the
RNN, containing 80 samples, and the other to test its performance, containing 14 samples.
After training the RNN using the first database and comparing the training set against the
values predicted by the RNN, we got a correlation factor = 0.9801, and a mean square error =
0.108; this means that the NN model fits quite well the way in which humans rated the video
quality. Then, we used the trained RNN to predict the scores of samples in the testing database
(containing samples that have never been seen during the training phase). The results were
correlation factor = 0.9821 and mean square error = 0.07. These values validate the obtained
neural network.

We used as architecture of RNN, the three-layer feedforward consisting of five neurons in the
input layer (which corresponds to the five chosen parameters), one output neuron (corresponding
to the MOS score), and 5 neurons in the hidden layer. It should be noted that for the optimal
number of hidden neurons for both ANN and RNN (4 and 5 neurons respectively), the obtained
performances are almost the same. However, ANN can be overtrained easily if care is not taken,
see Section 3.3. To explore this issue, we varied the number of hidden neurons for both ANN
and RNN. We used them to evaluate the quality for each case when varying the Bit Rate and
fixing the other parameters. As we can see from Fig. 2 and Fig. 3 that for the optimal number
of hidden neurons, they give the same performance. But ANN cannot generalize for the other
values. However, RNN almost give the same results for different values of hidden neurons.

6 Parameters Impact on Video Quality

In this section, we study the effects of the mentioned five parameters on video quality. As it is
impossible to visualize the variation of the quality as a function of all the five parameters, we
chose to visualize on a set of 3-D figures in which we varied two parameters and kept the other
three fixed. The MOS value is computed as a function of the values of all the five parameters
by using the RNN tool described in the previous Section. It should be noted that the axis of
these figures are rotated in such a way to give the best visualization of each figure. This means
that the orientation of some axis can vary from figure to figure. In addition, the scale of quality
axis (or Z-axis) is variable from one figure to another to show some useful features of the given
figure. In the following subsections, we analyze the effect of each parameter on the quality and
we also discuss their main combined effects.
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6.1 Bit Rate (BR)

As shown in Fig. 6 through Fig. 9, the parameter BR exhibits a great influence on the quality.
From Fig. 6, MOS values, obtained by the trained RNN, vary from 3 to 6.7 for (FR=6 fps,
LR=0 %, CLP=2, and RA=0.1) and from 3.7 to 7.7 when the FR goes up to 30 fps. This is for
a variation of BR from 0.15 to 0.8. Its effect is comparable to the effect of LR as shown in Fig. 7.
The improvement of the quality is significant for lower LR and decreases for higher LR. The
quality goes from 2.8 to 7.8 for zero loss, but it only presents about 1.3 of absolute improvement
for 10% LR. The fact that in Fig. 8 there is no effect of CLP on the quality comes simply from the
setting LR = 0.0%. This shows how well the NN learned the problem of evaluating the quality.
From Fig. 9, for higher values of BR, there is no effect of the variations of the RA parameter on
the quality; however, its effect increases and becomes benefic for lower values of BR.

When the encoder has to decrease the BR of the given stream, it increases the quantization
parameter in order to further compress the original image. This process increases the artifacts of
the output stream, and hence increases the distortion which becomes more noticeable by humans
as BR decreases. This parameter is studied in [38] and [26]; however, the interaction with other

parameters is not shown.

CLP=2, LR=0.0, RA=0.1

(X
XX

“0‘0‘0

R
‘:‘:mo
KT

K
o

0
%

X

(XXX

Q
%
X
Q
R
X
)
&
X
o
A
X
:‘}N
(X0
&
X4
X
X
&
%0
:‘:
_“

X
_”Q’Q’
—
—
__’0’0
9.
X

0

5
W
4

5
N0
’«V
&

g\
X0
{3

0

=)

MOS value
a

X
5
05
q’;
o
%
%
R
X

9.
.
g
3
X
s
e
SN
QXX
RS
5%
i
=0‘0‘
=0‘
X

0.8

25

0.7
0.6

FR BR

Figure 6: The impact of BR and FR on video quality.
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FR=30 fps, CLP=1, RA=0.1
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Figure 7: The impact of BR and LR on video quality.

6.2 Frame Rate (FR)

The effect of this parameter on the quality is not as significant as in the BR or LR (see below)
cases. This is clearly shown in Figs. 6, 10, 11 and 12. For (BR=0.8, LR=0 %, CLP=2, and
RA=0.1), an improvement from 6.6 up to 7.6 is achieved for a wide range variation going from
6 to 30 fps. Similarly, there is an absolute change of 0.8 for BR=0.15, as depicted in Fig. 6.
We can also note that the enhancement of the quality for FR greater than 16 is negligible, as
already observed in previous works [30]. As the BR decreases, the effect of FR becomes smaller,
see Fig. 16.

The improvement of the quality when the LR changes from zero to 10% (MOS value varies
from 6.5 up to 7.5 for FR=30 fps) decreases until it becomes negligible as shown in Fig. 10. From
Fig. 12, we can see that we can get constant relative improvements of the quality whatever the
value of RA (from 6.0 to 7.0 for RA=0.05 and from 6.4 to 7.3 for RA=0.5 — this is for BR=0.6,
CLP=2 and LR=0 %).

These results may seem surprising, but they have been observed in different previous studies.
For example, experimental results showed that for FR larger than 16 fps, the viewer is not so
sensitive to changes in FR values [30]. The work done in [15] clearly shows that the enhancement
of the quality for a wide range variation from 6 to 25 fps is really small. Both studies were based
on subjective quality tests.
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Figure 8: The impact of BR and CLP on video quality.
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Figure 9: The impact of BR and RA on video quality.

6.3 Loss Rate (LR)

The effect of LR on video quality was the main goal of several previous studies as it is an

important parameter [6], [15], [17].

As shown in Fig. 7, the quality drastically decreases when

But the absolute decrease of the quality depends on the

the LR increases from 0 up to 10 %.
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other parameters’ values: about 1.3 for BR=0.15, while 5.0 for BR=0.8. As depicted in Fig. 10,
the absolute deterioration is about 3.8 for 6 fps, but 4.6 for 30 fps. The variation of the quality is
about 4.4 for RA=0.5 and 3.8 for RA=0.05, when BR=0.35, FR=30 fps and CLP=2, as shown
in Fig. 14.

Again, as said before, the fact that for LR set to zero there is no change on quality when CLP
varies (Figs. 8, 11 and 13), shows that our RNN captures with great precision and reliability the
characteristics of the quality as a function of the parameters. It may be thought that this is due
to large values of BR and FR, but we varied all these parameters and we got the same behavior.
In the case of using ANN, it is not easy to get this result (see Fig. 1).
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6.4 The number of Consecutively Lost Packet (CLP)

As the result obtained for this parameter may seem strange, let us clarify its effects. When
keeping all other parameters constant and increasing the value of CLP, the distance between
any two consecutive loss occurrences increases. This has two consequences: loss occurrences
decrease and consequently the deterioration of frames becomes smaller (i.e. smaller number of
frames partially distorted by loss). As it is well known and also shown in our previous analysis
of FR, the eye is less sensitive to higher values of FR. Moreover, for each lost packet the past
macro-blocs (a portion of the image) are still shown on the screen as a kind of error resilience.
Hence, larger values of CLP may introduce deterioration in smaller frames. This is equivalent
to smaller LR values but slightly lower FR values. As it was previously shown that the effect of
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Figure 11: The impact of FR and CLP on video quality.

LR is much greater than that of FR, the effect of higher values of CLP is benefic to the quality.
This result is in agreement with that obtained in [17], although the authors did not explain the
reasons why this happens.

Starting by Fig. 13, and for zero LR, there is no visible effect of CLP on the quality, but as the
LR increases the effect of CLP increases up to 0.5 for LR=0.0%. From Fig. 15, we can see that
there is an improvement of 0.5 of the quality when CLP changes from 1 to 5 for BR=0.7, FR=30
fps and LR=1.0%. In conclusion, CLP effect is important and comparable to FR’s. When CLP
increases, quality increases too, particularly in the case of poor conditions (i.e. lower values of
BR or higher values of LR), while increasing FR improves quality especially for good conditions
(high BR and low LR).

6.5 Intra-to-Inter Ratio (RA)

RA is the ratio of the encoded intra macro-blocs to those encoded as inter, hence it is expected
that this parameter has benefic effect when it increases. This is clearly shown in Figs. 9, 12, 14
and 15. Its effect is more important than FR’s, and more interestingly, for lower values of the
BR parameter. This is shown in Fig. 9, where for BR=0.15 the quality increased from 3.4 up
to 4.6. This improvement is relatively important when the network bandwidth is small, but for
larger BR, the effect is negligible.

The two parameters LR and RA are related, as shown in Fig. 14. For smaller LR, there
is an improvement on the quality for the increase in RA. But this improvement vanishes when
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Figure 12: The impact of FR and RA on video quality.
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Figure 13: The impact of LR and CLP on video quality.

the LR increases. This means that we can get better video quality when the available channel

bandwidth (BR) is small and for smaller values of LR by increasing the value of RA. In such a
case, the effect of RA on the quality is more benefic than that of FR, as shown in Fig. 16.
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Figure 14: The impact of LR and RA on video quality.
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Figure 15: The impact of CLP and RA on video quality.

7 Conclusions

In this paper, we propose a methodology that is able to automatically quantify the quality of a
video stream at the receiver side, after its transport over a packet network. The main properties
of our technique are the following: (i) the evaluation can be done in real time, and (ii) the value
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Figure 16: RA is more benefic than FR for lower values of BR.

assigned to the quality of the flow is close to the value that could be obtained from a subjective
test, because it is done by a neural network that was trained to behave as the average of a set of
human observers of the video stream. Once the neural network is trained, the tool continuously
receives the values of the selected parameters (from measurements) to perform its evaluation.

We also used our technique to study the impact on video quality of some important param-
eters, namely, the stream bit rate, the scene frame rate, the network loss rate, the burst loss
size and the ratio of the encoded intra to inter macro-blocs for H263 codecs. As far as we know,
there is no previous study of the combined effect of several parameters on video quality. The
goal of this analysis is to help in the understanding of the behavior of real-time video streams
transmitted over best-effort networks. This may be used, for instance, in developing control
mechanisms allowing the delivery of the best possible video quality given the current network
state.

To achieve these goals, we improved our previous proposals (both in audio and video trans-
mission) using a new and efficient neural model called Random Neural Network, which behaves
significantly better than the standard one. Of course, it must be pointed out that these better
performance was observed in our specific application. We do not claim that the same will hold
for other applications.

Although we based our study on IP networks, our approach can be followed for ATM and
wireless technologies as well (the specific type of packet technology has no effect on the relevance
of the method we discuss here). Some future research directions for this work include the study
of other codecs like MPEG2/4, the analysis of the effect of audio and video synchronization.
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Concerning the set of selected parameters, we also intend to explore the usefulness of more
sophisticated models on the different aspects that we analyze here.
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