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Description mathématique du probléme de déroulement
de phase en une dimension: approche variationnelle

Résumé : Beaucoup d’algorithmes de déroulement de phase ont été développés et formulés
dans le domaine discret durant ces dix derniéres années. Nous proposons ici, une formulation
variationnelle pour résoudre le probléme. Cette étude dans le domaine continu va nous per-
mettre d’imposer quelques contraintes sur la régularité de la solution et de les implémenter
efficacement. Cette méthode est présentée dans le cas unidimensionnel, et servira de base
pour nos développement futurs pour le cas réel en 2D.

Mots-clés : modéle variationnel, minimisation, espace de Sobolev H', BV (espace des
fonctions & variations bornées), minimisation semi-quadratique, interférométrie RSO(Radar
a Ouverture Synthétique), déroulement de phase, développement de phase.
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4 Caroline Lacombe

1 Introduction

Interferometric radar techniques have been widely used to produce high-resolution ground
digital elevation models (DEM’s). In space-borne SAR (Synthetic Aperture Radar) interfer-
ometry, two images of the same scene are acquired using two different geometries. The phase
difference between the registered images (the so-called interferogram) is related to a desired
physical quantity of interest such as the surface topography. The phase difference can be
registered only modulo 27 and interferometric techniques consist mainly of recovering the
absolute phase (the unwrapped phase) from the registered one (the wrapped phase).

Over the past ten years, many phase unwrapping algorithms have been developed. Com-
monly they first differentiate the phase field and subsequently reintegrate it, adding the
missing integral cycles to obtain a more continuous result. Three basic classes are represen-
tative of these algorithms:

e Residue-cut “tree” algorithms: Branch cut methods (Goldstein et al.,1988 [9]) unwrap
by integrating the estimated neighboring pixel differences of the unwrapped phase along
paths that avoid the regions where these estimated differences are inconsistent.

e Least-square algorithms were adapted to SAR interferometry by Ghiglia and Romero
[8]. They applied a mathematical formalism to determine the vector gradient of the phase
field and then integrate it subject to regularity constraints.

e Fornaro and al. [7], and recently Lyuboshenko et Maitre [11] proposed a phase unwrap-
ping algorithm based on the Green function. This kind of method has been shown to be
mathematically equivalent to least-squares solution, but differs in computational efficiency.
It is interesting to note that most of these algorithms are formulated in a discrete setting.
Instead, we investigate a continuous formulation of the problem with a variational approach
[10]. Traditionally developed in physics and mechanics, this framework has been intensively
applied in image analysis since the 1990s. The reasons are that the models can be justified
theoretically, and that suitable numerical schemes exist for computing the solution.

Section 2 of this paper is dedicated to the mathematical statement of the unwrapping
problem. The two following sections deal with the proposed variational approach depending
on the regularity of the wrapped phase. Section 3 deals with the case of regular unwrapped
phase corresponding to a smooth ground surface. The unwrapped phase is obtained by
including in the energy regularity constraints at phase jumps in the wrapped signal. To
achieve these constraints, we propose to minimize a set of functionals. In section 4, we allow
the absolute phase to have discontinuities apart from the phase jumps. In order to preserve
these ground discontinuities, the minimization is then performed in BV (space of functions
of bounded variation). Numerical schemes and results on a synthetic noisy wrapped signal
are given.

INRIA
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2 1D phase unwrapping: problem statement

In this section we mathematically state the problem of phase unwrapping. The goal is to
formalize the contraints on the resulting phase in a continuous setting.

Let ¢ : I C R — [—m,n[ be the given phase difference. The unwrapping problem
consists in finding a function ¢ : I C R — R such that:

W(p) = ¢m (1)
where W is the wrapping operator defined by:

W:R— [-7, 7]
u— W(u)
Vu € R, Ik, € Z : W(u) = u — 2k,7.

k, is an integer such that u — 2k,m € [—7,n[. Let ¢, be the observation obeying for
ae. z €I CR, ¢n(z) € [—m, . The observation ¢,, is a function defined modulo 27 on a
bounded interval I of R. Let I =]a,b,[. By definition ¢ and ¢,, share the same regularity
property except at points x where the value of k, changes. We denote by

P, ={do,...dp} (2)

these points refered to as phase jumps. It follows that ¢, is a discontinuous function. In
this work we assume that phase jumps dj are known. For real application they will be
estimated from the bi-dimensional interferogram.

In order to retrieve the unwrapped phase ¢ from the observation ¢,,, it is necessary to
add the following conditions, for every discontinuity dy € P,

m "

|

@ is continuous at dy, (@)
't (dr) = @it (di) and @' (di) = ¢}, (d)

dredpal and Py ap st share the same regularity (3)

Let us comment on these conditions:

e We assume in condition (4) that the limits lim+ ¢! (x) and lim ¢! (z) exist, and we
z—»dk z—»d’:

denote by .t (dx) and ¢!, (dx) these limits.

e In (3), the regularity of ¢,, depends on the observed areas. Two cases may arise.
The first one occurs when the only discontinuities of ¢,, are due to phase jumps and
so we suppose that @, is piecewise differentiable on I\{dy,...,dp}. The second one
arises when the wrapped function ¢,, admits a finite number of ground discontinuities
{t;};. We assume they are located between two phase jumps. The {¢,}, model ground

RR n® 4521



6 Caroline Lacombe

discontinuities with a jump small enough not to generate points d; or unrecoverable
areas. Note that the phase discontinuities {dy }, are assumed to be known, while the
ground discontinuities {¢;}; are unknown. We suppose that ¢, is regular except at
the points {do,....,dp} and {¢;};.

Now the goal is to describe a functional to be minimized with respect to ¢ such that ¢
satisfies conditions (1), (3) and (4).

3 Variational approach for the phase unwrapping prob-
lem in H'(I)
3.1 Description of the functional
In this section we assume that:
® ¢, € C?(I\P,,,) for some p > 1 and has no ground discontinuities.

In this case the distributional derivative D¢, can be decomposed as the sum of a regular
measure (absolutely continuous with respect to the Lebesgue measure) and a sum of Dirac
masses (a singular part) (see [2], [6]).

Dy, = ¢l.dx+ Do, .
——  N———

regular  singular

We suppose that ¢!, € L?(I) and we consider the quadratic functional E(¢) defined by:

E(p) = Ex(p) + AE2(9) (5)

where:
Eu(p) = / ' — gh[Pda (6)
Fae) = [ (0= on) X, 0 @

and Iy =|ag, bo[C I is an open interval of reference that does not contain any phase jumps
of ¢m. X7, is the standard characteristic function of Io.

The problem is to minimize E(¢) on the Sobolev space (see [6] and [2] for the definition and
properties of Sobolev spaces)

H'(I) = {p € L*(I)] Dy € L*(I)}
Let us comment on the energy terms:

e FE;(yp) is the data term which contains the requirements (1) and (3). Indeed W (¢) = @m
implies that ¢’ = ¢!, a.e. I\S,,,-

INRIA
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e Fs(p) is a reference term. It will play an important role in the uniqueness of the

phase ¢ we want to retrieve. We can easily prove the existence and uniqueness of a
minimizer ¢ € H'(I) for (5).
Moreover in one dimension we know that H'(I) C C(I), the space of continuous
functions on I (see [3], [5]). More precisely in the class of ¢ € H'(I) there exists a
continuous representation of ¢. Or equivalently, ¢ is almost everywhere equal to a
continuous function.

The goal of what follows is to construct an algorithm that gives this continuous repre-
sentation at points dy. In fact we want more: we want that the solution satisfied (4). The
idea is to add a term of the form:

Es(p) = Y esx(p) with:
dx€Pyppy
es,() = (¢ (k) = @ ()" + (97 (dr) = Pl (dr)
+ (9" (di) — ¢~ (di))*.
However since we are looking for a function ¢ in H!(I), we cannot give a sense to the

derivatives 't and ¢'~. So we introduce a parameter « € Rt for approximating the
backward and forward derivatives of ¢ at points dy. We define:

Bsalp)= D e5ulp) with: (8)
dp€Py,
2
alo) = (A=A o 4 a))
2
+ (@(dk) - Z(dk - Oé) _ (Pin(dk _ Oé))

+ (cp(dk +a) —(dr —a) —a (e, (dr +a) + ¢, (dp — a)) )2.

The term a (], (dr + ) + @), (dr — @) is introduced to enforce the continuity of ¢. Hence
the functional (5) is approximated by the functional E, defined by:

Eo(p) = Er(p) + AEa(p) + pE3 (). 9)

Therefore to find the unwrapped phase we minimize in H'(I) the functional E,, without
any constraint.

In the next section we study the existence and uniqueness of ¢, of a minimizer in H*(I)
for the functional E, .

3.2 Existence and uniqueness of ¢,

In the previous part we have introduced a sequence of functionals (E,).cr+, that takes
into account regularity constraints at phase jump points of the wrapped signal. The phase

RR n® 4521
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unwrapping is seen as a minimization problem:

inf FE, 10
dnf | Ea(9) (10)

This section is dedicated to the proof of existence and uniqueness in H'(I) of a minimizer
of problem (10).
Theorem 1 Assume that:
e ©,, € CP(I\P,,) (case of no ground discontinuities)
e ¢! (the regular part of Dy, ) belongs to L*(I).
Then the minimization problem (10) admits a unique solution ¢, in H(I).

Proof: For a fixed, the functional E,(¢p) is strictly convex and lower semi-continuous for
the weak topology of H(I). So if a solution ¢, exists the uniqueness is deduced from the
strict-convexity of the functional. The existence is classical. Let (¢n)nen be a minimizing
sequence of E, () i.e.

Ea n n?o)o i f EOé
(¢n) oot (¢)

Then we easily obtain
/ |, = ¢l ldz < Co and / ln — @m|*dz < C,
I Io

Therefore
lonlze(ry < Co and |¢n|r1(ry) < Ca

where Cy is a universal constant which may change one line to another. According to the
compact Sobolev injection, of H!(Iy) in C(Ip), we deduce:

|on|Lo(1y) < Ca-

Now we are looking for an estimation of |on|g1(s). So let z be in I, and let p be a fixed
point in Iy, we have (if ¢, is a continuous representation) :

%w=/%wm+%@
Thus

lon(2)] S/ [on(®)ldt + lon(P)] < l@nlLr(n) + 1@nl= (1)
P

INRIA
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and so ¢,, is uniformly bounded in L°°(I) and in H!(I) with respect to n. Therefore we can
extract a subsequence of (¢, )nen, (always denoted by (¢n)nen) which weakly converges in
H'(I) to a function ¢,. The lower semi-continuity of E, implies

Eo(pa) <lim inf E.(pn) < Eua(p),Vo € H'(I).

and so ¢, is a minimizer of F,,.

¢

3.3 Optimality conditions for ¢,

Previously, we have shown that the minimization problem

Bo(pa) = inf E, 11
(¢a) oo () (11)

admits only one solution, denoted as ¢,. In this section we establish the optimality condi-
tions satisfied by ¢q-

Theorem 2 Let us assume the same hypotheses as in Theorem 1. Let ¢, be the unique
solution of the minimization problem (11). Then necessarily oo verifies:

[ — (@l — &) + A@a — m)X g, =0, in L*(I) (12)
pula) = ¢, (a), and ¢, (b) = ¢,,(b) (13)
and for all di, € P,,, : (14)

| et el dta)
ould) el =0) g,
( @aldr + @) — aldi — ) = a(¢n(dr + a) + ¢, (dr — @)

Proof: The Euler-Lagrange equations satisfied by ¢, are obtained by examining

lim Eo(¢a +0¢) — Eo(@a)
60 0

, Vo € HY(I).
Since ¢, is a minimizer of E,, we have

Ea(‘POé) < Ea(@a + 91#)7 AAUNS HI(I)

from which we deduce

/I((Pla - <P'm)?/1'd$ +A /I X]O (‘Pa - @m)'ﬁbdx + ,U/Z ¢(dk i Oé) — w(dk) Ak,

(]
dk€P¢

m

pu ] PO V=) S Wl + @)~ 0lde — @) ke =0, (15)
dR€EP,,, dr€Py,,

RR n® 4521



10 Caroline Lacombe

where
o(dr +a) —a(d
o = 2l BL D= 0a) 1 (g, 4 0
a d - ¥Ya d —Q 16
b = L) z(’“ ) ! (= a) (16)
ko = Paldr + @) = @a(de — @) = a (¢, (di + ) + @), (dx — a))
e Step 1: Euler-Lagrange equation
Let us consider the closed vector space V' defined by:
V={yec>I)|Y(dr — a) = P(dx) = P(dx + @), Vdi € Py, }.
Let 1 € V, then (15) becomes after an integration by parts:
- [ —dhyvdo+ [ = ehvds+ A [ (a =gz =0. (1)
I ar Iy

Therefore if ¢ € VNCS(I), where C§°(I) is the set of functions C*(I) with compact support
in I, we get

/1 (—(w; — @)+ A(a = wm)XIO) Ydr = 0.

Hence

By density we have the same result for all ¢ € V N H}(I), where H}(I) is the subspace of
H'(I) such that 1, =0.
In order to conclude that in the distributionnal sense we have:

(@ = ) + Mpa = om) Xy, =0
we use the following lemma.

Lemma 1 Let consider the linear set V, defined by:
V={geC*)| gldr —a) =g(dx) = g(dr + @), Vdi € Pp,,}-

Then for each function v € C§°(I), there exists 1. € V.0 HY(I) such that:

timy [ fuedo = /I fuds, Vf e L\(I).

INRIA



Variational Approach for Phase Unwrapping 1D 11

The proof of Lemma, 1 will be given at the end of Theorem 2.
Thanks to the lemma 1 we deduce that:
J (== o) + 20w =0, ) ¥ =0, Vi € (1)
thus it follows in the distributional sense:

— (90 = o) + MPa — m) X, = 0. (18)

Moreover since the function (pa — ¢m)X, is in the space L2(I), the equation is true in
L?(I). Hence equation (12) is obtained.

e Step 2: Boundary conditions

By taking the test function % in the linear set V' (and not in V' NC§°(I)), and multiplying
(18) by ¥ we get

J = etwian = [ (= dids+a [ (0n = en)ix o =0,
I I I
Comparing the previous formulation with the functional (15), we obtain for all ) € V

P(a) (Pala) = on(a)) = ¥(b) (va(b) — ¢ (b)) =0

from which we deduce by taking a good choice of functions

P (b) =7, (b) (19)
e Step 3: Continuity conditions

Now we multiply (18) by % € C*°(I) (and not in V) and we make an integration by
parts:

/1(99& — om)¥'dz = [(0) (04 (b) — ¢7n (b)) — P(a) (¥ (a) — ¢ra(a))]
+ )\/I(Lpa — om) X, dz = 0.

Remember that the solution ¢, satisfies (19), thus the previous equation reduces to:

[ = dwidz [ (0a = omox, da =0
I I

RR n® 4521
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Comparing this equality with the variational formulation (15) we have for all test-functions
P € C®(I):

Z Y(dy + ) — w(dk)ak,a + Z Y(de) = P(di — C“)b]w1
dpEP,,, a drEPy,, @
+ > ((d + @) = P(dk — ) o = 0. (20)
dr€Py,,

with:

_ Pa(di + ) — paldi) — ¢! (di + )

Ak,

(87
(i) = Poldi —
bk,a=¢(k) Pl a)—w'm(dk—a)

a
Cha = Paldr + @) = @a(de — @) — a (¢, (de + ) + ¢, (dx — a))
Let us consider ¢ in H*(I) such that Vdy, € P,,,, ¥(di + @) = ¢(dy). That leads to

bk,o = —0Ck,, Vdip € Py, . (21)

Taking now ¢ € H'(I) such that ¢(dy) = ¥(dx — @) Vdy, € P,,,, yields

m )

ko = —OCka, Ydi € P,, . (22)
Moreover the examination of the expression of (16) shows that ar,a, bk,a, Ck« are linked
through:
Ck,a
Ak, o + bk,a = T’, Vd;, € P, i (23)
Thus the only solution of linear system composed with (21), (22), (23) is are = bre =
Ck,o = 0. That implies the expression of the continuity conditions for all dj, € P,

m *

$aldr + a) — pa(dr)

— ¢m(di+a)=0

]
a(dr) — al(dr —
o) = pellh 29) _ 1 1, )=

Paldi + @) = paldy — a) — a (@), (dr + @) + ¢}, (dp — @) =0

Hence the optimality conditions satisfied by ¢, are those described in Theorem 2.

&

Proof of Lemma: Let ¢ € C5°(I), we are going to construct a sequence (¢ ). of VNH} (1),
such that:

. _ 1
lli%/lfwsdx—/lfwdx, Vf e LY(I).

INRIA
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For € < 3 let us denote by Ji . the set defined by:
Jk,s = kaa,s U Lk:+o¢,5
with:
Li—oy =ldp —a—e,dy—a+e¢]
Liyoe =ldi+a—ce,di+a+e|
The choice of 1. will be made in such a way 9. in V. N H}(I) (see Figure 1):

Ye = on I\ < k=0L,J...D Jk:E)

. . . . U
1. is piecewise linear on ,_~ _ Ji.

and Ve(de — ) = ¥e(di) = Ve (di + @) = My, Yk € {0, ...

where Mk = ¢(dk)

dp—a dk drp+a
dp—a—e¢ dr—a+te dp+a—e  dptate

Figure 1: Construction of 1. € Hy(I) NV from ¢ € C§°(I).

According to the definition of the intervals Ji ., the previous integral yields:

do*Ct*E dk+17a7€

D D-1 b
/f¢ed33 = foedx + ) Ty + Z / fedz + fioda
I a k=0 k=0 V4

ktate dp+a+e

RR n® 4521

D},



14 Caroline Lacombe

where:
dp+a—e

To.= [ foode+ / Fode

Jk e dr—a+te

The goal is to find lir% f¢5dx. By construction of ., we have for each k € {0,...D}:

Tk e dp—a+te rtate dp+a+te

do—a—e dp+a+te drpy1—a—¢ b
/ fioedz = | fripdz + Z ( fbedr + fwdx> + Z / fodz+ [ fide.
I a d

Taking the limit when ¢ tends toward 0 and we easily get:

do—a—¢ do—a b b
Jdr =3 fidz  and fode =3 | fidx
a a dp+a+te dp+a
(24)
dp+a—e drp+ao dk,+1—a—5 dk,+1—a
/ fodr =3 fidz  and fode —=3 [ fidz
dy—oa+te dp—a di+o+te dp+o
It remains to study
lim fedx
e—0 Jhoe
dr+a+te dp+a+te
Let us examine / fedx, one part of fYedx. The integral / fedx can be
dp+a—e Jk.e dp+a—e
bounded above, by using the Cauchy-Schwarz inequality:
dip+a+te
| e < fllusgaraceasarep 10l gon oot (25)
rta—¢

therefore it is sufficient to calculate the integral of ¢. over [dy + a —&,df + o + €]. Let us
remind that 1, is choosen so that this function is piecewise linear on [dy, + a — ¢, d), + a + €].
Since ¢ is regular ||¥¢|| Lo ((dy+a—e,dp+a+e]) 15 bounded, and we have:

dip+a+te
[ itlde = 0
d

kta—e

Hence, we obtain:

drp+a+te
lim fedz = 0. (26)
e—0 dp+a—e
We can show same results for the other terms of fedz.
Jk-e
In conclusion, since lim fvedz = 0, and by using (24) we get:

E— Jk,e

lim /I feda = /I fuda.

INRIA
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¢

To summarize we have demonstrated the existence and uniqueness of the unwrapped
phase ¢, in H'(I) by minimizing the functional E,. However @, is the solution of the
approximated variational formulation. The next section is devoted to the study of the
behaviour of ¢, as «a tends to 0.

3.4 Behaviour of ¢, when « tends to 0

The aim of this section is to show that the sequence of functions (¢4 ), admits a limit for
the weak topology of H'(I) and to seek the PDE’s satisfied by this limit.

Theorem 3 Let us assume same hypotheses as in Theorem 1. Let p, be the solution of the
minimization problem

Eo(pe) = inf Eu(p).
(a) o ()

Then there exists a unique function @, satisfying:
e 0o =0 ¢ weakly in H(I)
e peC(I)
o P (dr) = it (di) and &'~ (d) = 17 (di) for all dy € Py,

Moreover ¢ satisfies the following Euler-Lagrange equation:
_(95,_¢;n)l+/\XIO(¢_4Pm) =0, I=]a,bf

¢'(a) = emla), ¢'(b) =@ (b). (27)

Proof: We first bound |¢a|g1 (1), independently of a. Taking into account the coercivity
of the functional E,, it reduces to get an upper bound for E,(¢,). Since ¢, is defined as
the minimum of E,, we have:

Euo(¢a) < Ea(p) Vo€ HY(I).

In order to simplify the proof we assume that the wrapped phase ¢,, has just one discon-
tinuity d. So we denote I =]a,b[ the interval of definition, and Iy =]d,b[ the interval of
reference. At the end of the proof we will describe the general case.

We choose a “good function” ¢ as follows:

o (d)r + q* ifxe(d,d+a)
o (d)r +q~ ifxe(d—a,d)
om(@)+(d+ )it (d)+ ¢t —pm(d+a) fze(d+ab

(2) (

) (28)
+(d-—a)pl (d)+q —pom(d—a) ifz€(a,d—a)

RR n® 4521
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where g% and ¢~ are to be choosen so that ¢ is continuous on ]a, b[ and such that E, ()

d—« d+« b

Figure 2: Construction of a "good function" ¢ from ¢m,.

is bounded independently of a. Notice that ¢ is in H(T).
e Continuity of ¢:

By construction ¢ is continuous at points d — « and d + «. At the discontinuity point d,
the continuity of ¢ implies that:

P (d)d+q" = o (d)d+ ¢~
which leads to the necessary conditions linking ¢t and ¢~:
(¢ (d) = v (d)d=gq —q* (29)

e Calculus of E,(¢):

E.(p) = /I(w’ — ¢h,)%de + /1(99 — om)’ X, dx

+<M—v§n(d+a))2+ (M_(p: (d—a)>2

« o m
+(p(d+ @) — p(d — a) — a (@l (d+a) + ¢l (d—a)) )™
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On one hand it is easily checked that:
¢(d + o) — ¢(d)

=9~ i) (30)
P L) _ o) (31)
p(d+a) —p(d—a) = a (¢ (d) + ¢, (d)) (32)
On the other hand the derivative ¢'(z) is given explicitely
(d) forz € (d,d+ a)
o' (z) = { "~(d) forz € (d— a,d) (33)
(@) forxel—(d—a,d+ a).

)
Thus we obtain for the first term of E,(¢):

d d+a 9
[ = upde= [ (c@ = i@ o+ [ (eit@) - o) de

and for the second term defined on the interval of reference I:
d+a

b
[(ememPXpdo = [ (Gt @ +a)+a* = on(d+ ) dat [ (@@ + = on(2) do.
1 d d

+a
If we choose
= pm(d+a) = (d+a)pf(d).

After a substitution in the previous expression, we deduce

b
[ (r@+a)+t —pn@+a) iz =o

It follows that:

d d+a
Fale) = [ (@) = @) dot [ (@) - (@) o

—x

d+a/ 2 ' ' 2 — ' 2
+ / (G (D) + gF = oom(@) da + (1 (d) = Pl + ) + (¢ (d) = Pl (d — )

+a? (¢4t (d) + @l (d) = Plu(d+a) = @l (d = ).
(34)
By taking the limit as « tends to 0, we find that all the integrals, in the expression of E, (),
tend to 0. It is clear that the last terms by hypothesis tend also to zero.

Moreover since
0 < Eqo(pa) < Ea(p)
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we deduce that E,(p,) tends to zero as @ — 0. So we have:
( lin}) ol =, in L*(I)
lirr}] Yo = Pm, IN LQ(IO)

o ((£ad40) =@ _
) i—»o( a ) #m (4) (35)
(liir}) (@a(d) _:a(d_a)) — (p{n:(d)

linbcpa(d%-a) —¢a(d—a)=0

\
Now taking into account that lirrb E,(p) = 0 we obtain that F,(¢.) is bounded indepen-

dently of «, from which it follows that ¢, is bounded in H'(I). Hence up to a subsequence
there exists a function @ € H'(I) such as:

Yo a=0 @, in H'(I)-weak

And by using (35) we get:
~1 /
@ =, aeon ]
{ @ = Ym, a.eon I (36)
The continuity condition for @, p*(dy) = ¢~ (dx) is easily deduced from the Sobolev injection
of HY(I) in C(I).
Now, we want to prove that ¢ satisfies the regularity conditions:

G (de) = @ (d)
{ 5(dy) = ¢ (dy) (87

Starting from @ and using the integral formulation in H(I) of @(dy + a) — $(dx), we have:

P(d + ) —p(dr) _ 1 /dk+a & (t)dt

(67 (67 b

But remind that ¢' = ¢!, a.e on I:

Plde+0) = P(di) _ 1 /d”“ (1)t

- m
dy,

(0% «

hence . -
P(dy + o) — P(dy) _ Om(dr + ) = om(dy) (38)

(@] «
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By the same way we get

Blds) = Pldi = a) _ pm(de) = ou(di = ) 59)

(@] (&7

Equations (37) are obtained by taking the limit of equations (38) and (39) as « tends to 0.
¢

Remark: The method is the same when ¢,, has several phase discontinuities. Let P,
be the set of the points referred as phase jumps, as denoted in Section 2. As shown for
one discontinuity, we construct a function piecewise-linear over a neighboorhood of each
discontinuity dr.. Remark: The function ¢ satisfies the same Euler equations as @,:

(@ =) +AX (@ —¢om) =0, I =]a, b

~!

¢'(a) = e (a), &'(b) = @1 ().
But since equations (27) admits only one solution, it follows that:

?(z) = pal(z), Ya € R, ae. z €l

We may also remark that from equation (27) we only deduce that ¢ € H'(I) and no
more regularity. Further regularity (37) has been obtained by imposing some contraints on
¢a- Remark: It remains to proof that

o 3(x) = om(x) + ck, Vo €]dk, dpy1]

e ¢, € R is proportional to 27

From the regularity of @ and from equation (36) we have easily

@(x) = om(x) +ck, Yo €]dy,dry1]

P(x) = pm(z), V€ Iy (40)
Hence for § sufficiently large we have (di, + 8) € Iy and we get:
@(dko + B) = ‘Pm(dko + ﬁ) + Ciy

Comparing this with (40) we obtain cx, = 0.
We have now to consider what happens both on the left side and on the right side of the
interval of reference Ij.
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e For all k > ko:
P(dk — &) = pm(dr — @) + ¢
P(dr + @) = em(dr + @) + crg1

So taking the limit when « tends to 0, and since @, (dx) — ¢} (dx) = 27, we obtain:

Ck+1 = ¢ + 2, Vk > kg
Ck0=0

and by induction:
Cky1 = 27I'(k - k‘o), VEk > ko (41)

e For all k < kg:
@1 —a) = om(dr—1 —a) + -1
G(de—1 + @) = Pm(dr—1 + @) + cx

We deduce by the same way as for the right side of I

ch 1 ==2m(k—ko + 1), Vk<ko (42)

3.5 Discretization and numerical results

The equation (12) is a linear parabolic equation and thus there is no real difficulty to
implement it. We use a standard finite difference discretization and an iterative method
such as Jacobi or Gauss-Seidel can be used to solve the resulting linear system.

for z; € I\I :
et (xs) = (@) + At (0p(wic1) — @m(@ic1) + 207 (i) — 20m(2:)
+oa(Tit1) — Pm(Tit1))

for z; € Iy :
oatt (i) = on (@) + At (pa(xi1) — em(@io1) + 205(2:) — 20m(2:)
+0a(Tit1) = em(@it1)) + M@ (@) — om(2:))

with the boundary conditions:

patl(a) = pala+ Az) — pm(a+ Az) + pm(a)

Patt(b) = ¢a (b — Az) + @ (b) — pm(b — Az)
The difficulty comes from the approximation of the condition (14) for which we need to take
into account a direction of propagation with respect to the reference interval I,. This is

intuitive since the values on I are constrained and influence both side in a certain direction.

So the following discretization is proposed for (14).
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For ¢7 given, we have:

Qo (dr+@) = Pl (dr+20) — @m(dp+2a) + o (d+3)
et (dr) = P (dr—a) — o (dk—2@) + @ (d—a)
Pt (de—a) = Pl (dr+a) + @), (de+@) + ¢, (d—@) (43)

where I() =]CLO, bO [C]dko ) dk0+1[

- I} if di, > by
o =
—a if di < ag.
: e
1 ¢
L4 | o |
) | [ ] |
[ ] | [ ] 1 [
) ? : )
[ ]
bttt
dg @ lo bo dep
Q:—O( — — a=a

Figure 3: Direction of propagation with respect to the reference interval.

Notice that the discretization of the derivatives ¢}, (dyx + &) and ¢!, (dx, — &) depends on
which side of Iy they are estimated (jumps have to be avoided). As suggested by a discrete
viewpoint, and shown in the Figure 3, a is chosen to be equal to grid spacing.

The interferometric phase image only contains information related to the topography. In
the case of repeat-pass interferometry, temporal changes degrade the detection, and intro-
duce high noise level in the wrapped phase of the interferogram. In this paper we do not take
into account the influence of noise on the phase unwrapping process. We focus our attention
on the reconstruction of the absolute phase. Hence an example of result is shown in Figure
4, where we have considered the signal ¢,,, with a small additive Gaussian noise. Several
iterations are displayed to see the reconstruction with respect to the interval of reference I.
Note that the noise is not removed but does not disturb the unwrapping process. Besides,
because of the convexity of the problem, changes in the values of the parameters have little
influence on the solution.

In the two, dimensional real data case, ¢,, will be filtered before retrieving the absolute
phase ¢.
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T
Pm —_—
iteration 50
sl iteration 300
¥
5 — ' -
4+ 4

Figure 4: Phase unwrapping without terrain discontinuities. Intermediary stages are displayed.
©m was created with additive Gaussian noise (o = 0.08). Ip =]2.5, 3.5[

4 Case of phase unwrapping in BV (])

4.1 Description of the functional

In this section we assume that ¢ and ¢,, have ground discontinuities (denoted by T, =
{t;};) due to geological faults. We recall that d; is known but not t; and t; # dj for
all j and k (see Section 2). Therefore we need to recover the unknown discontinuities T, , .
Unfortunately, this is not possible with Sobolev spaces. When a function is discontinuous its
gradient has to be understood as a measure and the space of functions of bounded variations,
BV (I) is then suitable (see [1] and [2]). We recall that BV (I) is the set:

{fELl(I) : sup /f(a:)g'(a:)da:<oo}.
geL=(n !
llgllpee<1
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The most important property is that the distributional derivative (which is a measure) can
be decomposed in three terms:

Df= flde + J + C; . (44)
—~— ~— ~—~
regular part  Jump part Cantor part

The total variation of D f is given by:
[1011= [1F@lds + 3 154 - £6] + Ic5]
I I =
where

e f'is the approximate derivative of f ( f'dx is absolutely continuous with respect to

dzx)
e f(ty) (respectively f(t_)) is the approximate upper limit (resp. lower limit) of f at ¢
defined by
t+p
f(t4) = lim — f(s)ds.
p=0p Jy

e Sy is the set of discontinuities of f, that is {¢; f(tT) # f(t7)}.
e Cj which is a diffuse singular measure is called the Cantor part of Df.

Here we will suppose that ¢, € SBV(I) = {f € BV(I) : C; = 0}, the set of special
functions of bounded variations. We define S, by S,,, = P,,, UT,,.. So, in this case we
search for ¢, in BV (I) which minimizes the functional:

Balp) = / ID(6 = om)| + AB2(9) + 1Bs a(). (45)

where E and Es , are defined by (7) and (8), and

/I|D(go—¢m>|=/l|<p'—go:n|dx+ S 10— om)(te) — (0 — om)(t ) +1Cp gl

t€Sp—pm

4.2 Existence and uniqueness of a minimizer ¢,

The existence and uniqueness of a minimizer for (45) is straightforward. It follows from the
definition of E, (p).

Theorem 4 Let us assume that ¢,, € SBV(I) N L2(I) then for all a > O the functional
E.(p) admits a unique minimizer in BV (I).
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Proof: Thanks to the definition of E,, if ¢, is a minimizing sequence in BV (I) then for
some constant C'(«) > 0 we have:

/I ID(0n — om)] + A / (on — o 2 < C(a)
0

from which we deduce that
[1el+ [ Jealdo < (o)
I I

By the compactness embedding theorem [1], [2] and the semi-continuity of the total variation
with respect to weak-* topology of BV, we conclude there exists ¢, € BV (I) such that, up
to a subsequence:

©n 35bh Yo in BV weak-*

Eo(po) <liminf Eq(pn) < sup  Ea(p)
n—0 PEBV(I)

which means that ¢, is a minimizer of E,. The uniqueness follows from the strict convexity
of the term Fs.

¢

We do not pursue further this theoretical BV —based approach. The main reason is that
it is very difficult to obtain efficient optimality conditions in BV. Numerical approximation
is a real problem on BV (approximation on the discontinuity set, the cantor part...). So
in the sequel we adapt the same formalism used for optical images, that is instead of the
functional E, (¢) we consider the simpler functional:

Toe) = / ¢ — @z + AEa(9) + B3 .a(0) (46)

In this case we ignore the singular part of the measure D(p — ¢,,) and we search for an algo-
rithm that compute a minimizer of J, while trying to numerically capture its discontinuities.
This is the object of the following section.

4.3 Half-quadratic minimization

In order to avoid the non-differentiability of the absolute value function, we approximate it
(see [4]) by an edge preserving ®-function:

|u| = ®.(u) with ®.(u) = V&2 + u? — ¢ for small values of .

The functional J,(¢) is then approximated by:

INRIA



Variational Approach for Phase Unwrapping 1D 25

Jue(p) = / B.(o' — ¢) + AE2(0) + Baa(0).

The term with the ®.-function is non-quadratic, which implies a non-linear diffusion operator
in the Euler-Lagrange equations. A way to overcome this difficulty is to propose an half
quadratic algorithm based on duality results. Because ®. is edge-preserving it is shown in
[2, 4] that it is always possible to find a function ®* of the form:

®X(t,b) = bt* + G (b)

such that ®.(t) = \ iﬁyfu ®7(t,b). Applying this transformation, we can rewrite the problem
€lo,
as:

inf J, . (¢) = inf J (¢, b)
® pb
where

T2 (p,b) = / b’ — @l + G (b) + AEa () + 13 a(p)

There are two main advantages:
e J; . is quadratic in ¢ when b is fixed
o for ¢ fixed, the minimizer in b can be found explicitly [2, 4].

A convergent algorithm [4] consists in minimizing J . alternately with respect to each
variable, ¢ and b.

( Starting from ¢, , =0,
REPEAT
pitl P (|(0h,c) — eml)
2|(e%.) = @l
= (" (e —em)) + Mt —om) X, =0 (48)
| UNTIL CONVERGENCE,

(47)

with the boundary conditions (13) and regularity conditions (14).
(48) is the Euler-Lagrange equation satisfied by ¢a ., a minimizer of J, ..
Here we will not do the study of the behaviour of the solution ¢, . as a tends to 0 and
e tends to 0.
4.4 Discretization and numerical results

Let us comment on the discretization of the previous equations:

e (47) is an explicit formula.
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e (48) is a linear equation which can be solved with an iterative method. For a simpler
writting, we note f = (pa,s —

"
with h the grid spacing.

©m). Then the term (bf')" is approximated by:
1
2

I:bz'flfifl +bifizr — (b1 + bz’)fi]-

e conditions (13) and (14) are discretized as in section 3.5.

The Figure 5 show the reconstruction of the absolute phase ¢ and we obseve that the two
terrain discontinuities are preserved.

6 T T T T T T T
Pm —
QD .......
5 e
4t E
3r b} f"" N
2t ) -
l - -
O ‘0 —
Sl - 4
_2 : 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
Figure 5: Phase unwrapping with terrain discontinuities. ¢.,, was created with two ground dis-
continuities = 1.1 and = = 5.1 and with additive Gaussian noise (o = 0.08). ¢ is computed with
small values of €. Iy =]2.5, 3.5][.

5 Conclusion

This paper establishes the mathematical foundations of the 1D phase unwrapping prob-

lem in a continuous setting. A variational approach preserving terrain discontinuities was
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presented. Of course our 1D numerical results are similar to any standard unwrapping algo-
rithm. Our approach is rigorous and promising. Future work will focus on the development
of variational approaches to 2D-interferograms. We plan to estimate the phase jumps (curves
of discontinuities) from the bidimensional interferogram using a level set approach, and then
to apply the method from this paper in the 2D case.
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