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Semimodules rationnels sur le semi-anneau max-plus et
approche géométrique des systémes & événements
discrets

Résumé : Nous introduisons la classe des semimodules rationnels sur des semi-anneaux
dont ’addition est idempotente, tels que le semi-anneau max-plus. Nous disons qu’un sous
semi-module d’'un semimodule libre 8™ sur un semi-anneau S est rationnel s’il admet une
famille génératrice qui est une partie rationnelle de §™, 8™ étant vu comme un monoide pour
le produit coordonnée par coordonnée. Nous montrons que pour des semi-anneaux de type
max-plus dont les éléments sont des entiers, les semi-modules rationnels sont stables pour les
opérations algébriques naturelles (union, produit, image directe et réciproque, intersection,
projection, etc.) Les semi-modules rationnels sont un outil pour éténdre au cas des systémes
a événements discrets 'approche géométrique en commande linéaire. Nous montrons ainsi
que les espaces accessibles et observables associés & des systémes dynamiques max-plus
linéaires sont rationnels.

Mots-clés : Espaces invariants, accessibilité, approche géométrique, ensembles rationnels,
arithmétique de Presburger, algébre max-plus, systémes & événements discrets
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1 Introduction

In this paper, we define a new class of semimodules over max-plus type semirings, that we
call rational semimodules, and study their properties.

This work is motivated by the max-plus algebraic approach of discrete event systems.
It is well known (see in particular [CMQV89, BCOQ92, Gun98, CGQ99]) that a subclass
of discrete event systems subject to synchronization constraints, comprising examples of
manufacturing systems, transportation networks, and computer networks, can be modeled
by max-plus linear dynamical systems. An open question (see [CGQ99)]) is to develop the
analogue of Wonham’s geometric approach [Won85] for the control of max-plus linear dy-
namical systems. As in classical linear system theory, many control problems can be phrased
in terms of semimodules (semimodules over semirings are defined like modules over rings,
mutatis mutandis). A difficulty of this approach, however, is that max-plus semimodules
have very different properties from vector spaces. In particular, a subsemimodule of a free
finitely generated semimodule need not be free or finitely generated, and so even the simplest
spaces in control theory, the reachability space and the observability “space” or congruence,
need not be finitely generated (see the examples in §4.2). Therefore, new algebraic tool-
s are needed to “replace” the theory of rank which is so useful in classical linear control,
and effective methods must be designed to handle semimodules with an infinite number of
generators.

Several results are known on max-plus semimodules, including notions of basis and ex-
tremal points [Mol88, Wag91, GP97, Gau98|, direct sums [CGQ96], projective semimod-
ules [CGQY7], separation theorems [Zim77, SS92, LMS00, CGQO1]. However, the issue of
computing effectively with non finitely generated semimodules does not seem to have been
raised previously in the literature.

In this paper, we extend the notion of finitely generated semimodule as follows: we say
that a semimodule X C 8™ is rational if it has a set of generators that is a rational subset
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4 Stéphane Gaubert , Ricardo Katz

of 8™, where 8™ is thought of as a monoid under the entrywise product, see Definition 3.1
below. Rational sets over monoids, and in particular, rational sets of (N¥, +) or (ZF, +),
or semilinear sets, are well known objects in computer science, see [GS66, ES69]. The typ-
ical semiring to which our notions apply is the semiring of max-plus integers, Z U {—oo},
equipped with max as addition, and the usual addition as multiplication: then, up to techni-
cal details related to the infinite element, rational semimodules are semimodules generated
by semilinear sets of Z™.

We show that rational semimodules are closed under the natural algebraic operations,
like union, direct sum, direct and inverse image, intersection, projection, and by taking the
orthogonal. Whereas the closure under union, direct sum, and direct image, can be proved
in a natural way, our proof of the other properties relies on Presburger arithmetics, which
leads to expensive algorithms [Opp78]. Finding direct, computationally more efficient proofs,
leads to interesting combinatorial problems. In fact, even for finitely generated semimodules,
algorithmic issues remain difficult, see Remark 3.9 below.

The paper is organized as follows. In §2, we recall classical definitions and facts about
rational sets and idempotent semirings, and establish preliminary results. We extend the
definition of the Presburger logic to a naturally ordered idempotent semiring S, and show, as
a slight extension of the theorem of Ginzburg and Spanier [GS66], that idempotent semirings
like (Z U{—00}, max, +) have the property that the subsets of S defined by formulas of the
first order logic of (S, e, ®, <), where e is the unit, ® the product, and < the natural order,
are exactly the rational subsets of S™. In §3, we use these results to show that the class
of rational semimodules is closed under various algebraic operations. In §4, we illustrate
the results by discrete event systems problems, and give various examples and counter
examples. We show in §4.1 that max-plus reachable spaces and observable congruences
are rational, and then, in §4.2, we give examples of reachable semimodules and observable
congruences. In §4.3, we illustrate the reachability and observability notions by discussing
a simple example of manufacturing systems (three machines in tandem). In §4.4, we give
counter examples showing that the integrity assumptions that we used are useful, and in §4.5,
we give a counter example showing that the noncommutative analogues of reachable spaces
need not be rational.

2 Presburger Logic over Idempotent Semirings

Let us recall some definitions and results. Let (M,-) be a monoid, i.e. a set with an
associative multiplication and a two sided unit 1,;. The class of rational subsets of M is
the least class &Z of subsets of M satisfying the following conditions:

1. If U is a finite set then U € %,

2. MU, VeRthen UUV € %,

3 UU, VeZthenU -V={m|m=u-v,ueUwveV}eR
4 U € R thenU* =U°UUUU?U--- € X,

INRIA



Rational semimodules over the max-plus semiring 5

where by convention U® = {1)/}. A subset U C M is called semilinear if it can be written
as a finite union of sets of the form {z} - B*, where z € M and B is a finite subset of M. We
shall use throughout the paper the following classical result (see [ES69]): in a commutative
monoid, rational and semilinear subsets coincide.

A semiring is a set S equipped with two internal composition laws @& and ®, called
addition and multiplication respectively, such that S is a commutative monoid for addition,
S is a monoid for multiplication, multiplication distributes over addition, and the neutral
element for addition is absorbing for multiplication. We will denote by € the neutral element
for addition and by e the neutral element for multiplication. We will sometimes denote by
(S,8,RQ) or (S,d,®,¢,e) the semiring S. In this paper, we are mostly interested in the
max-plus semiring Rpax, which is the set R U {—o0} equipped with & = max and ® = +.
The semiring Riax is idempotent: x @ x = z for all z € S. An idempotent semiring (S, ®, ®)
is equipped with the natural order <, which is defined by:

Ty rdy=y.

With this order, x @ y is the least upper bound of the set {z,y} (see [BCOQ92]).

Several variants of the max-plus semiring Ry, can be found in the literature. Indeed,
to any submonoid (M, +) of (R, +) is associated a semiring with set of elements M U{—oo},
and laws @& = max, ® = +. We denote this semiring by Mmax. Symmetrically, the semiring
Mpin is the set M U {+o0}, equipped with @ = min and ® = +. For instance, taking
M =N, we get Npyin = (NU {400}, min, +), a semiring known as the tropical semiring
after the work of Simon [Sim78] (see [Pin98] for a recent overview). The semiring Zmin =
(Z U {400}, min, +) is sometimes called the equatorial semiring [Kro93, Kro94]. One can
also add a maximal element (for the natural order) to the semirings My,ax and Mp,in: this
yields the semirings Myax = (M U {£o00}, max, +) and My, = (M U {£oc}, min, +). Since
the zero element is € = —00 in Mpyax and € = +00 in My, in these semirings, the value of
(—=00) + (+00) = (+00) + (—00) is determined by the rulee ® x =2 ® e = €.

It is convenient to formalize the class of semirings to which our results apply, by extending
the classical definition of Presburger logic, as follows. We refer the reader to [GS66, B02)
for more information about Presburger logic. Our presentation follows [GS66].

Let (S,®,®,¢,€) be an idempotent commutative semiring with natural order <. We
consider formulas or statements about the elements of S. The set P of first-order logic
formulas of (S, e, ®, <) is by definition the smallest class of formulas satisfying the following
five conditions:

1. For any nonnegative integers k;,r;,1 <i < n,
n n
R+ < @ W
i=1 j=1

is a formula in P. Here xf' denotes z; ® - - - ® x;, where x; is repeated k; times, and

we adopt the convention z9 = e. The free variables of this formula are 1, ... , zy;
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6 Stéphane Gaubert , Ricardo Katz

2. If Py, P, are in P, so is their conjunction P; A P». The set of free variables of P; A P,
is the set of free variables of P; union the set of free variables of Ps;

3. If P, P, are in P, so is their disjunction P; V P». The set of free variables of P; V Py
is the set of free variables of P; union the set of free variables of P;

4. If P is in P, so is its negation —P. The free variables of =P are the free variables of

P.
5. If P(x1,...,%,) is in P and has the free variables z1,. .. ,x,, then for each 1 <i < n,
the formula (3z;)P(z1,... ,%,) is in P and its free variables are z; for 1 < j <n and
J# i
In the sequel, we will simply call a formula of P a Presburger formula of (S,e, ®, <).
Remark 2.1. If P(x1,...,z,) is in P, then for each 1 < ¢ < mn, the formula
(Vz;)P(x1,-.. ,x,) is regarded as a first-order logic formula of (S,e,®, <) because it is

equivalent to
= (3z;) (=P (x1,--- ,3,)) -

Similarly if P and ) are in P, then P = () is regarded as a first-order logic formula of
(87 e) ®3 j)'

Remark 2.2. The formula z,11 = @), z; is regarded as a first-order logic formula of
(S, e,®, <) because it is equivalent to

(1 L) Ao A (2 X 1) A
{(VZni2) [((z1 2 2ng2) Ao A (B0 2 Tog2)) = Tngr X Tngal}

For readability, we will allow the use of arbitrary letters (rather than zq,zs,...) for
the variables of formulas, so that we will regard for instance y = @, z; as a Presburger
formula with free variables z1,... ,z,,y.

We say that a subset D C 8™ is definable in the first-order logic of (S, e, ®, <) if there
exists a formula P(z1,...,z,) in P, with n free variables z1,... ,Z,, such that:

D ={(z1,...,2,) € S"| P(z1,...,2,) is true } .

Definition 2.3. An idempotent commutative semiring (S,®, ®,e,e) has the Presburger
property if the subsets of S™ definable in the first-order logic of (S, e, ®, X) are precisely the
rational sets of (8", ®).

We shall need the following extension of the theorem of Ginzburg and Spanier [GS66],
which states that the rational subsets of (N, +) are precisely the subsets definable in the
classical Presburger arithmetics.

Theorem 2.4. The idempotent semirings Zmax = (Z U {—o0}, max, +), Zmax = (Z U
{00}, max, +), Nmax = (NU {—o00},max,+), Nmax = (NU {£o0}, max,+), and Npin =
(NU {400}, min, +) all have the Presburger property.

INRIA



Rational semimodules over the max-plus semiring 7

The proof of Theorem 2.4 relies on the following:

Lemma 2.5. A subset R C ((ZU {+o00})", +) is rational if and only if it can be written as
a finite union of sets of the form

{Cl}-‘r {Fla--' ,’f‘_k}* ) (2)
where a € (ZU {£oo})"” and 7,... ,7F € Z™

Proof. Using the characterization of rational sets as semilinear sets, it suffices to show that
any set {b} + {rl,...,7*}* with b,rl,... ;rF € (Z U {£o0})", can be rewritten as a finite
union of sets of the form (2). Recall the following classical rational identities

(AUB)* = A* + B* 3)
A* =AU (A + 4% (4)
(identity (3) holds for all subsets A, B of a commutative monoid, whereas (4) holds for

subsets A of arbitrary monoids, see e.g. [ConT71] for more details on rational identities).
Using (3) and (4), we can write:

By +{r',... ,7F}* = {p} U U {b+ry+{rt, ... ok}

1<i<k

={tu |J ({(b+r 3+ {1+ {7 1 1<i<k j#i}) . (5)

1<i<k

Now, for all r € (Z U {£o00})", denote by 7 € Z™ the vector obtained by replacing infinite
coordinates of r by an arbitrary finite value (say 0). One easily gets, using the fact that
(—00) + . = —oo for all & € Zmax, and (+00) + 2 = (+00) + (4+00), for all z € Z, that

{b+r}+{r} ={b+r}+ {7} (6)
Using several times the transformations (3), (5) and (6), we express {b} + {r!,... ,7¥}* as
a finite union of sets of the form {a} + {7*,...,7*}*, with a € (Z U {£oo})™. O

Proof of Theorem 2.4. By comparison with the result of Ginzburg and Spanier, the only
new difficulty is to take care of the 0o elements. Let us consider the case of Zmax. The
other cases can be proved in the same way.

As a preliminary result, we first check that every element of Z U {00} is definable by
a Presburger formula of (Z U {£o0},0,+,<). We can regard y = 400 and y = —o0 as
Presburger formulas, since y = +00 (resp. y = —o0) is equivalent to (Vz)(z < y) (resp.
(Vz)(x > y)). Similarly, y = 1, which is equivalent to —(y < 0) A (Vz)(—=(z <0) = y < x),
will be seen as a Presburger formula. We note that in Zmax, the inequality (1) becomes:

ik,’.’ti < irj:cj . (7
=1 j=1

RR n° 4519



8 Stéphane Gaubert , Ricardo Katz

Therefore, for any positive integer r, y = r, which is equivalent to (3z)(z = 1) A (y = r2),
will be seen as a Presburger formula, as well as y = —r, which is equivalent to (32)(z =
r)A(0 = y+ 2). Finally, we denote by Nat(y) the Presburger formula (y > 0) A—=(y > 4+00),
which expresses the property that y is a natural number.

We next show that every semilinear set of ((Z U {£oo})™, +) is definable by a Presburger
formula of (Z U {£00},0,+, <). Since the family of sets definable in the first-order logic of
(Z U {£00},0,4, <) is closed under union, thanks to Lemma 2.5, it is enough to show the
following:

(Claim C): For all a € (ZU {£oo})", and 7*,... ,7* € Z", the set (2) is definable by a
formula of the first-order logic of (Z U {£o0},0,+, <). '

Indeed, for each 1 <4 < n let us define the set J; = {1 < j < k| r] < 0}. Then, the
vector (Z1,-..,Tn) € (Z U {£oc})™ belongs to {a} + {7,...,7*}* if and only if

(Elyl)7 7(3yk)(Na‘t(y1)/\/\Na‘t(yk)A /\ Pi(miayla"' 5yk)) )

1<i<n

where:

Pi(wi, g, o) = 32) (2 = a) A (@i + D (-Fys =2+ > 7y))). ®)

JEJ; JEJi

Since (7) is a Presburger formula of (Z U {£o0},0,+, <), so does (8), so Claim C is proved.
Therefore, every rational set of ((Z U {£o00})™, +) is definable by a Presburger formula of
(Z U {00},0,+, <).

Let us now show that every subset of (Z U {£o0})™ definable by a Presburger formula of
(Z U {£0},0,+, <) is a rational set of the commutative monoid ((Z U {£o0})", +). As the
family of rational sets of ((ZU {£o0})",+) is closed with respect to union, intersection and
complementation (see [ES69]) and as the projection of a rational set of ((Z U {£o0})™, +) is
a rational set, it is enough to show that for all nonnegative integers, r;, k;, 1 < i < n, the
set S of solutions of

n n
Zkﬂ}i < era:j (9)
i=1 j=1

is a rational set of ((Z U {£oo})™,+). To see this, consider the map k£ : Z U {0} —
{0, +00}, which fixes —oo and 400, and sends any finite number to 0. We extend & to a
map (Z U {£oo})™ — {0,%00}" by making k act on each entry. We shall call x(z) the
pattern of © € (Z U {xo0})™. To show that S is rational, it is enough to prove that for
every p € {0,+00}", the set of solutions with pattern p, S, = SNk 1(p), is rational. Let
I(p) ={1<i<n| k(p); = +oo}, and let J(p) denote the complement of I(p) in {1,... ,n}.
When z has pattern p, (9) can be rewritten as

a+ Z k,szb—f— Z Tj.’L'j ; (10)

icJ(p) J€J(p)

INRIA



Rational semimodules over the max-plus semiring 9

where a = 3,7, kipi and b = }°. r, 7jp;j. Note that a and b can take values only in
{0,£} (a =0if k;, = 0 for all i € I(p), and b = 0 if r; = 0 for all j € J(p), due to
the convention 0 x z; = 0 which is implied by the convention 2? = e that we made when
writing (1)). Note also that an empty sum is equal to 0, by convention. Only the following
cases can occur.

Case 1. a = —oo. Then, (10) is automatically satisfied, and we conclude that S, = k~1(p) =
{z € (ZU{too})" | z; =p; fori € I(p) and z; € Z for i € J(p)}. The set S,, which is a
Cartesian product of rational sets of commutative monoids, is rational. (Indeed, S, is the
Cartesian product of one element subsets of (Z U {xo0},+), which are obviously rational,
and of copies of Z = {—1,1}* which is a rational subset of the monoid (Z U {0}, +).)

Case 2. a # —oo. We split this case into subcases:
Case 2.1. a # —o0 and b = —oo. Then, S, = 0.

Case 2.2. a # —oo and b = +00. Then, S, = k~!(p), and we proved in Case 1 that S, is
rational.

Case 2.8. a # —oc and b = 0. We again split this subcase.
Case 2.3.1. a = +o0 and b= 0. Then, S, = 0.

Case 2.3.2. a=0and b =0. Then, S, = {& € (ZU {xo0})" | x; = p; for i € I(p), x; €

Zfori € J(p), and } ;¢ yp) Ki%i < 3 jc y(p) T5%5}- By the classical result of [GS66], the set

of finite integer solutions of an equation of the form (7) is rational, therefore, T = {z €

270 | Y s kitti < e () T35} I8 @ rational subset of Z7(#). Since S, is the Cartesian
product of T' by one element sets, .S, is rational.

Thus, the set S = {J,¢ (9,400} Sp Of solutions of (9) is a rational set of ((ZU{+oo})", +).

o

Ezample 2.6. The idempotent semirings Rpax and Qmax = (QU{—o00}, max, +) do not have
the Presburger property, because there is no way to define the rational set {1} by a Presburg-
er formula. Another example of idempotent semiring which does not have the Presburger
property is S = ((Z U {—o00})?, max, +), where max denotes the law (Z U {—o00})? x (Z U
{=0})? = (ZU{—00})? which does entrywise max. In this semiring, the set {(1,0)} cannot
be defined by a Presburger formula (for symmetry reasons, there is no way to distinguish
(1,0) from (0, 1) using Presburger formulas).

3 Closure Properties of Rational Semimodules

Let us recall some definitions. A (left) semimodule X over a semiring (S,®,®,es,¢€) is a
commutative monoid (X, ®,ex), equipped with amap SxX — X, (A, z) — Az (left action),

RR n° 4519



10 Stéphane Gaubert , Ricardo Katz

that satisfies

(A @ pz = Nuz) , (11a)
Mr@dy) = zd Ay, Adp)z =@ pz , (11b)
EST =Ex, Nex =€x, €L =12 (11c)

for all z,y € X, \,u € S. In the sequel, we will denote by & both the zero element es of
S and the zero element ey of X', when there will be no risk of confusion. We will also use
concatenation to denote the product of S, so that (11a) will be rewritten as (Ap)z = A(ux).
When (S, ®) is idempotent, (X, ®) is idempotent (indeed, it follows from (11b) and (11c)
that z = ex = (e® e)z = ex Dex = z D x). A subsemimodule of X is a subset £ C X
such that Az @ uy € Z, for all z,y € Z and A\, u € S. We will consider subsemimodules
of the free semimodule S™, which is the set of n-dimensional vectors over S, equipped with
the internal law (x @ y); = x; ® y; and the left action (\z); = A ®@ z;. If G C 8", we will
denote by span G the subsemimodule of 8™ generated by G, i.e. the set of all x € S™ for
which there exists a finite number of elements u', ... ,u* of G and a finite number of scalars
Aly--o > Ak €S, such that ¢ = @F | \u'.

Definition 3.1 (Rational semimodules). A subsemimodule X C 8" is rational if it has
a generating family which is a rational subset of the monoid (8", ®).

We now show that rational semimodules are closed under natural algebraic operations.
We begin by a simple general property.

Theorem 3.2. Let S be an arbitrary semiring. Let X, Y C 8™ and Z C SP be rational
semimodules. Then X ®Y and X x Z are rational semimodules.

Proof. Let X = spanB, Y = spanC and Z = span D, where B,C C 8™ and D C S? are
rational sets. As X @ ) = span (B U (), it follows that X @& Y is a rational semimodule
because B U C is a rational set of the monoid (8", ®). Let us denote by &g, for k € N, the
neutral element for addition in the commutative monoid (S*, ®) and let us define the sets

B={(2)1zeB} amaD={(7)I:D}.

Since B and D are rational sets, B and D are rational sets of the monoid (S"*?, ®). Then,
as X x Y = span (B U D), it follows that X x ) is a rational semimodule. O

We will need the following analogue of Caratheodory theorem, which was already stated
in [Gau98]. (The classical Caratheodory theorem, see e.g. [Sch88, Cor. 7.1i], states that if a
vector z in R™ is a positive linear combination of vectors of a finite subset G C R", z can
be written as a positive linear combinations of at most n vectors of G).

Proposition 3.3 (Max-Plus Caratheodory Theorem). Let S be an idempotent semir-
ing whose natural order is a total order. If G C 8™, and if x €span(QG), then there is a subset
B of G, of cardinality at most n, such that x €span(B).

INRIA



Rational semimodules over the max-plus semiring 11

Proof. If x € spanG, we can find u!,... ,u* € G, \1,...,\; € S such that T = ®1<;<pNiu’.
Forall1 <j<mn, wedefine I(j) ={i | 1<i<k =z = )\,u;} Since the natural order
of § is a total order, all the I(j) are non-empty. Choosing exactly one element 4; in I(j),
we obtain a family u®, ... ,u’ such that = \;,u’* @---@® \;, ui» (It may be the case that
ij = iy for some j # k. In such cases the cardinality of B is less than n.) O

Theorem 3.4. Let S be an idempotent commutative semiring which satisfies the Presburger
property and whose natural order is a total order. Then, for a subset X of S™ the following
statements are equivalent.

1. X is a rational semimodule.
2. X is a semimodule and a rational subset of the monoid (8™, ®).

Proof. Trivially, (2) implies (1) because X is generated by X. Suppose now that X is a
rational semimodule and let G C 8™ be a rational set such that X = spanG. Let P be a
formula of the first-order logic of (S, e, ®, <), that defines G. The Max-Plus Caratheodory
Theorem implies that: = € X if and only if

(Fur € S™),..., (I €S™),ENES),...,(AN, €S),

n
(P(ul) A APW*) ANz = @)\iui) .
i=1
Since the last formula belongs to the first-order logic of (S, e, ®, <), we obtain that X is a
rational set of the commutative monoid (8", ®) O

If X and Y are two semimodules, we denote by Hom(X,)) the set of linear maps, i.e., of
semimodule morphisms, from X to ). A linear map 8™ — SP can be represented uniquely
in matrix form, z = Az, (A7); = @,<,<, 4ijT;, where A = (4;;) € S"*".

Theorem 3.5 (Closure theorem). Let S be an idempotent commutative semiring which
satisfies the Presburger property and whose natural order is a total order. Let X, Y C 8™,
ZC 8, GC S8 and W C (S™)? be rational semimodules, and let A € Hom(S",SP).
Then the following sets all are rational semimodules.

1. xny,

XG={veS8|xe X, (z,v)€G} and GZ={ue8S"| Iz € Z,(u,2) € G},
AX = {Ax | z € X},

A'Z={z e 8" | Az € Z},

XoY={ueS"|yeVudye X},

Wt={zeS"|a-z=0b-2,V(a,b) € W}, where a -z = @, <;<,, 6T,

S = e
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12 Stéphane Gaubert , Ricardo Katz

7. X7 ={(a,b) € (S")? | a-z=0b-z,Vz € X}.

Proof. 1. Since X and Y are rational semimodules, we know that they are rational sets (by
Theorem 3.4). As the intersection of rational sets of a commutative monoid is a rational set
(see [ES69]), we have that X' N Y is a rational set and therefore a rational semimodule.

2. By symmetry, we only consider the case of XG. Since § C 8™ and X C S"
are rational semimodules, we know that they are rational sets of (§"?,®) and (S",®)
respectively (by Theorem 3.4). Let P and @ be Presburger formulas of (S, e, ®, <), defining
G and X respectively. Then as

v € XG if and only if (3z € S™)(Q(x) A P(z,v)),

it follows that X'G, which is defined by a Presburger formula of (S, e, ®, <), is a rational set.
By Theorem 3.4, it is a rational semimodule.

3. Let us define G = {(u, Au) | u € S"}. Since G is finitely generated, G is a rational
semimodule, and AX = XG is a rational semimodule.

4. Taking again G = {(u,Au) | v € 8"}, we have A~1Z = GZ. Hence, A" 'Z is a
rational semimodule.

5. Let us define G = {(u,y,z) € (§")% | # = u ® y}. Then G, which is the direct image
of (8™)? by a linear map, is finitely generated, and a fortiori, rational. Thus, ¥ ©) = {u €
S| xeX,yeV,z=udyt={uvuesS"|JxeX,Fye) (uyz)€G=G xX)is
a rational semimodule.

6. As W C (S")? is a rational semimodule, we know (by Theorem 3.4) that it is a
rational set. Let P(up,... ,Un,v1,...,v,) be a Presburger formula of (S, e, ®, <) defining
W. Then (z1,... ,z,) € W' if and only if

Yu; € S,... ,Vu, € S,V € S,... Vv, €S

n n
(P(u1,- .. yUpyV1yee ,Up) = @x,u, = @:cjvj).
i=1 j=1

Since this is a Presburger formula of (S,e,®, <), it follows that W+ is a rational set of
(8™, ®), and also, by Theorem 3.4, a rational semimodule.

7. Let P(xy,...,%,) be a Presburger formula of (S, e, ®, <) defining X. Then we have
that (u,v) € X7 if and only if

(Vz1 €8),...,(Vz, € S),(P(z1,... ,2,) = @u,wz = @vzx,) .
i=1 j=1

Arguing as in Statement 6, we conclude that X' T is a rational semimodule. O

Remark 3.6. A motivation for considering the operations © and Z — A~!Z comes from
(A, B) invariant spaces (see [Won85]). If one consider the dynamical system

z(k) = Az(k — 1) ® Bu(k),

INRIA
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where A € (Zimax)™™™, B € (Zmax)™*?, £(k) € (Zimax)™, and u(k) € (Zmax)?, the set of z(0)
for which there exists a control «(0) such that x(1) belongs to a prescribed semimodule X
is A~1(X © B), where B denotes the semimodule generated by the columns of B. Max-plus
(A, B)-invariant spaces are further studied in [Kat].

We shall say that a vector v of a semimodule X C 8™ is extremal if v ¢ span (X \ span {v}).
We denote by Ext(X) the set of extremal points of X'. The interest in extremal points stems
from a theorem due to Moller [Mol88] and Wagneur [Wag91], which states that a finitely
generated subsemimodule of (Ry,ax )" is generated by its extremal vectors.

Theorem 3.7. Let S be an idempotent commutative semiring which satisfies the Presburger
property and whose natural order is a total order. If X C 8™ is a rational semimodule, then
Ext(X) is a rational set of the monoid (8™, ®).

Proof. Let P be a Presburger formula of (S, e, ®, <) defining X'. The max-plus Caratheodory
theorem shows that v € span (X \ span{v}) is equivalent to

(Fur € SM),..., (" € S"),3AN €S),..., (AN, € S)P(u') A--- A P(u™)
A= @ Aiw) A= ((Far € S)(u' = agv) V-V (Fay, € S)(u" = ay,v))
=1

Since this is a Presburger formula of (S, e, ®, <), it follows that X'\ Ext(X) is a rational set,
and therefore Ext(X) is a rational set. O

Remark 3.8. We could prove Statement 3 of Theorem 3.5 without using Presburger’s arith-
metics, as follows. If R is a rational set that generates the semimodule X, AX is generated
by the set A(R) = {Ar | r € R}. One can show directly, using the fact that a max-plus
linear map is piecewise affine with integer slopes, that A(R) is rational.

Remark 3.9. A difficulty, in looking for more direct proofs of Statements 1,2,4-7 of Theo-
rem 3.5, is the relative absence of knowledge of the minimal set of generators of a semimodule
defined by natural algebraic operations. This difficulty persists even in the case of finite-
ly generated semimodules. For instance, the only known algorithm (see [BH84], [Gau92,
IT1,1.1.4] or [GP97, Th. 8]) to compute a generating family of the set of solutions of the
max-plus linear system Ax = Bz, where A, B are n X p matrices, has an a priori doubly ex-
ponential execution time, and tells little about the geometry of extremal points. (However,
the doubly exponential bound is pessimistic, the average case is better in practice, and find-
ing only one solution can be done more efficiently by computing sub-fixed point of min-max
functions, see [WB96, GP97, BCG99] and [GG98, CTGGY99] for fixed point algorithms for
min-max functions.)
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4 Examples and Counter Examples

4.1 Reachable and Observable Spaces of Max-Plus Linear Discrete
Event Systems

Let us consider the max-plus linear system:

z(k) = Az(k — 1) ® Bu(k), (12a)
y(k) = Cxz(k), (12b)
z(0)=¢ . (12¢)
where A € (Zmax)™™ ™, B € (Zmax)™*?, C € (Zmax)"", § € (Lmax)™, and u(k) € (Zmax)?,
k=1,2,... is asequence of control vectors. We call reachable space in time k, and denote by

R, the set of states z(k) reachable from the initial state z(0) = . We also define the reach-
able space in arbitrary time, R, which is the union of the Ry. (We shall sometimes write
Rr(A,B) or R, (A, B) to emphasize the dependence in A, B.) Introducing the reachability
matrices

Ry, = (B,AB,... ,AF1B), R, = (B,AB,A’B...) ,

we characterize Ry (resp. R.,) as the semimodule generated by the columns of the matrix Ry,
(resp. Ry). Identifying matrices with operators, we will write R, = Im Ry, and R, = ImR,,.
The definition of rational semimodules is motivated by the following result:

Theorem 4.1. Reachable spaces are rational semimodules, i.e. if A € (Zmax)"™™ and B €
(Zinax)™ P, then R, = ImR,, is a rational semimodule.

The proof of Theorem 4.1 relies on the following cyclicity theorem for reducible max-plus
matrices, which is taken from [Gau92, VI,1.1.10].

Theorem 4.2. Let A € (Ryax)"*"™. There are positive integers ¢, N, such that for all
1< 14,5 < n, there are scalars Mg, ... ,Ae—1 (depending on i,j) such that for all0 <1 <c¢—1,

Vn Z N, (A"+l+c)ij = )\l (An-H)ij . (13)

This cyclicity theorem follows readily from the characterization of max-plus rational
series in one variable as merge of ultimately rational series, see [Mol88], [Gau92, VI,1.1.8],
[KR94], and the discussions in [Gau94, GP97].

Proof of Theorem 4.1. Theorem 4.2 implies that {A° A A2 ...} is a rational subset of
((Z U{—00})"*" +), and therefore, X = span { A%, A1, A% ...} is a rational subsemimodule
Of (Zmax)™ ™. Since R, (A, B) is the sum of the reachability spaces R, (4, B. ;) associated
to the differents columns B. ; of B, for 1 < ¢ < p, and since the sum of rational semimodules
is rational (cf. Theorem 3.2), it is enough to consider the case when B has only one column.
Then, R,, is the direct image of X by the linear map (Zmax)"*"™ = (Zmax)"**, X — XB,
and it follows from Statement 3 of Theorem 3.5 that R, is rational. O

INRIA



Rational semimodules over the max-plus semiring 15

Let £, & € (Zmax)™, and consider two trajectories of the dynamical system (12),

{(@(k),y(k)}k>0,  and  {(z'(k),y' (k) }x>0 ,

corresponding to the initial conditions z(0) = &, z'(0) = £’, the zero control u(k) = € being
applied in both cases. We call observable congruence in time k > 1, and denote by O, the
congruence over (Zmax)" defined by

(6€) €Ok = y)=y'()), VO<I<k-1,

and the observable congruence (in arbitrary time) O, is defined as the intersection of the con-
gruences O, k > 1. By congruence, we mean an equivalence relation on (Z )™ compatible
with the semimodule structure of (Zyax)™. In particular, O and O, are subsemimodules
of ((Zmax)™)?. Introducing the observability matrices

C C
CA CA
Ok = . y ow = CA2 )
CA‘k71

we characterize Oy, (resp. O,) as the right kernel Ker Oy, (resp. Ker O,) of Oy (resp. O.),
that is:

(6,¢) €Or <= 0k =0iE",  (§¢) €0, & 0,€=0.¢" .

See [CGQYY| for more background on max-plus reachability spaces and observable congru-
ences. We have the following dual version of Theorem 4.1:

Theorem 4.3. Observable congruences are rational, i.e. if A € (Zpmax)™ "™, C € (Zimax) ™,
then O, = Ker O, is a rational subsemimodule of ((Zmax)™)?.

Proof. By Theorem 4.1, the semimodule Z generated by the rows of the observability matrix
0.,, which can be identified to the reachable space R, (AT, BT), is rational. Since O, = ZT,
Statement 7 of Theorem 3.5 shows that O, is rational. O

4.2 Example of reachable space and observable congruence

Consider
1 -0 —00 0
A=1| 5 2 -0, B=|-c0] . (14)
—00 6 3 —0

Then R, = ImR,, where

0 1 2 3 4 5 6 --
Ro=[-00 5 7 9 11 13 15 --.| . (15)
—00 —oo 11 14 17 20 23 ---
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xs3 T3

Rs Ra

T T2 T3 T2
xs3 x3

R5 RG

I T2 T1 T2

Figure 1: Exponential representation of the reachable spaces R3, R4, R5, Rs for the (A4, B)
pair given by (14)

Obviously R, is a rational semimodule because the set of columns of R, can be written as
UU ({v} + {w}*), with

0 1 2 1
U= —oo|,| 5 , v=|T7], w=|2 (16)
—00 —00 11 3

The semimodules R3, R4, R5, R¢ are shown on Figure 1.

To represent semimodules which contain vectors with —oco coordinates, we use the fol-
lowing projection. Let B denote a positive parameter, and let us chose a triangle in the
plane. We represent a point x € (R U {—o00})® by the point m(z) of the triangle, which is
the barycenter of the vertices of the triangle with respective weights exp(8z1), exp(8z2),
exp(Bz3). We shall refer to this projection as the exponential projection in the sequel. The
exponential projection has the property that if two points  and y are proportional in the
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Rational semimodules over the max-plus semiring 17

max-plus sense, that is, if z; = A + y; for some A € R then, w(z) = w(y). Therefore,
representing the image of a semimodule X C (Rpax)?® (or X C (Zmax)?) by 7 gives a faith-
ful image of X'. Such drawings represent in fact the max-plus two-dimensional projective
space, which is the quotient of (Ryax)® by the parallelism relation x ~y < z=\A+y
for some A € R. The max-plus projective space appeared in the work of several authors,
see [Kol92, Gau9s, Mai95, Gau98.

In Figure 1, the generators of the semimodules R3,R4,Rs5, R, that is, the columns
of the matrices Rs, R4, R5, Rg, are represented by bold points. For any two generators, we
have represented the max-plus plane generated by these two generators (we call plane a
semimodule generated by two nonproportional vectors). The projection 7 sends in general
a plane to a broken segment. For instance, the bold broken segment on the fourth picture
of Figure 1 represents the max-plus plane generated by the second and fifth columns of Rg.

It should be graphically clear from Figure 1 that the generators are extremal, that the
semimodules R,k = 0,1,2,3,... form an infinite ascending sequence (this illustrates the
fact that the semimodule (Zpax)? is not Noetherian), and that R,, is not finitely generated.
One can check mechanically all these facts by appealing to residuation theory, which allows
us to compute the extremal vectors of semimodules, see [BCOQ92],[But94] and [GP97] for
more details. Let us also mention that the computations of this example have been checked
using the max-plus toolbox of scilab, see [Plu98|.

We can visualize, on the drawings of Figure 1, both the Ry,,x semimodule and the Zpax
semimodule generated by the columns of the matrices Ri. The gray zone represent an Ry,ax
semimodule. The corresponding Z,,x semimodule is an “integer lattice” inscribed in the
real semimodule, that for readability of the figure, we do not have represented.

To see graphically that the semimodule R, is rational, it is convenient to use another
representation, in which every finite point of R, is projected orthogonally to the main
diagonal of R®: again, two vectors z,y € R® which are proportional in the max-plus sense,
are sent to the same point. Using this projection, the semimodule R, is represented on
Figure 2. The rationality of R, can be visualized on this figure: the set of finite generators
of R,,, which is given by {v} + {w}*, where v, w are as in (16), is precisely the discrete half
line of bold points.

Let us now represent an observability congruence. We consider the transposed dynamical
system with new observation matrix C' = B and new dynamics A”. Then, the observability
matrix is O, (A%, BT) = (R, (A, B))?, that is, the transpose of the matrix computed in (15).
The corresponding observable congruence O, is depicted in Figure 3, using the technique
of [CGQYY9, § 4.3]. We know by Theorem 4.3 that this is a rational congruence. The
gray region of Figure 3 represents the semimodule over the min-plus semiring Zmyi, = (Z U
{+00}, min, +) generated by the opposite of the rows of O, (the min-plus generators are
represented by bold points): we know from [CGQ99] that equivalence classes for O, of points
of the interior of this semimodule are singletons. Other equivalence classes are half-lines, as
shown on the figure.
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z3

F

Z1 T2

Figure 2: Orthogonal projection of the reachable space R1s for the (A, B) pair of (14)

Z3

Z2

Figure 3: Observable congruence associated to (A7, BT)
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—u

o

G Qe g

Figure 4: A timed event graph representing three machines in tandem

4.3 Manufacturing system interpretation

We next interpret the previous computations in terms of discrete event systems. The dy-
namical system (12),(14) can be seen as the dater representation of the timed event graph of
Figure 4 (we refer the reader to [BCOQ92| for more details on the modeling of timed event
graphs).

This graph represent three machines in tandem, with respective processing times 1,2, 3.
The first machine is fed by a source u, and sends its output to a second machine, with a
transportation delay of 5. The second machine sends its output to a third machine, with a
transportation delay of 6. We associate to each transition a dater function N — Ryay: for
instance, u(k) gives the date of the k-th firing of the transition labeled wu, i.e. u(k) is the
arrival time of the k-th part, z3(k) gives the date at which the third machine initiates its
k-th task, etc. The reachable spaces Ry, which were depicted in Figure 2, determine the
possible values of the daters x;(k), ¢ = 1,...,3. The assumption that 2(0) = £ means that
the machines are ready to operate much before the first part arrives from the source, so that
only the u — z relation is considered.

Practically relevant quantities are the differences x; — x;: for instance, (k) —z1(k —1)
gives the sojourn time of the (k — 1)-th part in the storage resource between the first and
the second machine. The timed event graph of Figure 4 is an example of instable system,
since the second machine is slower than the first machine, parts may accumulate infinitely in
the intermediate storage resource. This is reflected by the unboundedness of the orthogonal
representation of the reachable semimodule, in Figure 2. For instance, one can obtain for
the trajectory z(k) the sequence of columns of the matrix R, by taking u(k) = k.

The finite control sequence which leads z(0) = & to z(k) = z can be computed by
solving the system RyUy = 2, where Uy = (u(1),... ,u(k))T. This system can be solved in
polynomial time using residuation theory, see [BCOQ92] (or [But94] for a more combinatorial
presentation). We did not address the difficulty that the finite control sequence Uy which
leads to a given point of the reachable space need not be physically admissible, because
dater functions must be nondecreasing. Nondecreasing controls can be modeled at the price
of adding one variable: if u is an arbitrary control sequence, the max-plus linear dynamical
system v(k) = v(k — 1) ® u(k) computes the nondecreasing hull v of u, and therefore v
represents an arbitrary nondecreasing control sequence.
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4.4 Rational semimodules over R,,. need not be stable by direct
image

When & = Rpax, the set of rational semimodules has no nice closure properties. We first
show that the direct image of a rational set by a linear map need not be a rational set. Let
a denote a positive irrational number, and consider the two vectors

(%) o= (1)
U = , vV=—a U= ,
-« 1

together with R = {w,v}* \ {0}. Since R = {u,v} + {u,v}*, R is rational. Now, let
A= (0,0) € (Rmax)**2. We have that:

A(R) = {max

= {max

(hl —Q 1h2,h2 —Oéhl) | hl,hz €N, hi + hy > ]_}
(—a t,t)| t=he —ahy, hi,hs € Nhy + he > 1} . (17)
We claim that the set A(R) is not rational. Indeed, let us assume by contradiction that A(R)
is semilinear, i.e., that A(R) = Ui<i<kr({ai} + U;), where the a; are elements of R U {—oo}
and the U; are finite subsets of RU{—oo}. We first remark that since —co & A(R), a; # —o0,
and —oo ¢ U, for all 1 < i < k. Using this remark, we now deduce that the elements of Uj;
must be nonnegative: otherwise, A(R) would not be bounded from below, and this would
contradict the fact that inf A(R) = 0 which follows from (17). Since all the elements of U; are
nonnegative, A(R) has a minimal element (namely min;<;<x a;), and this contradicts (17)
because « is an irrational number.

We next show that when & = Ry ax, the image of a rational semimodule by a linear map
need not be a rational semimodule. Consider

1 —a~t
u=|-al, v=—a tu= 1 ,
0 0

R = {u,v}*\ {0}, A=(_O ; _go)

oo =0

and X = span R. Then A(X) = span A(R) is spanned by the vectors

(max(hl — O[ﬁth, ho — Oéhl)
0

), for hi,hs € Nhy +he > 1 .

To make A(X) more explicit, let us observe that for all real numbers =, d,

span (g g) ={ (ﬁ;) € R? | min(y,6) + 25 < 7, < 7 + max(y,6)} U {(Zi)} . (18)
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It follows from (18) that

Ax) = { (2) ER | 2y > a5} u{(_z)} . (19)
Now, a straightforward variant of the proof of the irrationality of A(R) that we gave above
shows that A(X) is not a rational semimodule, for, if A(X) was spanned by a semilinear
set, the quantity z; — x> would attain its infimum when z € A(X) NR?, whereas (19) shows
that this infimum, which is equal to 0, is not attained.

Thus, when § = Ryax, the direct image of a rational semimodule by a linear map need
not be rational.

4.5 Noncommutative reachable spaces need not be rational

Let us consider now a time varying version of the max-plus linear system (12), in which (12a)
is replaced by

2(k) = A(k)z(k — 1) @ Bu(k) | (20)

where the matrix A(k) can take any value in a finite set {A41,... , 4;} C (Zmax)™ ™.

In order to characterize the reachable space and to show that it need not be rational,
it is useful to introduce some classical automata theoretical notation (see [BR88]). Let
¥ ={a1,...,ar} denote an alphabet of r letters. Recall that the free monoid ¥* is the set
of finite words on X, equipped with concatenation product. Let g : £* — (Zmax)™™™ denote
the unique morphism of monoids which sends a; to A;. The reachable space R, that is, the
set of all possible values of (k) € (Zmax)™, the control sequence u and the time k being
chosen arbitrarily, starting from z(0) = ¢, is given by:

R = span (u(X*)B) = span {u(w)B | w € £*} .

We next show that u(X*), and a fortiori {u(w)B | w € £*}, need not be a rational subset
of (Zimax)™*™, and that the reachable space R need not be rational.

Our counter-example relies on a remarkable construction of I. Simon [Sim90]. To mini-
mize changes by comparison to [Sim90], we will work in the semiring Zmin, rather than in
Zimax- All the results that follows have of course equivalent versions in Z,ax.

Let v : {a1,a2}* = (Zmin)*** denote the unique morphism such that:

0 o0 o0 ™ 1 1 oo o
R N I EE
oo oo oo 0 oo oo oo 0
and consider the function s : ¥* — Zpin, w — s(w),
s(w) = ap(w)B wherea=(0 oo oo oo) andf=(0 oo o0 O)T . (21)
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Simon [Sim90] shows that

min{|w| | s(w) >n} =Y (Z) _n ;n VneN , (22)

where |w| denotes the length of the word w. In essence, (22) means that s(w) takes values
of order /|w| when |w| — co. We will use this property to build an irrational reachable
space R.

Let

(-1 +4oo
D= <+oo 0 )
and consider the unique morphism y : {a1,a2}* = (Zmin)®*¢,

p(ar) = diag(v(a1), D), p(az) = diag(v(as), D) , (23)

where diag(F, @) denote the matrix with diagonal blocks F' and G and +oco elsewhere. The
following proposition shows that the reachable space R obtained by taking B to be the
identity matrix, and p as above, is irrational.

Proposition 4.4. Let u be defined by (23). Then, span u({a1,az2}*) is not a rational sub-
semimodule of (Zimin)®*%. A fortiori, the semigroup u({a1,a2}*) is an irrational subset of
((Z U {+00})%%, +).

Proof. Let C denote the map (Zmin)®*® — (Zmin)®, which sends a matrix X to
C(X) = (oY B, X535, Xes)

where Y denote the {1,2,3,4} x {1,2, 3,4} principal submatrix of X. Using (23) and (21),
we get

Clp(w)) = (s(w), —[w|,0),  Vw € {ar,a2}" . (24)

If X = spanpu({a1,a2})* were rational, C(X) would also be rational, by Theorem 3.5. We
have represented C'(X) on Figure 5: the irrationality of C(X) is intuitively clear from the
figure, since the boundary of the semimodule has a discrete quadratic shape (extremal points
are represented by bold points).

However, proving that the figure is correct would require some reworking of the arguments
of [Sim90], so we will give a simpler formal argument showing the irrationality of C(X). Let

W ={w € {a1,a2}* | s(z) > s(w) = |z| > |w|} .
We claim that

Yw € W, C(u(w)) is an extremal point of C(X). (25)
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T3

T T2
Figure 5: An irrational subsemimodule of (Zmyin)®.

Let us first show that Claim (25) implies the irrationality of C'(X). Consider
E = {(.’L’l,.’l?z) | (.’L’l,wz,(]) € EXt(C(X))} . (26)

If X were rational, so would be C(X), and by Theorem 3.7, the set of extremal points
Ext(C(X)) of C(X) would be rational, and so E would be rational.

Now, it follows from the definition of extremal points that for any set G of generators of
a semimodule X,

Ext(X) CZ+G={AQg| A€Z,ge G} . (27)

Combining (27), (26), and (25), and using the fact that the third coordinate of C'(u(w)) is
0 for all w € {a1,a2}*, we get that

{(s(w), =[w]) | we W} C E C{(s(w), —[w]) | w € {a1,a2}"} . (28)
Now, for any rational subset R of (Z?, +), consider the function:
YR :Z — ZU {£oo}, yr(n) =sup{k € Z | (n,k) € R} ,
together with its support:
suppyr ={n € Z| Ik € Z, (n,k) € R} ={n € Z| yr(n) # —oo} .

It follows from the fact that rational subsets of (Z2, +) are semilinear that if R is rational, the
restriction of yg to its support can be bounded from below by an affine function. But (28),
together with (22), so that yg(n) takes values of order of magnitude —(n?+mn)/2. Therefore,
FE is irrational, a contradiction.
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It remains to show Claim (25). Since several words w of the same length can give
the same s(w), the family {C(u(w))}wefar,aey = {(8(w), —|w],0)}wefay,a0}+ cONtains re-
peated elements. So let us introduce a subfamily, {C(u(w))}wew’, with the property that
{Cuw)) | we{ar,a2}"} = {C(p(w)) | we W'}, and

w,z € W', lw| =|z] = s(w) #s(z) . (29)
To show that C'(u(w)) is extremal when w € W N W', it suffices to check that there is no
family {\.}.ew\w C Zmin such that
Cluw)) = P A olu>) ,
zEW \w
ie.

(s(w),~hul,0) = _inf X +(5(),=12,0) (30

It follows from (30) that
A: 2 max(s(w) — 5(z), [2| — |w],0) .

Now, by definition of W and by (29), max(s(w) — s(2), |2| — |w|) > 0 for all z € W’ such
that z # w, and since A, > max(s(w) — s(2), |z| — |w|) > 0 is an integer, we conclude that
Az > 1. Since this holds for all z € W'\ w, the equality (30) cannot hold, because the third
coordinate of the right-hand side of (30) must be greater than or equal to 1, whereas the
third coordinate of the left hand side of (30) is equal to 0. O

The counter example of Proposition 4.4 shows that the rational semimodules tools do not
apply naturally to max-plus automata problems, such as the ones appearing in [Gau95,
Kli99a, K1i99b)].
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