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Abstract: We present in this report a comparative study between models of line
network extraction, within a stochastic geometry framework. We rely on the theory
of marked point processes specified by a density with respect to the uniform Poisson
process. We aim to determine which prior density is the most relevant for road
network detection. The "Candy" model, introduced in [21] for the extraction of road
networks, is used as a reference model. This model is based on the idea that a road
network can be thought of as a realization of a Markov object process, where the
objects correspond to interacting line segments. We have developed two variants
of this model which use quality coefficients for interactions. The first of these two
variants is a generalization of the "Candy" model and the second one is an adaptation
of the "IDQ" model proposed in [13] for the problem of building extraction from
digital elevation models. The optimization is achieved by a simulated annealing with
a RIMCMC algorithm. The experimental results, obtained for each model on aerial
or satellite images, show the interest of adding quality coefficients for interactions in
the prior density.
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Etude Comparative de Processus Ponctuels pour
I’Extraction de Réseaux Linéiques en télédétection

Résumé : Nous présentons, dans ce rapport, une étude comparative entre plusieurs
modéles d’extraction de réseaux linéiques, issus de la géométrie stochastique. Nous
nous placons dans le cadre des processus ponctuels marqués spécifiés par une den-
sité par rapport au processus de Poisson homogeéne. L’objectif de cette étude est de
déterminer quelle type de densité a priori est la plus adaptée & cette probématique
de détection de réseaux linéiques, et plus particuliérement de réseaux routiers. Nous
reprenons le "Candy" modéle, introduit dans [21] pour 'extraction de réseaux rou-
tiers, et nous l'utilisons comme modéle de référence. Ce modéle est basé sur 'idée
qu’un réseau routier peut étre assimilé & une réalisation d’un processus Markov ob-
jet, ol les objets correspondent & des segments en interaction. Nous proposons deux
variantes de ce modéle qui font intervenir des coefficients mesurant la qualité des
interactions entre objets. La premiére est une généralisation du "Candy" modéle et
la seconde correspond & une adaptation du modeéle "IDQ", proposé dans [13] pour
I'extraction de batiments dans les modéles numériques d’élévation. Nous réalisons
I'optimisation de chaque modéle par un recuit simulé sur un algorithme MCMC a
sauts réversibles. Les résultats expérimentaux obtenus pour les trois modéles, sur
des images satellitaires ou aériennes, permettent de vérifier I'intérét de I'intégration
de la qualité des interactions dans la densité a priori.

Mots-clés : Processus ponctuels, RIMCMC, extraction de réseaux linéiques.
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4 Lacoste & Descombes & Zerubia

1 Introduction

In the perspective of cartographic update assistance, we aim to extract road networks
from images. Motivated by the increase of data acquisition, a wide variety of meth-
ods have been - and will be - developed in order to answer to this difficult problem.
A first possibility is provided by semi-automatic approaches where an operator gives
starting points and directions in order to initialize a following road algorithm, as for
instance in [4], or some checking points which may be linked by an algorithm based
on dynamic programming, as in [10], or on deformable contour models, as in [12].
This methods can be extended to fully-automatic ones by an automatic detection
of road seeds [2, 24]. A multi-scale approach is also used to combine detection of
the road central line at coarse level and road borders at fine level [9]. Another way
to automatically provide a result is the use of combined low-level operators [3]. A
non-supervised technique, which is not based on a combination of several process-
ings on the image - as for the previous fully-automatic techniques - , is modeling
road networks by a Markov object process. Indeed, these recently developed models
allow us to use stochastic properties as those of Markov fields while using strong
geometrical constraints. Moreover, it avoids the important sensitivity to noise and
local minima of the usual pixel approaches.

The line network S is seen as realization of a Markov object process S where the
objects are interacting segments. Such a process can be specified by a density f with
respect to the distribution of a uniform Poisson point process which is a completely
random (marked) point process. It is the case of the "Candy" model defined in [21]
for line network extraction from aerial and satellite images.

In order to achieve the detection of objects from images, this density has to be
composed by two different terms. First, a prior knowledge has to be integrated into
the density in order to smooth the solution and avoid breaks in the line network.
Second, a data term is used to fit the data. Thus, the density of the point process
can be written as the product of a prior density k, and a data term hy

f(8) o< ha(D/S) hp(S) (1)

where S is a realization of S and D the pixel value grid of the considered image.

In this work, we have been interested in the construction of a good prior density
in order to obtain a realistic line network. The performances of the "Candy" model

INRIA



Point Processes Comparison for Line Network Extraction 5

in simulating and detecting line network have already been shown. Moreover, its
good stability and Markov properties have been proved in [23], which makes it a
good reference model for line network extraction. In this report, two extensions of
the "Candy" model are proposed and compared to this original model.

Each of those prior densities is defined in Section 2. To make a reliable comparison
between each prior model, we use the same data term - defined in Section 3 - for
the three models. Section 4 explains how the models can be sampled and how to
optimize their densities with respect to the Poisson measure. Finally, some results
are given in Section 5 leading to a comparative analysis of the three prior models.

2 Definition of the prior models

2.1 "Candy" model

This model is based on three types of possible relations between segments : the
connection R, and two relations of bad orientation, R;, (internal bad orientation)
and R, (external bad orientation).

Two segments are said to be connected if two of their extremities are closer than
a constant €. This relation (connection) defines several types of segments as shown
in Figure 1. Free segments are those which are not connected ; single ones are those

Circle of radius €

Free segment Single segment Double segment

Figure 1: Segment types defined with respect to R..

with only one of their endpoints connected to other segments ; and double segments
have their two endpoints connected. In the density, the first two types of segments
(free and single) are penalized in order to avoid breaks in the network and false
alarms, the assumption being that most roads are not so short that can be described

!Note that, under the Poisson process, no exact connection between pair of segments occurs
almost surely.

RR n° 4516



6 Lacoste & Descombes & Zerubia

by a free segment.

In order to avoid superposition of line segments or pairs of segments crossing at
too sharp angle while allowing crossing at right angle, the internal bad orientation,
R;,, is defined. Pairs of segments in internal bad orientation are penalized. It con-

Figure 2: Internal bad orientation R;,.

cerns segments whose midpoints and orientations are too close?. So, in Figure 2, the
pair (s, s2) is concerned by this relation (R;,) and (s1, s3) is not.

The last relation R, has been introduced to control the curvature of the line
network. Thus, R., concerns pairs of segments whose midpoints are located further
than the larger radius of these segments and whose two extremities are close enough.
In this case, if they are disoriented, like s; and sz in Figure 3, they are said to be in
external bad orientation.

The pairwise interaction potential of the "Candy" model is a weighted sum of
the numbers of free segments n, of single segments n, and of bad pairs of segments
with respect to R;, and Re,. So, the prior density of the "Candy" model can be
written as follows :

hy(S) ox [ exp [—wn s — wshs — WioNio — WeoTleo 2
P Fivf

2For more precision, see [21, 23].

INRIA
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St =T LT

T— not taken into account

Figure 3: External bad orientation R.,.

((n : total number of segments,
ny : number of free segments,
ns : number of single segments,

where : ¢ n;, : number of pairs of segments corresponding to R;,,
Neo - number of pairs of segments corresponding to R,
w; : positive weights,
| # : intensity factor.

This density specifies a well-defined marked point process, as the Ruelle ’s sta-
bility condition [19] is verified. This condition and the stronger condition of local
stability are proven in [23]. Moreover, the "Candy" model is a Markov process with
respect to the relation ~ defined by :

s~ s = d(ps — ps) < 2(Limas + €)

where p, denotes the midpoint of the segment s, and d the Euclidean distance in R?.
This property allows to reduce the cost of one iteration in the RJM CMC algorithm
defined in Section 4.

Nevertheless, the density takes the same value for configurations which do not
have the same quality, as we can see in Figure 4. Thus, we can obtain a line network
with little breaks between connected extremities and not as smooth as possible. That
is the reason why we have introduced quality coefficients to smooth the solution in
the two following models.

RR n° 4516



8 Lacoste & Descombes & Zerubia

et

Figure 4: A drawback of the "Candy" model.

Same prior density

2.2 "Quality Candy" model

Considering the "Candy" model as a good starting point, we have chosen to keep
its general structure, only replacing constant potential of interaction by variable
functions g, for different relations between segments. The prior density is now given
by the following formula :

hp(S) o< " exp [—njwp — nsws — z Wy Z 9r(8i,85) | 3)

TER <8i,8;>nr

n,nys,n, are defined as before,
where : <, >, denotes a pair of interacting segments with respect to r,
gr(.,.) = potential function with respect to r.

One can notice that if we take the 2 relations of bad orientation of the first model
and a potential function equal to 1 in any case, we get back to the "Candy" model.
Thus, this model can be seen as a generalization of the "Candy" model.

First of all, we have chosen to redefine the relation of connection adding a con-
straint to accelerate the optimization algorithm. From now on, two segments are
said to be connected if the angle they form is not sharp. For example, in Figure 5,
s1 and s3 are not connected. Moreover, in order to promote pairs of segments whose
endpoints and orientations are close, like (s1, s9) in Figure 5, a potential function
gr, is defined for pairs of connected segments as the mean of two functions :

fOI' S; ~e¢ Sj ) ch<Si7Sj) = 2

INRIA



Point Processes Comparison for Line Network Extraction 9

Figure 5: Different types of connection - (s1,52) : attractive connection - (s1,83) :
not considered as a connection - (s1,84) : repulsive connection with respect to the
orientation.

_O'(Tz'ja Tmaw) if |T’ij| < Tmaz
9-(7ij) =
with 1 if not

9e(dij) = —o(dij, €)

Here, g, deals with orientation. It gives an attractive (= negative) weight to
pairs of segments (s;, s;) whose difference of orientation 7;; is lower than a threshold
7, and a repulsive (= positive) one in the other case. Whereas g, deals with the
difference d;; between extremities and is attractive.

The attractive terms of these two functions are given by the quality function o
given in equation (5) :

o(..M): [-M,M] — [0,1]
1 1+ M? (5)

v = o@M =g Y

This is a positive function for values in [—M, M], which takes its maximum for
a difference of orientation or a distance equal to 0, as shown in Figure 6.

RR n° 4516



10 Lacoste & Descombes & Zerubia

-T2 -4 0 4 w2

Figure 6: Quality function for two maximal boundary : M = 7/2 and M = 7 /4.

Moreover, this new potential allows us to work without the relation of external
bad orientation R.,, as the repulsive part of the connection potential concerns the
same type of interaction.

Finally, we keep exactly the same relation for internal bad orientation, but rede-
fine the potential function. Pairs of segments forming a too sharp angle are forbidden
for stability reasons. So, an infinite weight is given to them (i.e. "hard-core" po-
tential). For the other pairs in internal bad orientation, we use the same quality
function ¢ to define a repulsive weight based on the difference of orientation between

the two segments. So, for each pair (s;,s;) such that s; ~;, s;, the formula is the
following :

oo if T, i < C
(8i,85) = 6
ng( i3 J) { 1— U(Tij,ﬂ'/Q — Smin) (6)
where 7;; is the difference of orientation between s; and s; , and 6,4y, is the minimal
difference with respect to the right angle from which two segments are considered as
disoriented, and ¢ the minimal difference of orientation which can be present in the
configuration.

To sum up, the "Quality Candy" model only holds on two relations between seg-
ments : the connection which can be an attractive or a repulsive interaction, and the

INRIA
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internal bad orientation, which is always repulsive. Moreover, this model is locally
stable as proven hereafter which guarantees the ergodic convergence of the algorithm
described in Section 4.

Stability proof

To prove the local stability (stronger condition than Ruelle’s one), a superior

bound for the ratio h%jgil), for all S in Q = |J2{S C F/n(S) = i} and s in

U = [F x K] (where F C R? is the compact set where points - segment midpoints -
are observed, and K the mark space - space of lengths and orientations - ) has to be
found whenever hy(S) > 0.

The expression of h,;ij;;’) is the following :
%LSJ)SI) =fexp [—wy Enf(S us') — nf(S)z— W Sns(S’U s') — ns(S)z
P ~~ e
A B
—we Y gr(si8)—wie D> gR,(si,9)] (™)
fsi;51>c | \<Si,sl>io B
c D

Thus, uniformly bounding from below the parts A, B C and D, is sufficient to
prove local stability.

Firstly, considering the term A of equation (7) , the addition of a segment s' in
the configuration S gives :

p 1 4f s is free
ny(SUs) —ny(S) = { —#({ s; free in S/s' ~. s; }) if s' is single or double
where §(.) denotes the cardinal of a set. Here, the number of free segments in S
which may be connected to a new segment s’ cannot be bounded as it has been done
for the "Candy" model’. Indeed, an infinity of segments could be within a ball of
radius € without being connected, as two segments forming a sharp angle are not
connected. This is the reason why a "hard-core” potential has been introduced for

31f R, is defined for every difference of orientation, as in the "Candy" model, the maximal
number of free segments for which an endpoint is within a ball of radius ¢ is 6.

RR n° 4516



12 Lacoste & Descombes & Zerubia

pairs of segments forming a too sharp angle (see equation (6)). Pairs of segments
in internal bad orientation - which is the case of non connected segments whose two
extremities are at a distance smaller than € because they form a sharp angle - are
not present in the compact set F € R? almost surely, if the difference of orientation
between the two segments forming the pair is lower than a constant c : in this case
, hp(S) = 0. So, such configurations must not be taken into account in the stability
study. Consequently, the number of segments connected to one endpoint of s’ is
bounded by Nmaz, the mazimal number of segments for which one endpoint is on the
same ball of radius e, with a minimal difference of orientation of ¢ and a mazimal
difference of orientation equal to ® (as a connection only occurs when the formed
angle is larger than 7/2). So, Nmas s given by :

T
maa::E_ 1
n (C)+

where ¢ is expressed in radian and E denotes the integer part. The minimal bound
of A is obtained for the case of a birth of a double segment s', connected to Nyaz
segments at each of its endpoints :

A> =2 Nmaa
Secondly, B can be decomposed as follows :

(1 if s" is free

14+ 4({ s; free in S/s' ~¢ s; })
ns(SUs ) —ns(S) = — t({ s; single in S} N {s; double in (SUs')}) if s" is single

8({ si free in S/s' ~. s; })
L — #({ s; single in S} N {s; double in (SUs") }) if s' is double

The worst case occurs when a mazimal number of single segments in S becomes double
segments in (S Us'). Thus,
B > -2 Nmazx

Thirdly, given equation (4) and the fact that the quality function is bounded from
above by 1, gg,(si,s;) > —1. Thus, the sum C is bounded as follows :

C > -2 Nmaz

Then, as gr,,(si,s')q s a positive function, the expression D is bounded from
below by 0.
D>0

INRIA
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Finally, Vs' and VS € Q/f(S) #0 ,

hyp(SU S

7,(5) < [ exp [2 (Wi + ws + we) (E(%) + 1)] (8)

which proves that the "Quality Candy” model is locally stable.

2.3 "IDQ" model

This subsection briefly presents the "IDQ" model introduced in [13] in order to ex-
tract buildings from digital elevation models. For each relation r, cliques with respect
to r that are formed by a given number of objects ¢, (for example, ¢, = 2 for pair-
wise interactions) are considered. To simplify, we call them c,-cliques. The relations
taking part in the model are described by three global terms on the configuration of
objects S :

e the intensity I which is defined as the average of numbers of c,-cliques to
which an object belongs. Here is its expression :

cr Ne(r, S)
I = ——""

(r.8) = S Q
where N.(r,S) is the number of ¢,-cliques and N,(r,.S) the number of objects
concerned by 7 in S.

e the diffusion D which is the proportion of segments in a c,-clique. It is given
by :
No(r, 5)

n(S)

where n(S) is the total number of objects in S.

D(r,S) = (10)

e the quality @ defined as the mean of a quality function - defined as in Section
2.2 - on each c¢,-clique. For instance, for pairwise interaction :

Q(T,S)=m S on(sr5) (11)

<8§,8;>r

RR n° 4516



14 Lacoste & Descombes & Zerubia

where 0,(s;, s;) denotes the value of the quality function for a pair of interacting
segments with respect to r, < s;,5; >,.

The prior density is then the product of three interaction functions fr, fp and
foq respectively depending on I, D and Q.

hy(S) o< 8" T fr(R)fp(R)fo(R) (12)

ReR

where the interaction functions f, can be written as follows :

o Fory=Tory=D: f(R) = exp 1 (o) — o) log( LT

where y, is the optimal value chosen for y = I or D, and 5 a small constant.

e For Q :fo(R) = exp [ —q,r (Q(R) — 1)].

These interaction functions have good properties : they exhibit an exponential
form with a convex potential reaching its minimum for a chosen optimal value. More-
over, the logarithmic potential for D and @ lead to work with quantities of the same
order as the factor of intensity 3. The "IDQ" density specifies a well-defined point
process which is locally stable [13].

In our case, objects are pairwise interacting segments and we consider the same
relations as for the "Quality Candy" model. For the connection R., we have chosen
1, = 2 for intensity because we want segments to be doubly connected in mean, and
D, = 1 for diffusion because free segments have to be avoided. For the relation of
bad orientation R;,, only the diffusion is taken into account with an optimal value
D, set to 0.

3 Data modeling

In order to extract line networks from any image, we need a realistic and robust
modeling of the data. This section describes the construction of the data term.

Given a configuration of segments, S, the subsets of pixel values corresponding to
each segment and its neighborhood are supposed to be independent. This simplifying

INRIA



Point Processes Comparison for Line Network Extraction 15

hypothesis allows a factorization of the data term. Within a Gibbs framework, the
general form of the data term is thus given by :

ha(D/S) o< exp | =74 Z bi (13)
$;€ES

where 6; is some statistical value (defined below) computed on the set of pixel values

corresponding to a region defined as the neighborhood of the segment s; on the image
D. ~4 is a positive and constant weight.

Oneregion Different regions

Figure 7: Hy - Significant difference with the near background.

The potential §; is based on two hypothesis with respect to a line segment and
its neighborhood. We first suppose that the background regions are different, at
least on average, from the segment region (see Figure 7). Secondly, the set of pixel

Non homogeneous segment Homogeneous segment

Figure 8: Hs - Segment homogeneity.

values corresponding to a segment has to be homogeneous, otherwise edges could be
detected instead of roads (see Figure 8).

To check these hypotheses for a given segment s;, this segment is divided into
several regions bj, ..., b,. Moreover, two strips on both sides of a segment s;, R

RR n° 4516



16 Lacoste & Descombes & Zerubia

and Ré, are considered, at a distance d from the segment in order to allow a range
of widths. This is illustrated in Figure 9. Considering pixel values of each strip as a

Figure 9: Division of segment into several strips.

sample of a population, a Student’s t-test is used to determine if the averages of the
two samples are significantly different. This statistical test deals with the problems
associated with inference based on small samples which is our case, especially when a
segment is near the boundary of the image. The formula for the t-test is a ratio. The
top part of the ratio is the difference between the two sample means. The bottom
part is a measure of the variability of the sample. Here is the t-test expression for
two samples x and y :

trtest(z, ) = —Z—I_ (14
= a.
e

where T, o and n respectively refer to the sample mean, the sample standard devia-
tion, and the number of observations.

Above some critical value, we can consider that these two samples come from
two populations of different means. Thus, the statistical value for mean difference
hypothesis H; is the minimum of the test value between the whole segment and a
border region :

Th,(s;) = min_ [ t-test(R}, s
Hl( 2) lE{l,Q}[ ( 15 1)]
and the statistical value for homogeneity hypothesis Hs is the maximal t-test between
two inside regions :

Th,(s;) = ma, t-test(b;, b
mle) = max  [tetest(by, bo)

INRIA



Point Processes Comparison for Line Network Extraction 17

Then, the potential value for each segment is the ratio of this two quantities,
with the additional condition that T4, (s;) is lower than 1 in order to forbid division
by infinity and avoid promoting excessively very homogeneous regions.

T, (si)
max [ 1, T,(s:)]

Moreover, we proceed to a thresholding and a conversion of the test values from
[0, 0] to [—1,1]. Finally, the potential value is the following :

T, =

(15)

1 T <ty
b= 1-20=0 ifty <T; <ty (16)
-1 if T; >ty

where t; and ¢y (1 < t9) are two empirically chosen positive thresholds.

This potential §; associated to the segment s; is a dual potential : it can take
attractive (negative) values, and repulsive (positive) values. Thresholds ¢; and t5 are
robust in the sense that results are similar if we modify a little bit their values, and
that we can use the same thresholds for two different images provided that the two
line networks are similar enough (i.e. nearly the same contrast between roads and
the background, nearly the same homogeneity).

To verify the relevance of this potential function, we have computed its mean
value in each pixel of the image grid. More precisely, we have computed the mean
values for segments of minimal length L,,;,, whose midpoint is on the considered
pixel, for 24 orientation in [—m,7|. Figure 10 gives an example on a SPOT image.
The negative values of the potential §; are in white - the pixel is then a good choice
for a segment center - and the positive values of §; are in black. This result confirms
that the proposed data term choice is reasonable.

To summarize, we have constructed a data term with an exponential form whose

the energy can be easily computed. Moreover, it is based on statistical tests which
seem to be adapted to line network recognition.

RR n° 4516



18 Lacoste & Descombes & Zerubia

Figure 10: Data term on a spot image - (a) : data - (b) : sign of the mean value of
the potential, computed for a fixed segment length and 24 segment orientations.

4 Reversible Jump Monte Carlo Markov Chain algorithm

4.1 Simulation of spatial point processes

Let’s recall that the distribution of the point process 7 is supported by a state space
of varying dimension. The state space is :

Q=) with Q; ={S c F/n(S) =1}
=1

where F C R? is the compact subset corresponding to the image.

To deal with this probability measure in which the random variable has a ran-
domly variable dimension, two types of algorithms have been proposed in the liter-
ature : Birth and Death (BD) samplers, based on a spatial birth and death process
[14, 16], and Reversible Jump Monte Carlo Markov Chain (RJMCMC) algorithms
[5, 6], where the generated Markov chain S; performs small jumps between the spaces
Q;. Two main reasons have prompted us to use a RIMCMC algorithm to simulate
the models defined in the previous section. Firstly, in many cases, the BD sampler

INRIA



Point Processes Comparison for Line Network Extraction 19

is less efficient, as it has been shown in [8]. Secondly, the BD algorithm only allows
birth or death of an object, whereas several types of updates - such as translation,
rotation, dilation of an object - can be defined in the RJIMCMC algorithm. So, if
relevant moves are proposed, the algorithm convergence is faster, especially when
the process is geometrically constrained.

The RJIMCMC algorithm consists in simulating a discrete Markov Chain with
a Metropolis-Hastings-Green dynamics [5, 6]. The measure of interest occurs as
the stationary measure of the chain. This iterative algorithm does not depend on
the initial state. Table 1 describes one iteration of the algorithm. At each step,

At stept, S; =S5 :
1. Sample S’ ~ Q(S — .)
2. Evaluate Green’s ratio R(S,S’)

3. Move to the state S’ with probability «(S,S’) = min(1, R(S,S"))

Table 1: RIMCMC algorithm.

a transition from the current state S to a new state S’ is proposed according to a
proposition kernel Q(S — .). The transition is accepted with a probability (S, S’)
given by the Green’s ratio. This acceptance ratio is computed so that the detailed
balance condition is verified, condition under which this algorithm converges to the
unnormalized measure of the spatial point process w. The expression of this strong
condition is given by the equation (17) :

[ [ wtas)pes.as = [ [ xtas) pis.as) )
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where A and B are two Borel subsets of €2, 7 is the measure of the spatial point
process, and P(,) the transition kernel of the Markov chain S;, defined as follows :

P(S,A) == P(St—l—l € A|St == S)

- / a(S, S')Q(S — dS') +1[S € B] / (1 - a(S,S)NQ(S — dS')
A Q

~ J ~ 7
v

~
acceptance case rejection case

(18)
where 1[.] denotes the indicator function.

To hold condition (17), it is sufficient that :

/ (dS) / QS — dS') a(S, S') = / (ds") / Q(S' — dS) a(S',S) VA BCQ
A B B A

(19)

Furthermore, supposing that 7(dS) Q(S — dS’) has a finite density, D™?, with

respect to a symmetrical measure 9 on € x €, the condition (17) can be written as

follows :
a(S,S8) D™9(S,5") = (S, S) D™9(S, 5") (20)

Finally, taking the choice made in [11] :

(S, 8") = min {1, R(S,5")} (21)
where R is the Green’s ratio given by :
DS, S)
R(S,8') = —~——+~ 22
( ? ) DWQ(S, SI) ( )

equality (20) is verified.

One interesting point of the Metropolis-Hastings-Green algorithm is that the
proposition kernel @ can be decomposed into several kernels ¢;, each corresponding
to a reversible move, as it has been proposed in [6]. The algorithm is the same as
in Table 1, replacing @ by a randomly chosen kernel ¢;. The procedure is given in
Table 2. In the next section, several transition kernels are proposed and the explicit
formula of the associated Green’s ratio is given.
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At step t, S; =5 :
1. Randomly choose a type of move ¢

2. Sample S’ ~ ¢;(S — .)

TG !
3. Bvaluate (S, 5") = %

4. Move to the state S’ with probability o = min(1, R;(S,S"))

Table 2: RIMCMC algorithm with several moves.

4.2 Proposition kernel and computing Green’s ratio

Although it is sufficient to define the uniform birth-and-death [5] - see Section 4.2.1
- in order to simulate a marked point process (theoretically, S; should converge to
the same measure), it is important to define more or less complex moves in order to
accelerate the convergence of the Markov chain. For example, a simple move, such as
a translation or a rotation, is more efficient than a death followed by a birth, leading
to the same result. Such types of moves are described in Section 4.2.2. Furthermore,
a birth-and-death within a neighborhood is often judicious, especially if objects are
supposed to be in interaction. In Section 4.2.3, such a kernel with respect to the
connection is defined and Green’s ratio computation is presented in detail.

4.2.1 Uniform birth-and-death

The uniform birth-and-death is the simplest proposition kernel which allows to make
small jumps between spaces of different sizes. It consists in a uniform birth in the
compact set F C R? - proposed with a probability p, - and in a uniform death
(inverse proposition) in the set of segments S. It is given by :

Q(S — A) =pp Qp(S — A) + pa Qa(S — A) (23)

where p, (resp. pg = 1 — pp) is the probability of choosing a birth (resp. a death).
The two parts of the kernel (Qp and Qg) respectively correspond to parts 2 and 3 of
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At step t, Sy = S.

1. Choose a birth within a neighborhood with a probability ps.
In this case go to 2, otherwise go to 3.

2. Birth case :
- ¢’ =[p,L, 0] is uniformely drawed in [ F' X [Lmin, Limaz] % [0,7] ]

f(S U 8/) Pd (Lmaz - Lmzn) ™
f(8) p (n(S) +1)

- move to the state S’ = S U s’ with probability @ = min(1, R(S,S U s'))

- compute R(S,SUs') =

3. Death case :
- choose s’ ~U{ S}

f(S\s") pyn(S)
f(S) Pd (Lmaz - Lmin) ™

- compute R(S, S\ s') =

- move to the state S’ = S\ s’ with probability & = min(1, R(S,S \ s'))

Table 3: Uniform birth-and-death.
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the algorithm given in Table 3. Following this procedure, the proposition kernel is
given by :

1
Q(S — A) = ps / e (S US) dA(S) + pa ) —1p(S\ ) (24)
v N AE) 2 g s\
where U = [F x K], K = [0, 7| X [Limin, Limaz] denotes the mark space, A the Lebesgue
measure, and n(S) the number of segments in S.

Then, for A C N (= { sets of n segments }) and B C N7{+1:

! _ s’ R o
/A /B 7(d9)Q(S — dS') y /A £(5) /U 15(5 U ) gy M) uds)

! . 1 !
[ [ s —as) = [ 1503 i 145\ ) uas)

s'eS
Considering the following symmetrical measure ¥ on A C N/ and B C NV{ L1

vam = [ /U 15(5Us) AA((dIff)) u(ds)

$(B,A) = /B S 14(S\ ) u(dS)

s'eS
where p denotes the Poisson measure and A the Lebesgue measure,

and considering uniformly distributed marks in A(K) (that is to say % is the

measure of a marked point), the derivative for (S, S U s’) with respect to ¢ is given
by :

TQ no__ Db
and the derivative for (5,5 \ ') with respect to 1 is :
TQ N o_ Pd
DrAS,S\ &) = £(5) s (26)

Finally, the ratio for a death or a birth is computed by equation (22) and is given
in Table 3.
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4.2.2 Simple Moves

The second move usually proposed is the modification of a randomly chosen object
according to a symmetrical transformation.

Let be 7 = {T;, : a € E} a family of transformations, parameterized by a vector
a € E. The modification of an object s is done by applying Ty, :

s — Tu(s)

where ¢ is uniformly chosen in E.

(a) (b) (c)

NN R N

\\

Figure 11: Simple moves : (a) translation - (b) rotation - (c¢) dilation.

For instance, 7 can be defined as the family of rotations defined in [—Ag, Ag].
A rotation Ty, is defined by :

xr T

_ly || Z y

Tols=\ ||~ L
0 (0 + dg) [x]

where dg € [—Ay, Ay| denotes the difference of orientations between the segment s
and Ty, (s), and [.] denotes the modulo function.

In the same way, families of translations - parameterized by a vector [dz, dy], dx €

[—Az, A, dy € [-Ay,Ay] - and dilations - parameterized by d; € [-Ap,Ag] -
are defined. A translation Tjg4, gy corresponds to the translation of the midpoint
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of the considered segment s with the condition that the new midpoint is in F' =
[OaXma:c] X [anmaw] :

(Z/"‘dy

[Xma;r:]
[Ymaz]

~ —

Td[dz,dy]

DN 8
> ™

A dilation Ty, corresponds to the modification of the segment length by the addition
of dy, with the additional condition that the new length is in [Lyin, Lmaz] :

T T

T, y || _ y
L L Lmzn + (L - Lmzn + dL) [Lma:c - Lmzn]

0 0

At step t, S; = S.
1. Choose s ~ U{ S}
2. Uniformly draw the parameter a of the application T,
2. Apply T, on s : 8" =T,(s)

3. Compute R(S, (S \5)Us) = %

4. Move to the state S’ = (S, (S'\ s) Us’) with probability & = min(1, R(S.5"))

Table 4: Transformation of an object by a symmetrical application T,.

The procedure is the same for each family of symmetrical transformations and
is given in Table 4. The proposition kernel for a uniform distribution of ¢ in E is
then :

s — 4= [ ¥ 15\ v 3o (27)

s'es

RR n° 4516



26 Lacoste & Descombes & Zerubia

The following rule for each transformation :

a6€EE <= —a€kF ,and
s=T,(s) = & =T_.(s)

allows us to easily define a symmetrical measure 1 on €2 x 2 :

v ) = [ [ 314 13\ VL) Y wlds)

s'eS g

— /Q /E > 148\ ) UT-a(s) 16(8) 5 () (aS)

ses!

- /Q/{a’—a/aEE}_EZ 14((S"\ s) UTu(s") 15(S") NE) 1(ds")

seS!

(28)
Due to equations(27) and (28), the density of 7(dS) Q(S — dS’) with respect to
¥ is equal to f(S) and the Green’s ratio is the ratio between the two density values :

R(S,(S\S)USI)Z%Z))LM

4.2.3 Birth-and-death within a neighborhood

(29)

In order to accelerate the process, it is important to make relevant propositions. Here,
the segments are supposed to be connected. So, proposing a birth near a extremity
seems to be relevant. That is the reason why we have introduced a birth-and-death
kernel within a neighborhood with respect to the connection. It has already been
done in [21], but in a complicated way which induces approximations. Our procedure
is similar to the one proposed in [23] and is given in Table 5. The transition kernel
for a birth-and-death within a neighborhood is composed of two parts, @, and Qg,
- as for a uniform birth-and-death (see equation (23)) - respectively correspond to
Part 2 and Part 3 of the algorithm. This proposition kernel is more complex than
the one of simple birth-and-death and so Green’s ratio computation is more complex
too. The chosen methodology has been inspired by the one proposed in [13] and is
given in details hereafter.
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At step t, S; = S.

1. Choose a birth within a neighborhood with a probability p,. In this case go to 2,
otherwise go to 3.

2. Birth case :
- choose a segment s ~ U{ S }

- choose an endpoint e, ; ~ U{ endpoints of s inside the data image }

d ~ U0, € ey, +dcoso

_ ¢ ~ U[0, 2] ni o, _ | €;+dsing
- sample z = 6 ~ U[0, 2] — § = I
L~ u[Lmina Lmaz] 0

- evaluate Green’s ratio R and move to the state S’ = S U s’ with probability @ = min(1, R)
3. Death case :
- choose s ~ U{ V. } , where V, is the subset of connected segments in S

- evaluate Green’s ratio R and move to the state S’ = S'\ s with probability a = min(1, R)

Table 5: Birth and Death within a neighborhood.
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Birth part of the proposition kernel :

b(S — A)=> p(s Z (e5) gy (S — A) (30)

SES =1
where p°(s) is the probability of choosing s in S, p*(e;) is the probability of choosing
the endpoint e; of s and ¢;"*(S — A) the probability of moving from S to A with a
birth from e;.

The simplest choice for p° and p*(e;) is the uniform distribution, so that :

Po(s) =

n(S)

where n(S) is the number of segments in S.

Given that a segment is not supposed to be connected outside of the compact set
F corresponding to the data, we take the following distribution for the choice of the
endpoint given a segment s :

if the two endpoints of s are falling in F'.

D[

p®(e;) = ¢ 0 if the endpoint e; of s is not in F'.
1 if e; is the only endpoint of s falling in F.

Then, we have to define ¢;“(S — A). The procedure to propose a birth of
segment from e; is the one defined in Table 5. Firstly, the endpoint of the proposed
segment is randomly drawn in the ball of center e; and of radius e Secondly, the
orientation and the length are uniformly drawn in the mark space*. From the ran-
domly drawn vector z thus defined, we finally apply a diffeomorphism 7, ; in order
to compute the corresponding segment s’ = 7,;(z). Consequently, the probability

s,e; .
¢, (S — A) can be written as follows :

4, (S — A) = Pz((SUn.i(2)) € A)

where Z ~ U[ [0, €] x [0,27] x [0,27] X [Limin, Lmaz] ]
s

“In the case of the two last models, the orientation is drawn so that the angle formed by the two
connected segments is large because of the new definition of the connection.
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Then,
s.e; _ ) A(dz)
S =4 = [ 148U 35
A(ds
= [ ) V) A
ns,i(2) H/_, (%)
1
de(s,s!)

1 / / ]‘ /
= ) /U Ly(se(s) 1a(SUS) ERCND) A(ds')

where A denotes the Lebesgue measure, J the Jacobian, d.(s,s’) the distance
between the two connected endpoints of s and s’, and V (s, e;) the set of segments
with at least one endpoint closer than € to the endpoint e; of s.

Finally, the expression of the birth part is the following :

Qy(S — A) = ZZ]) e;) /U Ly (s,e)(s') 1A(SU5')m)\(ds') (31)

s€S 1=1

Death part of the proposition kernel :
Qa(S — A) =" pi(s) 1a(S\ 8) (32)

s'es

where pj(s) is the probability of choosing s in S for a death. We define this proba-
bility by taking a uniform distribution on the segments which could be drawn by a
birth within a neighborhood, that is to say segments which are connected :

1 1

card(Va(S)) ~ n(S) —ny(5) 1 € VelS)

0 if s’ is free.

where V.(9) is the set of connected segments in S.
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Radon-Nykodym derivative :

In order to verify the detailed balance condition, a symmetrical measure ¢ on A C
Nix c N/, is defined :

WA B) = /A /U 15(5 U 8') Lyson(s)) v(ds') u(dS)

WB.A) = [ 3 1) 145\ ) )

where U = F x [0, 7] X [Lumins Limaz], V7 denotes the set of connected segments in S,

u the Poisson measure and v the measure of a marked point. Considering uniformly
A(ds)

distributed marks in K, this measure is : v(ds) = m, where A is the Lebesgue

measure.

Note that, by the Radon-Nykodym theorem, 7(.) Q(. — .) is absolutely continu-
ous with respect to . Indeed, ¥(A,B) =0= 7(A)Q(A — B) =0, for A C NI
(resp.NT{_i_l) and A C Nr{—i-l (resp. NJ).

The equation (31) allows to write for A C N and B C NT{H

[ [rasias—ash = [ 1) [ 1as 0P ZZIV(S,e ) 2D s

u€S i=1

,\ 2 “(eq
pb //1B (SUS) 1ysua( [ 2:: (Z dp(l(tes))

Thus, the derivative for (S,S U s’) with respect to 9 is :

/
=1 ueV(s,e;) de(u’s )

Furthermore, using equation (32) we have :

// (d9)Q(S — dS") /f )pa Y Pi(s") 1a(S\ ¢') u(dS)

s'eS
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As p3 (s) = 0if 5 is free, and p3 (s) = m otherwise, this can be written

as follows :
1
!
)1 -

// (dS)Q(S — dS") /szejsh,s A(S\ s") (S)pdn(s)_nf(s) 1(dS)

Thus, the derivative for (S,S \ s’) with respect to v is :
D"(S,5\ ') = f(8) —rer e (34)

n(S) —ng(S)

Finally, using equations (22), (33) and (34), the Green’s ratio for the birth of a
segment s is the following :

n F(S) pa A(D) n(S) !
oS50 = 505y py XK n(3" ~ (5 T Tuevioe) oty >

where S’ = (S U s).

Likewise, the Green’s ratio for the death of a segment s is :

=1 ueV(s,e;)

where S’ = (S'\ s).

4.3 Diagnosing convergence in practice

A stopping rule to guarantee convergence of the chain {S;} to the stationary measure
has to be defined. To detect this convergence, the convergence of the empirical av-
erage(s) M* of some function(s) k on S; is usually evaluated in the implementation
of MCMC algorithms (see [17]). A corresponding algorithm is proposed in Table 6.
For a given number ngg; of iterations, we test (for each function k) if the absolute
difference between the empirical average MF, evaluated at iteration ¢, and Mfe £ the
last average which has not verified the test, is lower than a small constant ¢ (after a
minimal iteration number, t,,,). If the test is verified for n.s; iterations, then the
algorithm is stopped.
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1.n=1
2. RIMCMC step t
3. If t > tin,

(n—1) M 4 + k(S

a. Evaluate empirical average of each function k : Mt’“ =

If |Mf—ME;| <6 Vk, T=T+1
b.
Else, T =0 and M}, = M/

4. T = Niest StOp

n=n+1
Else{ f—ta1 and go to 2.

Table 6: Stopping rule for the RIMCMC algorithm.

In our case, the degree of correlation between the S; is very strong : propositions
of transition may often be refused and moves concern only small modifications of
the configuration. However, we can use sub-sampling to reduce the effect of the
autocorrelation of {S;}. So, the chosen stopping rule is based on the empirical mean
of a sub-sampling of {S;,t = 1...N} given by :

Y ={S €{S,t=1..N}/t=1[T]}

where T is a fixed period between two samples of Y with respect to {S;}.

4.4 Samples of the prior models

In this subsection, a comparison of prior models is done from samples of each dis-
tribution obtained by the RIMCMC algorithm described in subsection 2, using the
stopping rule given in Table 6. Precisely, the chosen proposition kernel is composed
by two equiprobable kernels : a uniform birth-and-death kernel with p, = 1/2 and a
birth-and-death within a neighborhood kernel with p, = 1/2. Some tests have been
realized by taking only uniform birth-and-death kernel but, in this case, the station-
arity is reached after much more iterations or is never reached. This fact is also
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Figure 12: Sample of the "Candy" model whose density, with respect to Poisson
process of intensity 40000, is defined by the following parameterization : § = 1,
wy = 35, ws = 15, wi, = 50, we, = 50.

pointed out in [23] and one can understand this due to the strong geometrical con-
strains imposed on the process. The initial state is the empty configuration, except
for the "IDQ" model where it is taken from the independent uniform distribution.
The stationarity has been evaluated through the convergence of different statistics
for each model. For the "Candy" model, the convergence of empirical averages of the
sufficient statistics n(S), ns(S), nf(S), nio(S) and neo(S), is tested following table
6. For the "Quality Candy" model and the "IDQ" model, the sum of clique qualities
are also tested (for the "IDQ" model , the number of pairs of connected segments
nc(S) replaces ns(S) and ny(S)). To compute empirical averages a sub-sampling is
realized by selecting one sample every 1000 RJIMCMC steps (after a minimal number
of iterations fixed at 10000 iterations).

First of all, a result of the "Candy" model is given in Figure 12. The density
specifying this process, with respect to Poisson process of intensity 40000, is defined
by the following weights : 8 = 1, wy = 35, ws, = 15, w;, = 50 and w., = 50.
The result seems good in the sense that all segments are connected and form long
broken lines. Nevertheless, the drawback of this model, mentioned in Section 2.1, is
confirmed : small breaks between extremities are visible and the curvature of lines
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can be extremely strong. The result of this is a line network not as smooth as can
be a road in reality. This sample corresponds to the last sample of the RIMCMC
algorithm whose empirical averages are plotted in Figure 15(a). The stationarity is
reached after 1663000 iterations which corresponds to a computing time of 1 minute
and 46 seconds (on a PC with a Pentium III processor, 1000 MHz, and 1024 Mo of
RAM) .

Figure 13 gives realizations of processes specified by a density of type "Quality
Candy". The first one, 13(a), is the uniform Poisson process. The empirical average
of the number of points n(s) is verified to be equal to S A (if the measure of the
compact set F' is taken equal to 1), where X is the intensity of the reference Poisson
process. This allows to check the correct progress of the used RIMCMC algorithm.
Plot 13(b) concerns a realization without the internal bad orientation, but with the
connection trough the number of free and single segments. In this case, as the con-
nection is only defined for a large angle, the process is not stable. In practice, it
results in more and more segments sticking together. It is the case for Plot 13(b),
which is the last sample of the algorithm not stopped by averages convergence but
by the iteration number, whereas all other examples have been obtained after the
stationarity detection. Then, Plot 13(c) gives an example without the quality of con-
nection. It looks like a sample of "Candy" model without the connections at sharp
angle. The complete model is given by Plot 13(d). The line network is smoother
than the one of the "Candy" model. It seems to be better applied to road detection.
Figure 15 (b) gives the associated statistics. This process has converged after less it-
erations (1354000) than the "Candy" process but in more time (2 minutes). Indeed,
the cost of density computation is higher in this case than for the "Candy" density.

Finally, Figure 14 deals with the "IDQ" model. Plot 14(a) shows a drawback of
this model : if the weight assigned to the quality of connection is reduced to zero, a
segment tends to be connected to two other segments by one of its extremity. Indeed,
in this case, the global term of connection intensity increases more by the addition
of one segment connected to two others than by the addition of one segment con-
nected to an extremity which was not connected before. Nevertheless, the sample
of the complete "IDQ" model, given in Plot 14(b), completely satisfied the goal of
simulating roads, providing a very smooth line network. Moreover, Plot (c) of Figure
15 shows that the RIMCMC algorithm (Plot 14(b) corresponds to its last sample)
has converged in less time and less iterations than the two other ones : 15552000
iterations and 1 minute and 36 seconds. So, the density computation seems to be
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() (d)

Figure 13: Samples of the "Quality Candy" Model - (a) Process without interaction :
w; = 0Vi - (b) Process only depending on segment states : wy # 0, wy # 0, w, =
we = 0 - (¢) Process depending on segment states and on external bad orientation :
we =0 - (d) Complete model.
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sarsillos
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N I
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L X

(a) (b)

Figure 14: Samples of the "IDQ" model - (a) Model with yg = 0, where ¢ is the
weight of the connection quality in the energy - (b) Complete model.

equivalent to the one of the "Candy" model. Yet, the number of iterations is not so
good because the initial configuration is taken from a uniform and independent law
instead of the empty configuration as for the two other cases. Indeed, the initial state
cannot be the empty configuration because, if potential weights are too important,
the Markov chain will stay in the empty state. Here, to obtain a relevant configu-
ration, weights have to be stronger than for the two first models because quantities
evaluated - intensity, density, quality - are averages on the whole configuration®.

4.5 Simulated Annealing

In order to achieve the goal of extracting road networks from images, we have to
estimate a configuration which maximize the density of the process with respect to
the Poisson process measure, given by equation (1). If we had defined a proper
likelihood, we would have talked about MAP estimation 6. A possible alternative is
given in [18]. It is more sensible to details than the MAP criterion, but making use

SWhen the object number is important, the modification of averages I, D and Q is low. But
this is not the case when the number of objects is low, which explains the fact that the number of
objects cannot arise from the empty state.

5We are not in a Bayesian framework because of the construction of the data term which does
not correspond to a family of known probability densities.

INRIA



Point Processes Comparison for Line Network Extraction 37
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(b) Averages convergence detected after 1354000 iterations/120 s. for the "Quality Candy" model.
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(C) Averages convergence detected after 1552000 iterations/96 s. for the "IDQ" model.

Figure 15: Plots of statistics evaluated from generated samples by RIMCMC algo-
rithm - (a) "Candy" Model - (b) "Quality Candy" model - (c) "IDQ" model.
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of it is more difficult and it requires more calculation.

The optimization is realized by a simulated annealing using the RJIMCMC al-
gorithm given in Table 2 with a proposition kernel composed of five equiprobable
kernels : uniform birth-and-death (p, = 1/2), birth-and-death within a neighbor-
hood (py = 1/2), rotation, translation and dilation. The algorithm is given in Table
7.

Successive simulations of f7(S)u(dS) obtained by a RIMCMC algorithm (see Table
2) where :

f1(S) o [ha(S)hy(S)HT

with T gradually dropping to 0.

Table 7: simulated annealing with a RIMCMC algorithm.

A proof of convergence is given in [22] for a simulating annealing with a Birth and
Death sampler when the decrease of temperature T is logarithmic. This proof can be
adapted to RJIMCMC algorithm. In practice, temperature decreases geometrically
in order to accelerate the algorithm, and at each step :

Thy1=cT,

where ¢ denotes a constant close to 1.

5 Results

In this section, results of road detection for each prior models are compared on sev-
eral types of data. For a given image, the data term, given by equation (13), is taken
identical for all the models. The optimization, realized by a simulated annealing
with a RIMCMC algorithm, is the one described in Section 4.5.

5.1 Results on a SPOT image

The first image - see Figure 16 - is a SPOT image without any major difficulty :
the line network is rectilinear and clearly contrasted with respect to the background.
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Thresholds ¢; and t9 of data potential (eq. (16)) are empirically chosen equal to
t1=4andt2=8.

Figure 16: Data 1 : a SPOT image (256 x 256 pixels).

Figure 17 gives results for the "Candy" model with two different decreasing laws
of the temperature. If it is too fast, the detected line network is not complete as
Figure 17(b) shows. Indeed, there is a critical temperature where it is important to
pass slowly in order to reach the global maximum of the density (Figure 17(b) is only
a local minimum). That is why the complete cross which can be see in Figure 16 is
present in Figure 17(a), obtained with a slower temperature decrease. This points
out that the algorithm is very dependent on the temperature decrease. Thus, before
analyzing results of a prior models, we have to wonder whether we can be confident
in our algorithm.

Likewise, Figure 18 gives some results for the " Quality Candy" model. Just as
sample of the prior distribution, this model provides a smoother line network. More-
over, it appears to be not as sensitive to the temperature decrease as the "Candy"
model. This implies a possible significant reduction of computing time.

Figure 19 supplies results for "IDQ" model. The bad line network given in Figure

19(b) is not improved by a reduction of the temperature decrease, which corresponds
to Fig 19(a). Indeed, in the two cases a lot of false alarms and connection at right
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(a) Slow temperature decrease (b) Fast temperature decrease

Figure 17: Results of line network extraction from SPOT image (Fig. 16) taking
the "Candy" model to define the prior density of the point process - (a) geometric
decrease of T' with ¢ = 0.999999 - (b) geometric decrease of T' with ¢ = 0.99999.

angle are present. This can be explained by the definition of connection intensity
which is a mean on all the configuration. Indeed, free segments are allowed as soon
as they are counter-balanced by segments which are connected with more than two
segments.

5.2 Results on an aerial image

In this section, the line network extraction is realized on an aerial image. The task
is not straightforward here, owing to geometrical noise, that is to say noise charac-
teristic to the observed scene. Indeed, some trees interfere with good detection of
road sections ; some fields have nearly the same grey level value as the roads ; and
field textures could well reply to the statistical test used to compute the data term
if the segment width is chosen too small. Each prior model is tested with a more
or less strong weight with respect to the data term. The latter is the same for each
model, with t; = 8 and t3 = 15. From now on, the temperature of the algorithm is
decreased geometrically with ¢ = 0.999999.
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(a) Slow temperature decrease (b) Fast temperature decrease

Figure 18: Results of line network extraction from SPOT image (Fig. 16) taking the
"Quality Candy" model to define the prior density of the point process - (a) geometric
decrease of T' with ¢ = 0.999999 - (b) geometric decrease of T' with ¢ = 0.99999.
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(a) Slow temperature decrease (b) Fast temperature decrease

Figure 19: Results of line network extraction from SPOT image (Fig. 16) taking the
"IDQ" model to define the prior density of the point process - (a) geometric decrease
of T with ¢ = 0.999999 - (b) geometric decrease of T with ¢ = 0.99999.
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Figure 20: Data 2 : aerial image (892 x 652 pixels).

(a) With strong data term (b) With strong prior term

Figure 21: Results of line network extraction from Fig. 20 taking the "Candy" model
to define the prior density of the point process - (a) with a strong data term - (b)
with a strong prior term.
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Figure 21 gives two estimates obtained by simulating annealing with a RJMCMC
algorithm (see section 4.5) for a low prior term in Figure 21(a) and a strong one in
Figure 21(b). The first one provides a result with just one false alarm but is in-
complete. The line network 21(b) correctly fulfill the prior constraints in the sense
that there is no more breaks and false alarms. Nevertheless, this line network is not
complete either.

e

(a) With strong data term (b) With strong prior term

Figure 22: Results of line network extraction from Fig. 20 taking the "Quality
Candy" model to define the prior density of the point process - (a) with a strong
data term - (b) with a strong prior term.

Figure 22 shows results corresponding to the "Quality Candy" model. Globally,
line networks are smoother than in Figure 21. Like in the Figure 21(a), a too strong
data term provides an incomplete line network. Then, Figure 22(b) shows that
"‘Quality Candy" model is well-adapted to this extraction problem. Nearly all the
roads are present and there is no more breaks, except if two roads are crossing with
a too sharp angle because of strong penalty of internal bad orientation R;,. Finally,
taking a good compromise between prior term and data term, we obtain a very
satisfactory line network given in Figure 23. This could be obtained neither for the
"IDQ" model, nor for the "Candy" model. Figure 24 provides results concerning
the "IDQ" model. If the prior term gains in weight, a segment connected to many
others will appears instead of several double segments, as it is visible in Figure 24(b).
It confirms that this model is not well adapted unless we redefine the c,-cliques of
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Figure 23: Results of line network extraction from Fig. 20 taking the "Quality
Candy" model with a good compromise between data term and prior term.

T

(a) With strong data term

(b) With strong prior term

Figure 24: Results of line network extraction from Fig. 20 taking the "IDQ" model
to define the prior density of the point process - (a) with a strong data term - (b)

with a strong prior term.
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connection (for instance, using different clique cardinalities). Moreover, we have
a little modified the definition of the quality of a clique because the first results
provided only sections of maximal quality (very smooth sections). More precisely,
if the value of the function of quality o is larger than 0.9, the maximal value 1 is
assigned to the quality of the clique.

5.3 Results on a radar image

The last image presented in this report is an ERS image of Mexico city whose road
network detection is made difficult by radar noise (speckle). Results obtained for
each prior models with a strong data term are shown in Figure 25. Detected line
networks are satisfactory and show that the data term is well defined as it allows
to detect roads in very noisy images (here, t; = 3, to = 9). It is interesting to note
that, contrary to the two first road networks in Figure 16 and Figure 20, this one
appears to be a possible application for "IDQ" model. Indeed, it presents a lot of
crossroads at right angle, which allows many connections for one segment with an
endpoint near a crossroad center.

For the "Candy" model, taking a strong prior term does not improve the result
of extraction. For the "Quality Candy" model, it allows to avoid entirely breaks in
the network as shown in Figure 26. Nevertheless, the result is a little less exhaustive
than in 25(c). For the "IDQ" model, we obtain a very smooth line network with
many connections at the level of cross roads, and also with breaks and free segments
to reach optimal value of intensity.

5.4 Computing Efficiency

This section is devoted to the computing efficiency of each model. For each estimate
given in the previous subsections, we give in Table 8 the corresponding number of
iterations and the corresponding computing time (on a PC with a Pentium III pro-
cessor, 1000 MHz, and 1024 Mo of RAM).

One can notice that the computing time arises with the size of the data image,
which comes from an increase of object number, especially when the temperature is
low. The most time consuming model is the "IDQ" model. The "Quality Candy"
converges faster than the "Candy" model on these examples, and thus, whereas the
computing time by step is larger, the total computing time is lower.
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(a) Data 3 (b) "Candy" model

(¢) "Quality Candy" model (d) "IDQ" model

Figure 25: Results of line network extraction from a radar image with a strong data
term - (a) Data 3 : ERS radar image (525 x 546 pixels) - (b) "Candy" model - (c)
"Quality Candy" model - (d) "IDQ" model.
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1 -
— /a
(a) "Quality Candy" model (b) "IDQ" model

Figure 26: Results of line network extraction from Fig. 25(a) with a strong prior
term - (a) "Quality Candy" model - (b) "IDQ" model.

INRIA



Point Processes Comparison for Line Network Extraction

49

"Candy"

"Quality Candy"

"IDQ"

Data 1 with fast decrease of T'

1935000 iterations
5 min 31 s

1600000 iterations
3 min 56 s

6155000 iterations
15 min 21 s

Data 1 with slow decrease of T’

3605000 iterations
12 min 28 s

4500000 iterations
11 min 17 s

7165000 iterations
17 min 30 s

Data 2 with strong data term

6820000 iterations
33 min 20 s

4300000 iterations
23 min 10 s

10155000 iterations
40 min 56 s

Data 2 with strong prior

5380000 iterations
26 min 35 s

4395000 iterations
22 min 56 s

10145000 iterations
42 min 33 s

Data 3 with strong data term

8045000 iterations
46min 32 s

5155000 iterations
45 min 37 s

13275000 iterations
1H 20 min 4 s

Data 3 with strong prior

6065000 iterations
38 min 42 s

5265000 iterations
1H 10 min 7 s

6065000 iterations
47 min 2 s

Table 8: Computing Time of simulated annealing for each model.
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5.5 Summary

Finally, performances of each model in detecting line networks from images are sum-
marized in Table 9. Except for the computing time, it is subjective results, given
that we do not have any ground truth to compare with the detected line network.
This leads to select the "Quality Candy" model as the most fitted to the application.

"Candy" "Quality Candy" "IDQ"
Time computing —+ + -
Smoothness - ++ 44
Exhaustive result + ++ —
Avoiding false alarms + ++ S

Table 9: Summary of the performances of each model. (—) denotes bad performances
and (+) good performances.

6 Conclusion and future work

In this report, three point processes - named "Candy", "Quality Candy" and "IDQ" -,
specified by a density with respect to the uniform Poisson process, have been pre-
sented in order to propose a relevant prior model for line network extraction from
images. We have proven local stability of "Quality Candy" model, which has been
already done for "Candy" and "IDQ" model [23, 13]. In order to simulate process dis-
tribution, we have proposed a reversible jump Markov chain Monte Carlo algorithm,
which is based on a composed proposition kernel, which accelerates convergence of
the algorithm. The samples generated by the algorithm confirm our choice of prior
models. The extraction of line networks has been realized by a simulated annealing
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with a RIMCMC algorithm leading to the optimum of the process density composed
by a prior density and a data term based on a statistical test. The importance of
the speed of the temperature decrease has been pointed out : we had to be near the
theoretical decrease to obtain a complete result, which can thus be compared to other
ones. The results show that the "IDQ" is not suitable except for road networks which
contain crossroads at right angle. Indeed, the fact of working on averages on all the
cliques is not realistic. Moreover, the computing time is clearly more important for
the "IDQ" model than for the two other prior models. Globally, the "Candy" and
"Quality Candy" provide good results avoiding false alarms and are quite exhaus-
tive. The "Quality Candy" model gives smoother results in less computing time on
average than the "Candy" model, which justifies the use of a dual potential for the
connection. Thus, "Quality Candy" model is the most suited model for the road
extraction prior.

As this study has shown that the optimization algorithm has an influence not
only on the computing time but also on the final result, we will focus in a near future
on the construction of a RIMCMC algorithm with more relevant proposals and on
the improvement of the simulated annealing by using an adaptive rule of decrease
or using a parallel simulated annealing [1]. Moreover, it would be interesting to
extend this study to other types of line networks as rivers or sub-surface networks
and other types of models as broken lines or hierarchical models. Finally, criteria of
performance have to be defined in order to give a reliable evaluation of detected line
networks with respect to a line network provided by an expert [20], after a previous
registration [7, 15].
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