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Abstract: We are interested in the developement of LES methods for compressible flows
in complex geometries. Our starting point is a numerical scheme applying to unstructured
tetrahedrizations, that is conservative, upwind of MUSCL type and vertex centered. We
extend it to a low diffusion version stabilised with six-order derivatives. The new scheme
is combined with two LES models, derived from the Smagorinsky model and the dynamic
Germano model. The basic test case choosen is the flow around a square cylinder
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Schéma MUSCL & faible diffusion pour la simulation de
grandes structures en maillage non-structuré

Résumé : Ce travail concerne le développement de méthodes de simulation des grandes
structures pour les écoulements compressibles dans des géométries complexes. Notre point
de départ est un schéma numérique s’applicant & des tétraédrisations non-structurées, qui
est conservatif, décentré de type MUSCL, avec des volumes atttachés aux sommets. Nous
I’étendons & une version & faible diffusion stabilisée par des dérivées sixiémes. Le nouveau
schéma est combiné avec deux modéles sous-grille dérivés de celui de Smagorinsky et du
dynamique de Germano. Le cas test d’étude est I’écoulement autour d’un cylindre & section
carrée.

Mots-clés :  Turbulence, simulation des grandes structures, écoulement compressible,
maillage non-structuré



Low diffusion scheme for LES 3

Contents
1 Introduction 3
2 Numerical Ingredients 4
2.1 Convective fluxes . . . . . . . . e 5
2.1.1 Basic scheme for convective fluxes . . ... ... ... ... ...... 5
2.1.2 Previous scheme for convective fluxes . . .. ... ... ... ..... 6
2.1.3 New scheme for convective fluxes . . . . . . .. .. ... ... ..... 7
2.2 Timeadvancing . . . . . . . . . .. e 9
2.3 Dissipation properties: V4vs V6 . . . . . .. ..o 10
2.4 LES approach to turbulence . . . . . . .. ... Lo 12
2.4.1 Smagorinskymodel . . . .. ..o oo 12
242 Dynamicmodel . . . . . . ... L 14
3 Tests 14
3.1 Test-case and simulations . . . . . . . . . . . ... ... .. 0. 14
3.2 Results. . . . . . . . . e e e e e e e e 16
3.3 CPU time: SC1vsSC2 . . . . . . @ e e e e e e e e 27
4 Conclusions 31

1 Introduction

Large-eddy simulation (LES) has been successfully used in the last years to simulate different
turbulent flows. However, up to now most of the simulations reported in the literature
are limited to simple geometries and moderate Reynolds numbers. In the perspective of
application of LES in an industrial context, new problems arise.

As far as computational domain discretization is concerned, structured grids, classically
used in LES, are extremely difficult to be generated around complex geometries. Unstruc-
tured grids offer an effective alternative; however, only few examples of LES on unstructured
grids are reported in the literature ([4], [5], [8], [14], [15], [16], [23], [25])- Thus, the capabil-
ities of LES on this type of grids need to be investigated more systematically.

The use of unstructured grids and the need of limiting the computational costs naturally
lead to low-order (second-order) co-located schemes. Indeed, higher-order mixed finite-
element methods are expensive for unstructured grids. Although the use of second-order
schemes in LES is still a controversial point, successful second-order accurate LES have
been documented in the literature for a wide variety of flows. In our opinion, the most
critical point with co-located schemes is the need of numerical dissipation. Indeed, pressure,
as well as the remaining flow parameters, is stabilized by the upwinding of the scheme and
non-physical pressure oscillations are obtained if the numerical viscosity is too low. In some
studies in the literature, it is claimed that the numerical dissipation given by monotone flux
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4 Camarri, Salvetti, Dervieuz, Koobus,

treatments may be an accurate SGS model; see [25] for an application to unstructured grids.
However, we remark that this family of methods seem to need a much larger number of nodes
in the mesh for a given prediction quality. When monotone schemes are combined with a
classical LES model, they can interact unfavorably with it, and significantly deteriorate the
results (see, for instance, [12]). Thus, it appears that the effects of numerical dissipation
and SGS models should be separated as much as possible. In all the previous applications
of LES to unstructured grids ([4], [5], [8], [14], [15], [16], [23], [25]), numerical dissipation is
provided by second-order spatial derivatives, either through Petrov-Galerkin upwinding or
through TVD limiters. However, a third order Taylor-Galerkin scheme applicable to LES
on unstructured grids has been proposed in Ref. [6].

In a previous work ([2] and [3]), we used a MUSCL upwind scheme, which involves
a dissipation built as a fourth-order spatial derivative of the flow variables and no TVD
limiters. Fourier analysis clearly shows that such a dissipation has a much more localized
effect on high frequencies than stabilizations based on second-order derivatives. Moreover, a
key coefficient (vys) permits to tune numerical dissipation to the smallest amount required to
stabilize the simulation. This possibility to tune the numerical viscosity level is an important
advantage with respect to existing methods involving fourth-order derivative as stabilization
(such as Ref. [6]). In this way we can reduce the interaction between numerical dissipation,
which damps in priority the highest frequencies, in particular those for which the phase
error is too large and can produce oscillations, and SGS modeling, which should reproduce
the effects of unresolved frequencies on all the resolved ones, is reduced. This approach was
appraised in the LES of the flow around a square cylinder at Re = 22000 on unstructured
grids and the accuracy of the results obtained with the lowest values of v, allowed by the
scheme stability was comparable to that of other LES carried out with centered schemes on
more resolved structured grids ([27], [30]).

In the present study, we investigate a MUSCL scheme in which stabilization is obtained
through numerical diffusion based on sixth-order derivatives (as proposed in [7]), in order to
further enhance the complementarity between the SGS model and the MUSCL stabilization
and to further reduce their competition. As in the previous scheme, the coefficient v, directly
controls the amount of numerical dissipation. The proposed approach is used in large-eddy
simulations of the square cylinder test-case and results are compared with those previously
obtained with the fourth-order derivative upwinding and with experimental and LES data
in the literature.

2 Numerical Ingredients

The numerical code considered herein (AERQO) is a Navier-Stokes solver for Newtonian,
compressible and three-dimensional flows [10]. AERO is a prototype for demonstrating
innovative methods in fluid-structure interaction. It has been intensively applied to var-
ious industrial configurations (see, for instance, [17], [18], [29]). It employs unstructured
grids for description of complex moving and possibly deforming geometries. A mixed finite-
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Low diffusion scheme for LES 5

volume/finite-element method is used for space discretization. The finite-volume formulation
is used for the convective terms and finite-elements for the diffusive terms.

The Roe scheme [28] represents the basic upwind component for the numerical evaluation
of the convective fluxes and a MUSCL linear reconstruction method (“Monotone Upwind
Schemes for Conservation Laws”), introduced by Van Leer [32], is employed to increase the
order of accuracy of the Roe scheme.

Either implicit or explicit second-order schemes can be used to advance the equations in
time by a line method, i.e. time and space are treated separately.

The spatial discretization of convective terms is described in the following section while,
for other details on AERO solver, we refer to Ref. [10].

2.1 Convective fluxes
2.1.1 Basic scheme for convective fluxes
Convective fluxes are discretized by a finite-volume approach, in which the fluxes through

the cell boundaries must be evaluated:

F(W,q)do (1)
j=neig(s) ¥ 9Cii

where 0Cj; is the boundary between cells C; and C;, and 7 is the outer normal to the cell C;
(see Fig. 1). The Roe scheme [28] is the basic upwinding component for the approximation
of the convective fluxes:

F(W,it)do ~ % (W, Wy, v3;) (2)
aC;;

in which v;; is defined as:

Vij :/ do . (3)
aC;;

Thus, the numerical fluxes are evaluated as follows:

F (Wi, 5) + F (W, v7)
2

" (Wi, Wj,v755) = [R (Wi, Wy, vig) |

(I)R (Wi7 Wj7 VZ]) = _7st (Wi7 Wj7 V?J) ) (4)

()

W, — W;
2 b

where W), is the solution vector at the k-th node and R is the Roe matrix:
OF (=
R (Wi, W;,vi5) = 755 (W,’/ij) ) (6)

The term W is the Roe average [28] of W; and W;. Note that, in (4), a parameter ~y, € [0, 1]
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Figure 1: A 2D mesh: cells, elements, notation. The extension to the 3D case is straighfor-
ward.

has been introduced, which directly controls the upwinding of the scheme. The classical Roe
scheme [28] is obtained as a particular case by imposing v, = 1.

The spatial accuracy of this scheme is only first order. The MUSCL reconstruction
method (“Monotone Upwind Schemes for Conservation Laws”), introduced by Van Leer [32],
is therefore employed to increase the order of accuracy. The basic idea is to express the Roe
flux as a function of the extrapolated values of W at the interface between the two cells C;
(Wi;) and C; (Wji):

f(Wv ﬁ) do ~ (}R (Wija Wjiv V?j) ’ (7)
aC;;
1 /= -
Wi = Wi+ (vw)ij i ®)
1 /= -
Wi =W; — 3 (VW)ji 5] (9)
(10)

2.1.2 Previous scheme for convective fluxes

In the previous approach, a scheme was used in which the numerical viscosity was made by
fourth-order derivatives (V4). In this case, the “slopes” (ﬁW) ~and (§W) ~are obtained
j

7 7
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Low diffusion scheme for LES 7

by a (-scheme, which combines together centered and upwind gradients:
VW) -ij= VW) -ij+B8 (VW) -ij ,
( )ij 1=01-5) ( ) J+B ( ) J

7] ij

(11)
-z’}'+ﬂ(ﬁw)tf i

)

(ﬁw)ji i =(1-5) (ﬁw)?

1]

The term (VW) is the centered gradient, defined as (VW) Zj = W; —W;. The upwind

ij 1J

(VW) and downwind (VW) ~ gradients are computed respectively on the upwind (T};)
iJ iJ

and downwind (T};) tetrahedra associated with the edge ij (see Fig. 1 for the 2D case and
Fig. 2 for the 3D case). In particular, (VW) = VW|T].Z. and (VW) = VW|TM. where
17 3

§W|T =D ket Wk§¢>k|:p is the P1-Galerkin gradient on the triangle 7.

A classical (spatial) truncation error analysis of the previous scheme, for the 2D linear
advection equation discretized on a regular triangular grid of Friedrichs-Keller type, shows
that, when 8 = 1/3, the leading error term is a third-order dissipation error, formed of
fourth-order space derivatives of the flow variables. Note, however, that this analysis does
not take into account either the non-linearity of the hyperbolic terms in the Navier-Stokes
equations or the possible non-uniformity of the grid. The scheme presented in this section,
with 8 =1/3, will be denoted in the following as SC1.

2.1.3 New scheme for convective fluxes

The new discretization of convective fluxes is still based on the Roe scheme used together
with a MUSCL reconstruction method, but the gradients (ﬁW) ~and (ﬁW) are now
ij

i
estimated as follows:

-

(VW)iyij = (1= B)(VW)G.ij + BVW)Y.ij

+& |(YW)Tij — 2(VW)G 45 + (§W)3~33] (12)

e [(FW)ar.43 = 29W)edf + (FW),43]
(VW)jiij = (1= B(IW)G.45 + BTW)Y i

+E, (ﬁw) 43— 2(VW)S4j + (ﬁW)ﬁﬁ] (13)

o [(FW) 03— 29W)e.F + (90,4

-

where (VW) and (VW) ~are the nodal gradients respectively on the nodes ¢ and j. The
J

nodal gradient (VW) _is calculated as the average of the gradients on tetrahedra T € C;
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Tij

Figure 2: Sketch of points and elements involved in the computation of gradients

Scheme | 7, ] e & | order
SC2 10,1 [ 1/3 [-1/30 | 2/15] 5
sc3 | [04]]1/3] o | -6 | 4
sca | 0 |1/3|-1/30|-2/15| 6

Table 1: V6 Schemes

having the node 7 as a vertex:

- 1 Vol(T) -
(VW)i_Vol(Ci)T;L_ 3 ICEZTWN@{ (14)

The term (ﬁW)M is the gradient at the point M of Fig. 1 (2D case) and Fig. 2 (3D

case). This last gradient is computed by interpolation of the nodal gradient values at the
nodes contained in the face opposite to i in the upwind tetrahedron 7T;; (see Fig. 1 and Fig,.

2). The term (ﬁW) I is the gradient at the point M’ (see Fig. 1 and Fig. 2) and it is

evaluated in the same way as (ﬁW) .
M

The coefficients 3, £¢ and £? are parameters that control the combination of fully upwind
and centered slopes. If § = 1/3 the resulting scheme is at least third-order accurate. Then,
the parameters £¢ and £¢ can be tuned in order to increase the accuracy of the scheme. In
Tab. 1, three examples are reported. The scheme SC2 is fifth-order accurate and it has
a dissipative leading error proportional to the sixth-order derivatives. The scheme SC3 is
fourth-order accurate and it has a leading error of dispersive type that is proportional to the
fifth-order derivatives; consequently, it also provides a numerical viscosity proportional to
the sixth-order derivatives. Finally, the scheme SC4, obtained from SC2 imposing v, = 0,
corresponds to a centered scheme (see Eq. (4)) and it is sixth-order accurate. Note that
the results of Tab. 1 come from a classical (spatial) truncation error analysis for the 2D
linear advection equation, discretized on a regular triangular grid of Friedrichs-Keller type.
In a general non-linear case, the schemes of Tab. 1 still have dissipation made of sixth-order

INRIA
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[ scheme | oy | a0 | a3 [ as | a5 | a6 ]
R1 1 1/2 | 0.2766 | 0.11 - -
R2 |1 [1/2| 1/3 | 1/a| - | -
R3 | 1 |1/2| 1/3 | 1/4 |1/5|1/6

Table 2: Coeflicients for low-stockage Runge Kutta algorithms.

derivatives, but they are only second-order accurate. (The scheme SC2 of Tab. 1 has been
used in the simulations presented in the following.)

2.2 Time advancing

Either implicit or explicit schemes can be used to advance the equations in time by a line
method, i.e. time and space are treated separately. Once the equations have been discretized
in space, a set of ordinary differential equations in time is obtained:

W+ T(W) =0 (15)

In the explicit case a N-stage low-storage Runge Kutta algorithm is used for the dis-
cretization of Eq. (15):

WO — ()
W =WwO 4+ Ata, B(WED), k=1,---,N (16)
W(nt1) — (V)

Different schemes can be obtained by varying the number of stages N and the coeflicients
g, as shown in Tab. 2.

The V6 family of schemes (Tab. 1) enjoys rather good stability properties, with stable
CFL number larger than unity, when an explicit Runge Kutta algorithm is used in time.
This is shown in Ref. [7] for a linear 1D convection equation when the 6-stage Runge Kutta
scheme R3 of Tab. 2 is used in time.

In the simulations presented here, the 4-stage algorithm R1 of Tab. 2 was used. The
stability of the schemes of Tab. 1, when used together with the Runge Kutta algorithms
of Tab. 2, has been appraised by performing tests directly on the code. The results are
reported in Appendix 1.

In the implicit case, a second-order backward differencing scheme is applied [26], which
involves an explicit time derivative expressed only as a spatial residual, so that it does not
depend on the time step length The globally resulting method is linearly unconditionally
stable, it is second order accurate in space and time and allows stable calculations to be
carried out on very heterogeneous grids (with locally very small cells) and for a large range
of Mach numbers.

Although it was shown in Ref. [2] that implicit time advancing can be advantageous
when used for coarse LES simulations, it was not used here because the test case selected

RR n® 4512
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requires the use of periodic boundary conditions, which have only been implemented only
for the explicit time advancing on AERO.

2.3 Dissipation properties: V4 vs V6

The schemes SC1 and SC2 provide a diffusion based respectively on fourth-order and sixth-
order space derivatives. Consequently, numerical viscosity in SC2 is more concentrated on
high-frequency components than in SC1. This can be shown by performing a von Neu-
mann stability analysis of these schemes when the algorithm R2 in Tab. 2 is used for time
discretization. A mono-dimensional linear convection equation can be considered to this
purpose:

wg+cu, =0, ¢>0 . a7

Eq. (17) is discretized in space using the corresponding schemes of SC1 (SC1-1D) and SC2
(SC2-1D) for the mono-dimensional case (see Ref. [7]). An uniform discretization both in
space (z; = j-Az) and in time (¢, = n- At) is used. A Fourier mode in space with a period
Ty, = 2w /O Ax is considered as the solution of Eq. (17) at time #,:

(g, tn) = ul™ = afVelO) (18)

The solution ug-”) of Eq. (18) is then introduced in the discretized form of the equation Eq.
(17). Since Eq. (17) is linear, we obtain:

a{"t = [g(@)) al" (19)

The amplification factor |g(©x)| and the phase angle of g(©y) represents the effect of the
numerical scheme respectively on the amplitude and on the phase of the Fourier mode having
period T}, = 27/©;Az. Note that, since the Fourier mode is sampled in space at the discrete
points x;, with spacing Az, the following condition needs to be verified in order to guarantee
that the mode is properly represented:

T >20x = Op<m .

When a mode h with ©), = 7 + ¢ is sampled at points z;, it is equivalent to a mode k with
O = m — ¢, due to aliasing errors. Consequently, the amplification factor and the phase
error plots have been plotted only for ©; € [0, =].

The amplification factor and the phase error curve for the schemes SC1-1D and SC2-1D
are shown respectively in Fig. 3 and Fig. 4, for a CFL number varying in the range [0.8,
1.2]. Fig. 3 and Fig. 4 shows that both SC1-1D and SC2-1D concentrate damping on high
frequency components. However, it is possible to notice in Fig 5, where the amplification
factors of both schemes for CFL = 1 are plotted together, that when SC2-1D is used, the
low frequency components are significantly less damped by numerical dissipation and there
is a sharper separation between the scales affected by numerical viscosity and the remaining
ones.

INRIA
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Figure 3: Amplification factor and phase error at different CFL numbers (nu); scheme SC1-

1D.
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Figure 4: Amplification factor and phase error at different CFL numbers (nu); scheme SC2-

1D.
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amplification factor
T T

amplification factor

0.998

0.996

SC1-1D
-— = SC2-1D

a 0.994 -

0.992f -

lo@|!

0.988 -

m 0.986 -

0.984 -

0.982-

0.2 L L L L
0

Theta

(a) amplification factors (b) amplification factors (detail)

Figure 5: Amplification factors for SC1-1D and SC2-1D (nu=1)

Phase error has a behavior similar to the amplification factor, as it can be seen by
comparing Fig. 3 and Fig. 4. Indeed, in SC2-1D dispersion error is more concentrated
on high frequencies since it is proportional to the seventh-order space derivatives, while in
SC1-1D it is made of fifth-order derivatives. This is put in evidence in Fig. 6, where the
phase error of both schemes for CFL = 1 are plotted together.

2.4 LES approach to turbulence

The LES (Large Eddy Simulation) approach consists in filtering in space the Navier-Stokes
equations, in order to get rid of the high frequency fluctuations, and in simulating directly
only the filtered flow. Due to the non-linearity of the problem, the filtered equations contain
some unknown terms which represent the effect of the eliminated fluctuations on the filtered
flow. These terms need to be modeled.

Implicit filtering is used in AERO, i.e. the numerical discretization of the equations is

considered as a filter operator. Two closure models for the LES approach are used in AERO:
the Smagorinsky model and its dynamic version.

2.4.1 Smagorinsky model

The extension of the Smagorinsky model to compressible flows [19] adopted in AERO is
intended to be used to study flows at high Reynolds numbers and such that low compress-
ibility effects are present in the SGS fluctuations. In addition, we assume that heat transfer

INRIA
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Phase error Phase error

T T T T 0.8 : : :

25

15-

05

(a) Phase error (b) Phase error (detail)
Figure 6: Phase errors for SC1-1D and SC2-1D (nu=1)

and temperature gradients are moderate. Thus, the retained SGS term in the momentum
equation is the classical SGS stress tensor:

M;; = puwu; — pui; (20)

where the over-line denotes the grid filter and the tilde the density-weighted Favre filter
(f = (pf) /(). The isotropic part of M;; can be neglected under the assumption of
low compressibility effects in the SGS fluctuations [9]. The deviatoric part, T;;, may be
expressed by an eddy viscosity term, in accordance with the Smagorinsky model extended
to compressible flows ([19]):

_ 11—
Tij = —2psgs (Sij — gSkk> ; (21)
ags = (C.A)[3] (22)

5’; being the resolved strain tensor, sy, the SGS viscosity, A the filter width, C, a constant

that must be assigned a priori and ‘g ‘ =1/ 25’;@; To complete the definition of the SGS

viscosity, the grid filter width must be specified. Although it is not trivial to define the
width of the filter corresponding to the numerical discretization on unstructured grids, the
following expression has been employed here for each grid element [:

AD = mazi_y, 6 <Agl)) (23)

RR n° 4512



14 Camarri, Salvetti, Dervieuz, Koobus,

in which Agl) is the length of the i-th side of the [—th element.
In the energy equation, the effect of the SGS fluctuations has been modeled by the
introduction of a constant SGS Prandtl number to be assigned a-priori:

Pry,, = C,Leee (24)

where K4 is the SGS conductivity coefficient; it takes into account the diffusion of total
energy caused by the SGS fluctuations. In the filtered energy equation, the term K4 is
added to the molecular conductivity coeflicient.

2.4.2 Dynamic model

The dynamic version of the Smagorinsky model has also been considered. The dynamic
procedure proposed by Germano [13] is applied to the compressible Smagorinsky model
described in Sec. 2.4.1. In this way, the coefficient that must be assigned a-priori in the
Smagorinsky model (C;) is computed as a function of space at each time step. We chose
to dynamically compute (C;A)? instead of C2, as in the classical dynamic model, to avoid
the indetermination in the definition of the filter width. The test filter used here consists in

P1l-averaging the flow variables on all the elements having a given node as a vertex. Thus,

the ratio % (3 being the test filter width), which is the only quantity to be assigned a
priori in the dynamic model, is defined on each node as: % = /N, where N is the number
of elements having the node as a vertex. A local smoothing is applied to avoid unphysical
oscillations of (C5A)? (see [3]).

For more details on the LES approach implemented in AERO, see Ref. [3].

3 Tests

3.1 Test-case and simulations

The flow around a square cylinder at Re = 2.2 x 10* was simulated. This flow was investi-
gated experimentally ([1], [20], [21], [22], [24]); LES results are also available in the literature
([11], [27], [30]). The simulations presented here were performed at a Mach number M = 0.1,
in order to have negligible compressibility effects (experiments were performed for incom-
pressible flow). The flow conditions of the experiments and of the presented simulations are
reported in Tab. 3.

The computational domain and the boundary conditions used are represented in Fig. 7.
Boundary conditions based on Steger-Warming decomposition [31] are used at the inflow and
at the outflow surfaces. On the side surfaces free-slip is imposed and the flow is assumed to be
periodic in spanwise direction. Approximate boundary conditions based on the Reichardt
wall-law are used on the cylinder surface. For details on the use of LES with Reichardt
wall-law see Ref. [2] and Ref. [3].

INRIA
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Slip conditions

—

Inflow Outflow
- N\ Steger-Warmin 7
Steger—Warming 9 o 9 H=7*D
- Ay conditions
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X
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Solid wall: L
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Hz = 4*D - boundary
wall -
X conditions
law
Yz

Figure 7: Computatinal domain.

Two different unstructured grids were used, a coarse one (GR1), with about 10° nodes
and 6 x 105 elements, and a more refined one (GR2), using around 2 x 10° nodes and 1.1 x 10°
elements. In both grids, approximately 32 nodes are used in the spanwise direction within
the wake region, which corresponds to a spanwise resolution Az ~ 0.125D. The average
distance of the first layer of nodes from the cylinder surface is around 6.0 - 1072D in GR1
and 4.5 - 1072 in GR2. This corresponds approximately to y* € [10,100] for GR1 and
yT € [8,100] for GR2.

Simulations were performed on GR1 and GR2 using both SGS models described pre-
viously (see Sec. 2.4), different values of upwinding 7, and the schemes SC1 (Sec. 2.1.1)
and SC2 (Sec. 2.1.3) for the convective fluxes discretization. For all the simulations, time
advancing was carried out by the 4-stage Runge Kutta algorithm R1 of Tab. 2, with a max-

Experiments | Re/10* | Blockage Free stream Aspect | End | Corrections
turbulence (%) | Ratio | plates
Ref. [22, 21] 2.2 7.0 2 9.75 No No
Ref. [1] 0.58 + 3.2 5.5 0.04 ~ 17 Yes No
Ref. [24 1.3 <5 0.06 > 17 Yes No
Ref. [20 3.4 5 0.5 9.2 Yes Yes
| Simulations | 2.2 ] 7 | 0 | oo | No | No |

Table 3: Main parameters in experiments and present simulations. Corrections, if present,
are made to account for blockage effects (see cited references for details).
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imum CFL number equal to 0.85. The simulations parameters are summarized in Tab. 4.

Simulation grid SGS model s Conwvective fluzes
SM1 GR1 Smag. (Cs =0.1) 0.05 SC1
SM2 GR1 Smag. (Cs =0.1) 0.05 SC2
SM3 GR2 Smag. (Cs =0.1) 0.05 SC2
DM1 GR1 Dynamic 0.05 SC1
DM2 GR1 Dynamic 0.05 SC2
DMs3 GR1 Dynamic 0.1 SC1
DM4 GR1 Dynamic 0.1 SC2
DM5 GR2 Dynamic 0.05 SC2

Table 4: Summary of the simulations.

3.2 Results

The main bulk coefficients obtained in the simulations are presented in Tab. 5, together
with results from other LES simulations available in the literature ([11], [27], [30]). Available
experimental data are also reported in the table ([1], [20], [21], [22], [24]).

LES and experiments C/ C4 c I St
SM1 0.79 1.84 0.10 1.45 0.129
SM2 0.84 1.89 0.09 1.41 0.132
SM3 1.10 2.2 0.18 1.15 0.134
DM1 0.91 2.03 0.12 1.24 0.136
DM2 0.94 2.06 0.10 1.33 0.143
DM3 0.84 1.94 0.09 1.53 0.133
DM4 0.86 2.02 0.09 1.47 0.137
DM5 1.09 2.10 0.15 1.15 0.140
Rodi et al. [27] [0.38,1.79] [1.66,2.77] [0.10,0.27] [0.89,2.96]  [0.07,0.15]
Sohankar et al. [30] and 1y 591 51 190239 [0.16,0.20] [1.29-1.34] [0.127,0.135]
Fureby et al. [11] e e B T e
Lyn et al. [21, 22] - 2.1 - 1.4 0.132 + 0.004
Bearman and Obasaju [1] 1.2 2.28 - - 0.130
Norberg [24] - 2.16 - - 0.132
Luo et al. [20] 1.21 2.21 0.18 - 0.130

Table 5: Bulk coefficients; comparison with experimental data and with other simulations in
the literature. Cy is the mean drag coefficient, C); and C] are the r.m.s. of the drag and lift
coefficients, St is the Strouhal number and [, is the length of the mean recirculation bubble.
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[ Coefficient | DM1 | DM3 | DM1 vs DM3 | DM2 | DM4 | DM2 vs DM4 |

Cy 2.03 | 1.94 -4% 2.06 | 2.02 -1.9%
C/ 091 | 0.84 -1.7% 094 | 0.86 -8.5%
(o} 0.12 | 0.09 -25% 0.10 | 0.09 -10 %
I, 1.24 | 1.53 +23 % 1.33 | 1.47 +10.5%

Table 6: Influence of vs on results when schemes SC1 (DM1,DM3) and SC2 (DM2,DM4)
are used.

The Strouhal number reported in Tab. 5 is defined as follows:

Uyes D
fs

where U,.s is the asymptotic velocity, D is the length of the cylinder side and f, is the
shedding frequency measured from the time history of the lift coefficient C;. All the simu-
lations predict St with a good accuracy; thus, this parameter will not be considered in the
following discussion.

Results from simulations using the schemes SC1 and SC2 are compared in order to
evaluate their capabilities when used within an LES approach. The schemes SC1 and SC2
are compared in terms of:

St =

(25)

e sensitivity of results to numerical viscosity (7s) ;
e accuracy of predictions in comparison with the experiments ;
o sensitivity of results to SGS model ;

Finally, two simulations using the SGS models described in Sec. 2.4 were carried out on
a better designed grid on the refined grid (GR2) (SM3 and DMS5 of Tab. 4), in order to
investigate whether some of the discrepancies with the experiments observed in simulations
carried out on on grid GR1 were caused by the inadequacy of the grid, especially in the
front part and near the corners of the cylinder.

Numerical viscosity The numerical viscosity has a significant influence on all the bulk
coefficients and the agreement with the experiments improves as v, is decreased, as already
put in evidence in previous studies ([2],[3]). This behavior can be observed here for both
SC1 and SC2. When SC1 is used, it is possible to compare DM1 and DM3 in order to check
the influence of 5 on the results. Analogously, when SC2 is used, simulations DM2 and
DM4 can be considered. The results obtained in these simulations, already shown in Tab.
5, are reported together in Tab. 6 for sake of clarity. The qualitative variation of the bulk
coefficients with v, is the same for both SC1 and SC2; however, all the bulk coefficients,
except for C], obtained by SC2 are remarkably less sensitive to ;.
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+ +  Exp.

Figure 8: Pressure coefficient on the cylinder surface.

Also, the mean velocity and the pressure fields are less sensitive to vs when SC2 is used.
This is shown, for instance, in Fig. 8, where the C, distribution over the cylinder surface
is reported. As for the mean velocity field, Figs. 9 and 10 show profiles of the streamwise
velocity.

Accuracy For a comparison in terms of accuracy between SC1 and SC2, it is possible
to consider simulations that differ only for the scheme used for the convective fluxes. This
is the case for SM1 and SM2, when the Smagorinky model is used, and for DM1, DM2,
DM3 and DM4, when the dynamic SGS model is used. The bulk coefficients for these
simulations are reported in Tab. 5, while the errors with respect to the experiments are
reported in Tab. 7. Tab. 7 shows that the scheme SC2 gives systematically more accurate
results than SC1 for all the bulk coefficients with the exception of C!;, whose value does not
show significant variations in the different simulations considered. Moreover, a comparison
between (DM1,DM2) and (DM3,DM4) shows that the advantage of SC2 over SC1 increases
as the upwinding of the scheme (v;) is increased.

This tendency is confirmed by the analysis of time averaged flow fields. The time averaged
pressure coefficient C, is shown in Fig. 11 for SM1 and SM2, and in Fig. 8 for DM1, DM2,
DM3 and DM4. When SC2 is used instead, the C’_p accuracy increases on the side and rear
faces, especially when v, = 0.1 (DM3,DM4).

An analogous behavior can be observed from the analysis of time averaged velocity fields,
reported in Fig. 12.
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Figure 9: Time averaged velocity profiles obtained using SC1 (a) and SC2 (b) at the section
shown at the top of the figure. The profiles are averaged in space in the homogeneous

direction.
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Figure 10: Time averaged velocity profiles obtained using SC1 (a) and SC2 (b) at the section
shown at the top of the figure. The profiles are averaged in space in the homogeneous
direction.
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Coefficient || SM1 | SM2 || DM1 | DM2 || DM3 | DM4
C, -12% | -10% || -3% | 2% 8% | -4%
C| -34% | -30% || -24% | -21% || -30% | -28 %
) -44% | -50% || -33% | -44% || -50% | -50%
I +4% | +1% || -11% | -5% || +9% | +5%

Table 7: Comparison with the experiments. The simulations of the couples (SM1,SM2),
(DM1,DM2) and (DM3,DM4) differ only for the scheme used for the convective fluxes (see
also Tab. 4). The reference experimental work for Cy, I, is Ref. [21] and for C], C} is Ref.

[20].
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(b) Simulations using SC2

Figure 12: Time averaged velocity profiles at the section shown at the top of the figure. The
profiles are averaged in space in the homogeneous direction.
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| Coefficient | SM1 | DM1 | SM1 vs DM1 || SM2 | DM2 | SM2 vs DM2 |

Cy 1.84 | 2.03 +10% 1.89 | 2.06 +9%
C} 0.79 | 0.91 +15% 0.84 | 0.94 +11.9%
[} 0.10 | 0.12 +20% 0.09 | 0.10 +11.1%
I, 145 | 1.24 -14.5% 141 | 1.33 -5.7%

Table 8: Influence of SGS model on the results when SC1 (SM1,DM1) and SC2 (SM2,DM?2)
are used.

SGS model As already discussed in Ref. [3], results of coarse LES are particularly sen-
sitive to the SGS model employed. In our case, the dynamic model generally improves
predictions with respect to the Smagorinsky model, as it can be seen in Tab. 5 by compar-
ing SM1 with DM1, SM2 with DM2 and SM3 with DM5.

The point of interest here is to compare SC1 and SC2 in terms of sensitivity of the
results to the SGS model change. For this purpose, the simulation couples (SM1,DM1) and
(SM2,DM2) are considered, where respectively SC1 and SC2 is used. The resulting bulk
coefficients, already shown in Tab. 5, are reported together in Tab. 8 for sake of clarity.
Tab. 8 shows that the qualitative variations of the bulk coefficients with the SGS model are
the same for SC1 and SC2. However, quantitatively, the sensitivity of the results obtained
with SC2 is lower than with SC1. This is confirmed by the analysis of the time averaged
velocity fields, reported for two different sections in Fig. 13 and Fig. 14.

Results shown here prove that the mechanism of interaction between the numerical vis-
cosity and the SGS model is qualitatively the same in SC1 and SC2. However, the different
sensitivity of the results to the SGS model could be explained as a a consequence of a re-
duced interaction effects obtained with SC2. This hypothesis could also justify the gain
in accuracy of the results obtained with SC2 with respect to SC1. Indeed, it is generally
accepted in the literature that the combination of numerical viscosity and the SGS model
leads to an excessive dissipation that lowers the results accuracy. In order to show why
SC2 could reduce competition between numerics and SGS modeling, it was pointed out in
Sec. 2.3 that the scheme SC2 leads to a numerical dissipation that is more localized on
high frequencies and proportional to the sixth order derivatives, while the SGS dissipation
is proportional to the second-order derivatives. Consequently, s variations in SC2 affects a
more concentrated and limited range of scales than in SC1 and this could explain the lower
sensitivity of results to 7y obtained in SC2. Obviously, errors caused by numerical viscosity
propagates to all frequency components due to the non-linearity of the equations, and this
surely reduces the potential advantages of SC2 over SC1 shown by the linear Fourier analysis
carried out in Sec. 2.3. However, results obtained in the simulations of Tab. 6 proves that
SC2 is still advantageous over SC1 also in the non linear case.

Simulations on GR2 In the simulations carried out on GR1, a systematic discrepancy
with the experiments has been observed in the C,, distribution on the upwind face AB, which
is not dependent from any of the simulations parameters, as it can be seen in Figs. 8 and 11.
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(b) Simulations using SC2

Figure 13: Time averaged velocity profiles at the section shown at the top of the figure. The
profiles are averaged in space in the homogeneous direction.
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Figure 14: Time averaged velocity profiles at the section shown at the top of the figure. The
profiles are averaged in space in the homogeneous direction.
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Figure 15: Node distribution in grids GR1 (a) and GR2 (b) on the symmetry section in
spanwise direction.

In particular, the predicted pressure coefficient on face AB is lower than the experimental
one and this explains why, even if the base pressure is predicted rather well, the global drag
coefficient is still underestimated, as in DM1, DM2 and DM4 (see Tab. 5 and Fig. 8). The
grid GR1 is not properly designed near the face AB; indeed, as shown in Fig. 15(a), large
elements are located too close to face AB, where gradients are high, and the grid refinement
is too sharp to effectively increase resolution. Thus, a better designed grid (GR2), shown
in Fig. 15(b), has been used in order to verify if the observed discrepancies indeed depend
on the inadequacy of the grid. Two simulations have been carried out on GR2, using the
Smagorinsky (SM3) and the dynamic models (DM5) (see Tab. 4). The pressure coeflicients
obtained on GR2 are reported in Fig. 16, together with the experimental values. The
C, obtained in both simulations matches the experiments rather well on face AB; however,
DMS5 encounters problems on the side surface BC, where the time-averaged negative pressure
peak is overestimated. Nevertheless, the predicted mean drag coefficient is very close to the
experimental value in both cases, as shown in Tab. 5, because the base pressure is well
predicted. The same applies for the rms of the lift and drag coefficients, that are in both
cases remarkably larger and closer to the experiments than the ones predicted by simulations
on GRI1.
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Figure 16: Pressure coefficient on the cylinder surface; simulations on grid GR2.

Concerning the time-averaged velocity field, the recirculation length is severely under-
predicted in both SM3 and DM5, as reported in Tab. 5. Indeed, the numerical mean
horizontal velocity profile, shown at section y = 0 (see Fig. 7) in Fig. 17, seems to be
translated upwind in x direction of about a quarter of the cylinder face length in both SM3
and DM5. This happens only in the wake region, while outside the wake predictions are in
better accordance with the experiments, as shown in Fig. 18. At the moment, it is difficult
to propose an interpretation of this behavior and this point needs further investigation.

As it is possible to notice in Tab. 5, results changes remarkably when GR2 was used
instead of GR1, and prediction of the mean bulk coefficients definitely improves, with the
exception of the time averaged velocity fields in the wake. Notice that the grid refinement
improves results particularly when the Smagorinsky model is used, while the simulations
using the dynamic model already gives acceptable results also on the grid GR1. Moreover,
the results sensitivity to the SGS model is remarkably reduced when GR2 is used, as it
is possible to see by comparing simulations SM3 and DM5. This suggests that, when a
coarse grid is used, a dynamic model is to be preferred, even if more expensive, Conversely,
for rather resolved simulations with a proper treatment of the boundary conditions at the
solid walls, the dynamic model loses its advantages over the Smagorinsky model, at least
for what concerns the prediction of global flow quantities, such as bulk coefficients or the
time-averaged flow field.

3.3 CPU time: SC1 vs SC2

The schemes SC1 and SC2 are now compared in terms of computational cost. Different sim-
ulations using both SC1 and SC2 have been performed on grid GR1 to this purpose. The
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Figure 17: Time averaged velocity profiles obtained in SM3 and DM5 at the section shown
at the top of the figure. The profiles are averaged in space in the homogeneous direction.
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Figure 18: Time averaged velocity profiles obtained in SM3 and DM5 at the section shown
at the top of the figure. The profiles are averaged in space in the homogeneous direction.
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explicit 4-stage Runge-Kutta algorithm R1 (see Tab. 2) has been used to advance the simula-
tions in time. The necessary CPU time for each simulation has been evaluated as an average
over 100 time iterations. The simulations performed are reported in Tab. 9. Simulations

Simulation | Scheme for convective fluxes | SGS model | Periodicity
CPU-1 SC1 Smag. NO
CPU-2 SC2 Smag. NO
CPU-3 SC1 Smag. YES
CPU-4 SC2 Smag. YES
CPU-5 SC1 Dyn. YES
CPU-6 SC2 Dyn. YES

Table 9: Simulations performed in order to compare schemes SC1 and SC2 in terms of
computational cost

CPU-1, CPU-3 and CPU-5 can be compared respectively with CPU-2 (Smagorinky model),
CPU-4 (Smagorinsky model, periodic boundary conditions) and CPU-6 (Dynamic model,
periodic boundary conditions). The two simulations of each couple have been performed
using respectively the schemes SC1 and SC2 (see Tab. 9).

The increments of total CPU time when SC2 scheme is used instead of SC1, are reported
(in percents) in Tab. 10. We have also measured that scheme SC2 requires about 100%
more CPU time than scheme SC1 for the discretization of the convective fluxes. This yields
an increase of less than 60% of total CPU time when the Smagorinsky modes is used,
independently of the boundary conditions. However, this increment is halved when the
dynamic SGS model is used, indicating that the increase of CPU time due to the present
implementation of the dynamic SGS model is higher than the one due to the scheme SC2.
The global increment of CPU time for SC2 is even much smaller (10%) when an implicit
advancing relying only on a first order operator is applied.
We conclude that changing from scheme SC1 to scheme SC2 has a rather small impact on
CPU and is a priori much less CPU consuming than an extension to a fully higher order
accurate approximation.

CPU-1/CPU-2 | CPU-3/CPU-4 | CPU-5/CPU-6
Total CPU increment 57% 56 % 23 %

Table 10: Increments in CPU time required when SC2 is used instead of SC1.
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4 Conclusions

The present work is a part of a wider research activity ([2], [3]) dedicated to the mutual
adaption of a LES approach to turbulence with an industrial CFD methodology. As a
demonstrator of this methodology, we have considered a numerical solver (AERQO) that
is based on a vertex centered finite-volume/finite-element formulation. Since this scheme
is of co-located type, approximate Riemann solvers of Roe combined with the MUSCL
interpolation are considered for spatial stability. The resulting schemes here applied are
second-order accurate and they contain an upwinding parameter, «,, which directly controls
the numerical diffusion. Previous investigations [3] have been carried out using the convective
fluxes scheme SC1, containing a numerical viscosity made of fourth-order derivatives. In the
present work we have considered and tested a new scheme for the discretization of the
convective fluxes. proposed in Ref. [7], that gives a numerical diffusion based on sizth-order
derivatives. Since the SGS dissipation is proportional to the second-order derivatives, this
new scheme (SC2) should further enhance the complementarity between the SGS model and
the MUSCL stabilization and it should reduce their competition with respect to SC1. This
has been confirmed by a preliminary linear analysis of the schemes in which it has been
shown that, when scheme SC2 is used instead of SC1, the numerical viscosity action is more
localized on high frequency components, that are polluted by elevated aliasing errors.

The simulation of the flow around a square cylinder at Re = 22000 has been considered in
order to test the schemes SC1 and SC2. Experimental ([1],[20],[21],[22],[24]) and numerical
LES ([11],]27],[30]) results are available in the literature. Moreover, previous simulations
using AERO and SC1 for the same flow are documented in [3]. In the present paper,
simulations are carried out on a coarse grid (GR1) made of around 10° nodes, using both
SC1 and SC2 and varying the upwinding parameter v, and the SGS model (Smagorinsky
model (Sec. 2.4.1) and its dynamic version (Sec. 2.4.2)). Variations of the results to the
simulation parameters are qualitatively the same when SC1 or SC2 are used, indicating that
the basic mechanism of interaction between numerical and SGS viscosities has not changed.
However, when SC2 is used, results are less sensitive to variations of s, of mesh, and, to
some extend to the SGS model employed. They are generally more accurate. This seems to
confirm our explanation that competition between SGS and numerical viscosities has been
reduced with SC2, as expected from the linear analysis.
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APPENDIX I

The stability of the schemes of Tab. 1, when used together with the Runge Kutta algorithms
of Tab. 2, is appraised here by performing tests directly on the code. The turbulent channel
flow test case has been selected to this purpose. The computational domain is sketched in
Fig. 19. With reference to Fig. 19, periodic boundary conditions are imposed in streamwise
(X) and spanwise (Y') direction, while no-slip conditions are imposed on the solid walls
(Z =0,Z = —4/37). A coarse grid of about 4-10* nodes was used to simulate the flow with

Figure 19: Turbulent channel flow test case: computational domain

a wall Reynolds number Re, = 180. Schemes of Tab. 1 and Tab. 2 have been combined
together and, for each combination, the maximum CFL number for numerical stability has
been searched by carrying out a short simulation. Results are reported in Tab. 11. Results

R1 R2 | R3
SC1 | 2.1 23 | 1.5
SC2 | 2.0 21 | 1.5
SC3 | 1.9 20 | 1.5
SC4 | <0.8 | <0.8 | 1.0

Table 11: CFL max for numerical stability when schemes in Tab. 1 are used in combination
with the Runge-Kutta algorithms in Tab. 2.

reported in Tab. 11 show that R1 is the stablest Runge-Kutta algorithm when used together
with the V6 schemes. While the schemes R2 has a behavior similar to R1, the scheme R3 is
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remarkably less stable. The only exception concerns the scheme SC4, for which neither R1
or R2 give enough stability. On the contrary, when SC4 is coupled with R3, a stable scheme
with CFL,,., = 1 is obtained. Although the combination SC4-R3 is noticeably less stable
than the others of Tab. 11, it has the advantage of being 6-th order accurate in space (see
Tab. 1), as discussed in Sec. 2.1.3.
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