N
N

N

HAL

open science

Multi-Periodic Process Networks: Technical Report

Albert Cohen, Daniela Genius, Abdesselem Kortebi, Zbigniew Chamski, Marc

Duranton, Paul Feautrier

» To cite this version:

Albert Cohen, Daniela Genius, Abdesselem Kortebi, Zbigniew Chamski, Marc Duranton, et al.. Multi-
Periodic Process Networks: Technical Report. [Research Report] RR-4496, INRIA. 2002. inria-

00072092

HAL 1d: inria-00072092
https://inria.hal.science/inria-00072092
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072092
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4496--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Multi-Periodic Process Networks. Technical Report

Albert Cohen — Daniela Genius — Abdesselem Kortebi — Zbigniew Chamski — Marc

Duranton — Paul Feautrier

N° 4496
July 2002

THEME 1

apport
derecherche

ROCQUENCOURT

Multi-Periodic Process Networks: Technical Report

Albert Cohen* , Daniela Genius*** , Abdesselem Kortebi** |, Zbigniew Chamski** , Marc
Duranton™ , Paul Feautrier*

Théme 1 — Réseaux et systémes
Projet A3

Rapport de recherche n° 4496 — July 2002 — 13 pages

Abstract: This paper aims at modeling video stream applications with structured data and multiple clocks.
Multi-Periodic Process Networks (MPPN) are real-time process networks with an adaptable degree of syn-
chronous behavior and a hierarchical structure. MPPN help to describe stream-processing applications and
deduce resource requirements such as parallel functional units, throughput and buffer sizes.

Key-words: Process network, real time, stream processing, modeling video applications

* INRIA Rocquencourt - A3 Group
** Philips Research

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Réseaux de processus multi-périodiques

Résumé : Ce document décrit un modéle d’applications de traitement de flux vidéo avec des données
structurées et des horloges différentes. Les Réseaux de Processus Multi-Périodiques (MPPN) constituent une
classe de réseaux de processus structurés hiérarchiquement, exprimant des propriétés temps-réel et dont le
degré de synchronisme est paramétrable. Les MPPN contribuent & la description d’applications de traitement
de flux et permettent d’évaluer les ressources nécessaires, telles que le nombre d’unités fonctionnelles en
paralléle, la bande passante et les tailles de buffers.

Mots-clés : Réseau de processus, temps réel, traitement de flux, modéle d’applications vidéo

Table of Contents

1 Context and Goals

The need arises for hardware units to handle new kinds of video applications, combining multiple streams,
graphics and MPEG movies, leading to increased system complexity. When beginning the design of a video
system, the engineer is primarily interested in quickly determining the hardware requirements to run an
application under specific real-time constraints. For example, a 3D pipeline moves large amounts of data of
different size and type: cutting-edge 3D games easily reach a texture bandwidth over 600 MB/s, Z-Buffer,
rasterization of various triangle sizes over 160 MB/s, and intermediate buffers whose size depends on the
algorithm, the architecture and the schedule.

Multi-Periodic Process Networks (MPPN) model heterogeneous video-stream applications and help re-
source allocation. They describe an application’s structure and temporal behavior, not precise functionality
of processes, and they may interact with a high-level language from which scheduling and resource alloca-
tion are determined. However, MPPN are not intended to model reactive systems with unpredictable input
events [2] or dynamic process creation. On the opposite, our model provides precise information regarding
the steady state of a deterministic application mapped to a parallel architecture. We believe MPPN are well
suited to help the mapping of a video filter or 3D graphics pipeline to explicitly parallel micro-architectures,
e.g. clustered VLIW embedded processors.

Section 2 discusses related work and Section 3 motivates the MPPN model with an introductory example
and presents the network structure. The model is described in Section 4 and applied to performance evaluation
in Section 5. Then, Section 6 describes a method to check and evaluate MPPN properties and Section 7
sketches useful extensions.

2 Related Work

Three theoretical models have influenced MPPN: Petri nets, data-flow graphs and Kahn Process Networks
(KPN). Petri nets are inherently asynchronous and handle time constraints [3,12,7]. MPPN may be simulated
by timed Petri nets but this does not bring precise schedule information. The sub-class of discrete event
systems [1,4] enables scheduling and performance analysis but does not model token assembling/splitting.
Data-flow graphs are a well-established means to describe asynchronous processing: various properties can
be verified, such as bounded memory [10,5]. Both models capture repetitive actions through cyclic paths
whose production rate compel performance, whereas stream-processing applications benefit from alternative
descriptions such as lazy streams. Indeed, KPN [8] are closer to our approach: they provide (unbounded)
FIFO buffers with blocking reads and non-blocking writes while enforcing deterministic control. But real-time
is not considered and processes have no observable semantics. Synchronous approaches [6] are based on clock
calculi and enable synchronous code generation, but static steady-state properties are not available. In our
deterministic stream-processing context, properties such as degree of parallelism, buffer size and bandwidth
are out of reach of these popular models. Other approaches are complementary to MPPN. Alpha [11] is a
high-level language for semi-automatic scheduling and mapping of numerical applications to VHDL. Within
the Ptolemy project [5], Compaan targets automatic KPN generation from MatLab loop nests [9]; it is also
a powerful simulation tool.

KPN modeling, though frequently used in co-design, is insufficient for streams of structured data. As an
introductory example consider downscaling of a video image is decomposed into a sequence of horizontal
and vertical filtering. The former operates on pixels and the latter operates on lines — see Figure 1 for a
simplified KPN model. A certain number of pixels/lines is used to determine the new, smaller number of
pixels/lines. We assume a horizontal downscaling of 8:3 and a vertical downscaling of 9:4 (High Definition to
Single Definition). Figure 1 describes the “data reordering” occurring within stripes, between the horizontal
and the vertical filters. First of all, the hierarchy captures non-FIFO communication without resorting to
an explicit reorder process. More importantly, each passage through a hierarchy boundary corresponds to

RR n°® 4496

V-filter
3.472 kHz
V' 9 5 MHz frame clock 25 Hz
VN2 2/(2 1/7V\2 1
————————————————————— P - P
frame U ’
_— P 1A SD output
. stripe % Py
Y |
- ’/’ ”””””””” 2(10 MHz
. 1 111
horizontal filtering working set vertical filtering working set @ Py
. . . frame
HD input H-filter reczrsier V-filter (jock SD output Ps HD input
OO0 H-filter
\ / 41667 kHZ
N - - N— —
Fig. 1. Example: downscaler Fig. 2. Simple model of the downscaler

an explicit synchronization, where larger messages are considered, consisting of a fixed number of smaller
messages. This hierarchical synchronization of events is called multi-periodic: it will be characterized through
multiple, hierarchically layered, periodic schemes.

3 Network Structure

A Multi-Periodic Process Network (MPPN) is a 5-tuple (P,C, C,IN,0UT), where P is a set of processes,
C is a hierarchical ordering on P (its Hasse diagram is a forest), C is a set of channels, process P; € P is
associated with input ports in IN(P;) and output ports in OUT(P;). P} denotes port j of process P;. Ordering C
describes the hierarchy among processes: P; is a sub-process enclosed by Py, if and only if p; C P. Moreover,
a process P; is immediately enclosed by Py if and only if P; C P and there is no other process enclosing P;
and enclosed by Pj. Processes which do not enclose other processes are called atomic; conversely, compound
processes enclose of one or more sub-processes.

A channel connects process ports: Pg PfC represents a channel whose source is port P{ and whose sink is
port PL. Any port must belong to exactly one channel. Channels are defined inductively:

— if p; and Py, are immediately enclosed by the same process or at the upper level, j € ouT(p;), I € IN(Pt), then
P{Péc is a flat atomic channel;

— if p; is immediately enclosed by Py, j € 1N(P;), | € IN(Py) (resp. OUT(P;), OUT(Py)), then PLP! is a downward
atomic channel (resp. nggc is an upward atomic channel);

— if P{P,’,c € C and PLP%, € C, then ngéc’, is also a channel (not an atomic one); P{Pfc and pLp? are called
sub-channels of P]Py,.

Crrar; Coown and Cyp are the sets of flat, downward and upward atomic channels, respectively. The
MPPN for the downscaler in Figure 2 illustrates these definitions. It is built from three compound processes,
P2, P5, P7, and five atomic ones. Digits accross process boundaries are port numbers: P2P} and P3P} are flat
channels, PP} is a downward channel, P2PZ is an upward channel, etc.

A path 7 over the network is a list PJ'p/---pI" such that: pi™ "t is either an atomic channel or a
pair of input/output ports of the same process. E.g., any channel is a path, and PiPiPlPZPZPiPLP2P2P] is
a path in Figure 2. A port or process is reachable from another port or process if there exists a path from
the latter to the former. Eventually, any output port of a compound process P; must be reachable from an
input port of P;. For the sake of clarity, we only consider acyclic networks with periodic input streams (see

Section 7 for extensions).

INRIA

4 Network Semantics

We now enrich the network structure with data-flow activation and message semantics to model the execution
of a stream-processing application.

During the course of execution, processes exchange messages and activate in response to receiving such
messages. For each process P; (resp. port P}), the activation count is defined as the number of activations of
P; (resp. the number of messages hitting ! port Pg) since the last activation of the enclosing process — or
since the beginning of the execution if P; is at the highest level of the hierarchy. Activation and message dates
are defined likewise: date 0 corresponds to the last activation of the enclosing process — or the beginning
of the execution of an outermost process — and all activation/message dates of sub-processes and ports are
relative to this activation.

The model is designed such that local event dates only depend on the local event count, i.e., previous
activations of the enclosing process have no “memory” effect. This locality property is one of the keys to
compositionality — see Section 4.3. It also enables the following definition: an ezecution of a MPPN is a pair
of non-decreasing functions (ACT, MSG), such that ACT : P x N — R maps processes and activation counts to
activation dates, MsG : {P] | P; € PAj € IN(P;) UOUT(P;)} x N — R maps process ports and message counts
to message dates; ACT(P;,n) is the date of activation n of process P;, MSG(Pg,n) is the date of message n
hitting port Pg .

4.1 Propagation in atomic channels

This section defines propagation equations for atomic channels only. When a big message is sent through a
flat channel and decomposed into smaller ones, the first small message is received right after the big one is
sent (pending some communication latency). Conversely, building a big message out of smaller ones takes
additional time: many small messages must be sent before a big one is received. In both cases, n messages
of size Q% hitting port [of Py through P}P! correspond to [nQ'/Q}] messages sent by P;.

In addition, we assume a constant communication latency cZ’i for an elementary message sent through
an atomic channel P/pL. Recalling that MsG(PL,n) is the date of the (n + 1)-th message hitting port [of
process Py,

VP{P}, € Cruxr : MSG(P},n) = MSG (P, [(n + 1)Q4/Q]] — 1) + ¢ (1)
As a special case, when Q) < Qf ; i.e., when decomposing messages into smaller ones, reception of message
0 at P! coincides with reception of message n such that [(n + 1)QL/Q}] =1,ie.,0<n < [Q?/QL] —1:
. QJ . O
VPIP, € Cerar,0< 0 < [Q—I’J —1:MsG(Ph,n) = Msa(p!,0) + P (2)
k
Considering an upward channel, the propagation equation sums the activation date of the enclosing

process and the local (relative) date of the last small message assembled to build an output message at port
1
P

VPIPl € Cyp : MSG(PY,n) = ACT(Py,n) + MsG(P], [QL/Q1] - 1). (3)

Considering a downward channel, hierarchical composition enforces that no message enters a compound
process before it activates. More precisely, when a message reaches an input port of a compound process
P;, this message is not propagated further on the channel (and possibly decomposed) before P; activates
on this very message. Activation of P; coincides with the reception of a message at port Pﬁc, since Qi, < Q!
(decomposition into smaller messages). Therefore,

VPPl € Chowy : MSG(PL, n) = 0. (4)

! We say that a message hits an output port when it is sent through that port, and a message hits an input port
when it is available for reception at this port.

RR n® 4496

4.2 Activation model

We consider a data-flow scheme: process activation starts as soon as there is at least one message on each
input port. Let Q7 be the size of messages sent or received on port j of P;. A process P; enters activation n
as soon as the following data-flow condition is met: every input port j € IN(P;) has been hit by message n of
size Q7 (except for special clocked processes, see Sections 4.4). The data-flow activation scheme is formalized
as follows:

ACT(P;,n) = max MSG(P!,n). (5)
JEIN(P;)
This definition allows multiple overlapping activations of a process.
Considering an atomic process P;, we call £] the latency of p; for sending a message through output port
j. It is defined as the elapsed time between an activation of pP; and the corresponding output of a message
through port j, supposed constant for all executions of the process:

MSG(P!,n) = ACT(P;,n) + £2. (6)

This constant latency will be extended to compound processes in Section 4.3.

While any size change of messages is possible when traversing a process or channel, the same is not true
when traversing a path. As a consequence of the previous equations, in order to ensure compositionality,
message sizes must obey a strict scaling rule when traversing hierarchy boundaries. Let us consider a com-
pound process P;, an input port j € IN(P;) and an output port [€ OUT(P;). If these ports are connected
through a path 7 of channels and sub-processes of P;, one single message occurring at P/ may traverse several
decomposition/assembling stages through =, but it must yield one single message occurring at P.. Let us
define the floor-product over a list of scalars as the iterated product and floor operations:

|_le fn=1
[HJ Tm = [wn X [HJ me otherwise -
1<m<n 1<m<n—1

The latter property of compound processes is ensured when the product of all factors ng /@' over each

channel pg’ Pl € 7 is equal to 1, and when the floor-product on a prefix of 7 is always greater than or equal
to 1:

J
11 % —1 1)
plplen k
J
Va' prefix of 7 : [HJ Q—l’ > 1. 8)
pipl e’ k

Notice that, when traversing an upward or downward channel, (8) forbids messages at the upper level to be
smaller than messages at the lower one.

Eventually, activation of a source (input-less) process P; is not constrained by any data-flow scheme. We
assume a periodic behavior instead: considering two real numbers ACT(P;,0) — the reference date — and
PER(P;) — the period,

ACT(P;,n) = ACT(P;, 0) + nPER(P;). 9)

4.3 Latencies of compound processes

Consider an output port j of a compound process P;. We can prove that every activation of P; sends one
message through P} after a constant latency. This result lies in the data-flow equations (message propagation
and activation rules are time invariant) and in the scale factor constraint (7) which ensures that any single

INRIA

activation of P; sends exactly one message through Pg . We may thus extend (6) to compound processes:
MSG(P],n) — ACT(P;,n) is a constant, £ can be computed for n = 0 based on information at the lower level:

VP; € P,j € oUuT(P;) : £} = MsG(PJ,0) — ACT(P;,0). (10)

Thus, MPPN exhibit compositional semantics. Latencies of compound processes do not depend on the
surrounding network: they are computed once and for all.

4.4 Clocked processes

We provide an extended kind of process to synchronize streams over a fixed clock period: clocked processes.
These processes can be either atomic or compound, and their activation rule is generalized from ordinary
processes. Considering a clocked process P;, an internal clock starts at the reference date Act(p;,0), and
subsequent activations may only occur one at a time when all input messages are present and when an
internal clock tick occurs. To put it simple, a clocked process has a double role of (local) sampling and delay.

Formally, a clocked process P; is characterized through a clock frequency f;; calling a(n) the date given
by (5) when interpreting P; as an ordinary process,

ACT(P;,n) = max (r(a(")_“;f("i’o))m + ACT(P;,0), ACT(P;,mn — 1) + fi) (11)

When enclosed in compound processes, MPPN clocks behave differently from hardware clocks (whose
semantics is exclusive): two independent activations of a compound process may trigger overlapping streams
of events on clocked sub-processes. This is required to preserve compositionality. In practice, the designer may
want the enclosing process to be clocked itself so that executions of the clocked sub-process are sequential,
e.g., in dividing the frequency of the clocked sub-process by the hierarchical scale factor.

5 High Level Properties

From the abovementioned MPPN semantics, one may deduce resource requirements of the application. In
this paper, we focus on conservative estimates for the number of functional units, bandwidth and buffers.
We derive global (absolute) properties from the product of local evaluations.

5.1 Asymptotic Periodic Execution

We will now prove that every process follows a steady-state scheme which extends and relaxes the periodic
constraint (9) on source processes. We define an average period PER(P;), a burstiness ADV(P;) for each process
P;, and burstinesses ADV(P]) for each port P, such that

Vn > 0: (n — ADV(P;))PER(P;) < ACT(P;,n) — ACT(P;,0) < nPER(P;) (12)

Vn > 0: (n — ADV(P!))PER(P;) < MSG(P!,n) — MSG(P!,0) < nPER(P;). (13)
Intuitively, the burstiness ADV(P;) is the maximal number of advance activations of P;, i.e., the maximal num-
ber of activations ahead of the periodic execution scheme. This parameter encompasses both deterministic
bursts of early messages and jittering streams with earliest/latest bounds (and possibly, periodic resynchro-
nization). Even under the worst-case conditions, better evaluations of ACT(P;,n) (often exact ones) can be
hoped for: deterministic event bursts can be characterized effectively within the relaxed periodic scheme.
Let us now prove (12) and (13), by induction on (6), (1) and (5). Of course, (9) is a special case of (12)
for source processes.

RR n® 4496

Message propagation Suppose (12) holds for a process P;. Messages occur at an output port ng after a
constant delay, hence output message burstiness is equal to activation burstiness:

Vj € ouT(P;) : ADV(P!) = ADV(P;). (14)

This equation stands for any process, atomic or compound, and of course for any upward channel.

Consider any atomic channel P Pl and suppose (13) holds in /. Sending one message and ADV(P?)
advance messages at port j of P; corresponds to sending Q7(1 + ADV(P!)) units of data. These data are
received as one message plus ADV(P}) advance messages at port [of a process Py, i.e., Q4 (1 + ADV(P}))
units. For flat channels, the result is the following:

VPIP! € Crpar : Q4 (14 ADV(PL)) = Q7 (1 + ADV(PY)); (15)
for downward channels, a single activation of the enclosing process is considered:
VPIPL € Chown : QL(1 4+ ADV(PL)) = Q7. (16)

Notice that (15) and (16) may require burstinesses to be non-integer. In addition, communication may be
implemented through bounded buffers as long as asymptotic data throughput is the same at both ends of a
channel:

Q. ¢

Jpl
Py € C: PER(P;) PER(P;)

(17)

~Every-time a splitter or selector P; (resp. Py) is considered in the previous equations, one must multiply
Q7 (vesp. Q},) by s7(si)/si (vesp. s} (s1)/s)-

Activation Activation burstiness can be deduced from the data-flow scheme characterized by (5), replacing
ACT(P;,n) and MSG(P,n) by their lower bounds. The result is that processes tend to “smooth” message
bursts and initialization delays:

ACT(Pi, 0) — MSG(P/, 0) 3 (18)

ADV(P;) = min {ADV(P?) + PER(P)

JEemN(p;)
This is a two-phase computation: on a given stream, sum up the burstiness and the number of messages that
precede activation 0, then minimize these adjusted burstinesses. There are two simple cases: when initial
activation and message dates coincide, ADV(P;) = min;ey(»,) ADV(P]) only depends on burstinesses of input
message streams; and when input message burstinesses are equal to some value v, ADV(P;) is also equal to v.

Clocked processes Since the activation model differs from usual processes, burstiness of clocked processes
obeys a specific rule. Consider a clocked process P;. Enforcing ACT(P;,n) > ACT(P;,n — 1) + 1/ f; requires
that ACT(P;,n) — ACT(P;,n —d) > ACT(P;)+ d/ f;. The lower bound on ACT(P;,n) — ACT(P;, n —d) is reached
when considering the lower bound on ACT(P;,n) and the upper bound on ACT(P;,n — d). Therefore, for a
given value of d,

(= ADV(P))PER(P;) + ACT(P;,0) > ACT(P3,0) +
hence .
ADV(P;) < d(l — 7PER(P,~)f,-)'

Calling v; the burstiness calculated for p; without taking the clock into account, the maximal number of
advance messages, d, is equal to v;, thus

1

ADV(P;) < yi(l - m).

INRIA

(Notice 1 — m is non-negative.) Eventually, we get a safe evaluation of the burstiness for a clocked
process P;:

ACT(P;,0) — MSG(P?, 0) }

ADV(Pz'):(l #) min {ADV(P{)+)

— 1
fiPER(P;)/ jem(r:) (19)

As a corollary, it is mandatory that f; > 1/PER(P;). When PER(P;) = 1/f;, (19) expectedly shows that
ADV(P;) = 0, enabling stream resynchronization at a fixed periodic scheme (e.g., for video output). Con-
versely, an infinite frequency makes the clock constraint redundant with the non-decreasing ordering of
activations, leading to a normal process. In the general case, the clock provides designer control on the upper
bound of activation burstiness.

5.2 Global Properties

We call ¢; the latency for P; to complete an execution, i.e., the maximum of Kf: at output ports j of P;:
l; = max]-eom(pi)ﬁg. Let overlap(P;,d) denote the maximum number of executions of P; during a given
period of time d, and triggered by a single activation of the enclosing process (if P; is a sub-process):

overlap(P;,d) = min ([f;d], [d/PER(P;) + ADV(P;)]).

We proved that the (absolute) maximal number of parallel executions of a process P; is bounded by the
product of the local maximal number of activations of P; and all its enclosing processes during the same
duration ¢;:

maxpll(p;) = H overlap(Py, ¢;).

P;CPg

5.3 Port and Channel Bandwidth

Depending on the architecture and the resource allocation strategy, ports associated with physical in-
put/output may be identified. On this subset, it is legitimate to ask for an estimate of the average and
maximal bandwidths. Such estimates can be built from the periods, burstinesses and overlapping factors.
Our current model assumes that actual loads/stores are distributed evenly over the whole access period £7.
This hypothesis is optimistic, but finer evaluations can be crafted following the same reasoning.

Port bandwidth is of critical interest when implementing process communications through shared-memory
buffers. From (17), the average (resp. maximal) traffic associated with a port P} mapped to a communication
device (bus, shared memory, network, etc.) is denoted by avgbw(Pg) (resp. maxbw(Pg N:

. QJ
maxbw(p?) = Qf(PERl(P') AD\;@’.) H overlap(Pk,&-)). (21)
¢ ¢ P;CPg

Indeed, in the context of the process immediately enclosing P; (if any), periodic activation of P; generates
a throughput @Q7/PER(P;) over PP}, and at most ADV(P;) advance messages may overlap during message
generation on port Pg .

For a clocked process P;, the upper bound is

aPERl(Pi) AD\lji(Pi) H overlap(Pk,&-))_ (22)

P;[CPg

maxbw(pP?) = Q7 min (fi H overlap(Py, £;)

P;[CPg

Channel bandwidth provides some insight about network contention when focusing on distributed archi-
tectures. If “sufficiently large” buffers are available at both ends of the communication device, the channel
bandwidth (average or maximal) is the minimum of both port bandwidths. Depending on the communication
protocol and buffers, other estimates might be more appropriate.

RR n® 4496

5.4 Input and Output Buffers

We describe a method to bound buffer size for any atomic channel, not considering architecture-specific
buffer requirements. The minimal size of a buffer for channel P/ Pi, is the maximum amount of temporary
data that must be stored during message propagation through this channel; it is denoted by maxbuf(Pf PL).
Such a buffer must hold all the messages sent to the channel by P; and not yet received by Py, i.e., the
difference between data sent and received. An upper bound of this difference is evaluated from the liveness
of a message and the product of overlapping factors.

For a flat channel, the maximal liveness of a message must cope with the input/output delays for read-
ing/writing the message. Indeed, propagation rules in atomic channels assume zero-latency read /write oper-
ations. A conservative approximation of this latency is obtained in considering that message output/input
lasts during the whole activation of the input/output process. This is equivalent to replacing a message
output date by an activation date of the sending process, and a message input date by an activation date of
the receiving process plus the process latency:2

1 Qf 1 14
max (ACT(Pk, [(n +)Q—i-‘ -) + 0 — ACT(Pi,n)).
When P{ P! is enclosed in a compound process Py, the scaling rule (7) enforces that one activation of P,
triggers exactly |PER,/PER;| activations of P;; indeed, all these activations are triggered by one single
entering message on each input port of P;. One may thus restrict the computation of the maximum to
0 < n < |PER,/PER;|. We can deduce the buffer size for an atomic flat channel enclosed in a compound
process:

VPIP! € Crrar, Pi P, : maxbuf(PIpl) =

Qf H overlap(Pi:, max (ACT(Pk, [(n + I)Q—Z-I — 1) + 4, — ACT(Pi;"))) (23)

l
PiCraC T 0<n<| e | @

Conversely, if P; is at the highest level of the hierarchy, one may only guarantee that the maximal liveness
is bounded by
Q!
[Q_Z-I PER(Pj) + ACT(Pg,0) + £, + ADV(P;)PER(P;) — ACT(P;,0).
This bound enables a conservative approximation of the buffer size for an atomic flat channel at the highest
level of the hierarchy:

‘v’Pf.'PﬁC € Criar, P CE T maxbuf(PZfPic) =
. J
Ql] overlap(P,-r, [Q—ﬂ PER(P) 4+ ACT(Pg, 0) + £ + ADV(P;)PER(P;) — ACT(P;, 0)) (24)
p;CPyCT Qk

For upward and downward channels, liveness can be computed directly from the reference dates:

VPIP| € Cyp : maxbuf(piP}) = Q7 J[overlap(py, £}, — MsG(p?,0)) (25)
PiEPilET
VPIPL € Cpown : maxbuf(P/pl) = Q7 H overlap(P;/, ACT(Py, 0)). (26)
p;CPyCT

6 Network Analysis

The analysis of a multi-periodic process network consists in solving the above equations. Let us sketch an
algorithm for MPPN analysis and verification.

2 Finer evaluations and communication models are under way; they will be exposed in future versions of this work.

INRIA

Input. A multi-periodic process network, Qg for each port, cf:,lg for each atomic flat channel, ¢} for each
atomic process, reference date ACT(P;, 0) for each source process (e.g., 0), period PER(P;) for one process
per weakly-connected component of the network, burstiness ADV(P;) for each source process. Optional
values for other parameters, e.g., burstinesses and periods at sink processes.

Output. Values for all parameters or contradiction.

Resolution. The algorithm is decomposed into four phases.

1. Perform a topological sort of the network. Check the scaling rule of all compound processes, using
(7).
2. Compute PER(P;) traversing the network incrementally, starting from processes with known periods
using (17) and checking for consistency.
3. Traverse the hierarchical structure bottom-up, applying the following steps:
— choose a compound process P; whose sub-processes have known latencies;
— compute (relative) reference dates for sub-processes, using (1), (5) and (6);
— deduce latency ¢! for every output port j, using (10).
4. Compute ADV(P;) and ADV(P}) through a top-down traversal, following the topological ordering at
each hierarchical level, using (14), (15) and (18).

From the output of this algorithm, one may deduce the degree of parallelism, bandwidths and buffer sizes
for all processes, ports and channels. We may now show the results on the introductory example.

Input. We consider a pixel unit for all message sizes, Q1 = Q3 = 1920 x 1080, Q3 = Q} = Q% = Q} =
720 x 480, Q1 = 8, Q} = 1920, Q2 = 3, Q2 = 720, Q} = 9, Q} = 720 x 9, Q2 = 4, Q2 = 720 x 4. Some
latencies, activation dates, burstinesses, and periods are already given: ACT(P1,0) = 0, ADV(P1) = 0,
PER(P4) = 40ms (25 Hz), ADV(P4) = 0, {1 = 0 (source process), 2 = 1ms, {2 = 200ns, (2 = 1ps,
c}:é = c%% = cgj = 1ps (communication), cgzé = 100ns (local buffer). Clocks must be such that
fi > 1/PER(P;): we choose f; = 10 MHz and fs = 2.5 MHz, and we deduce clocks for P5 and Pg from the
hierarchical scale factors: fs = f7 x (3/720) = 41.67 kHz, fo = fs x (4/(4 x 720)) = 3.47 kHz.

Resolution. 1. Topological ordering: Py, P2, Ps, P7, Pg, Ps, P3, P4. Scale factors for ps: (8/1920) x (720/3) = 1;

for Pe: (9/1080) x (480/4) = 1; for Pa: (1920/(1920 x 1080)) x (720 x 9/720) x (720 x 480/(720 x 4) = 1.

2. Process Ps: (1) and (5) give Msc(p:,0) = ACT(P7,0) = 0, then (6) gives MSG(PZ,0) = 200ns, (1) gives
MsG(PZ,0) = MsG(P2,239), (6) gives MsG(PZ,0) = acT(P7,239) + 200 ns, (11) gives MsG(PZ,0) = acT(P7,0) +
239 x 100 ns + 200 ns = 24.1 ps. Finally, (10) gives £ = 24.1 us.

Process Pe: (1) and (5) give MsG(P§,0) = ACT(Ps,0) = 0, then (6) gives MsG(PZ,0) = 1us, (1) gives
MsG(PZ,0) = MsG(P3, 719), (6) gives MsG(Pg,0) = AcT(Ps, 719) + 1 s, (11) gives MsG(Pg,0) = AcT(Ps,0) +
719 x 400 ns + 1 ps = 288.6 ps. Finally, (10) gives £3 = 288.6 us.

Process Pa: (1) and (5) give MsG(P:, 0) = ACT(Ps,0) = 0, (6) gives MSG(PZ,0) = 24.1 us, (1) gives MSG(P§, 0) =
MSG(PE, 7)+100 ns, (6) gives MSG(P§, 0) = ACT(Ps, 7)+24.1 us+100 ns, (11) gives MSG(P§, 0) = 7/41.667 ms+
24.2 us = 192.2 us. (5) gives ACT(Ps,0) = 192.2 us, (6) gives MSG(PZ,0) = 480.8us, (1) gives MsG(P3,0) =
MsG(PE,119), (6) gives MSG(P3,0) = AcT(Pg, 119) + 288.6 s, (11) gives Msc(P3,0) = 192.2 us+ max([3472 x
24 x 107° x 9 x 119]/3.472,119/3.472) ms + 288.6 us = 288 x 119 us + 480.8 us = 34.752 ms, and (10) gives
03 = 34.752 ms.

Highest level: (6) gives MsG(P},0) = 0, (1) gives MSG(P3,0) = 1pus, (5) gives ACT(P2,0) = 1 pus, (6) gives
MSG(P3,0) = 34.752ms, (1) gives mMsG(P3,0) = 34.753 ms, (5) gives ACT(P3,0) = 34.753 ms, (6) gives
MsG(P3,0) = 35.753 ms, and (5) gives ACT(P4,0) = 35.754 ms.

3. Highest level: (14) gives ADV(P]) = 0, (15) gives ADV(P3) = 0, (18) gives ADV(P2) = 1, (14) gives ADV(P3) = 0,
(15) gives ADV(P3) = 0, (19) gives ADV(P3) = 0 because PER(P3) = 1/f3, (14) gives ADV(P3) = 0, (15) gives
ADV(P}) = 0, and (18) confirms that ADvV(P4) = 0.

Intermediate level: (15) gives ADV(P3) = 1079, (19) gives ADV(Ps) = 699.19, (14) gives ADV(PZ) = 699.19,
(15) gives ADV(Pg) = 119, (19) gives ADV(Pg) = 102.82, and (14) gives ADV(P3) = 102.82.
Lowest level: (15) gives ADV(P7) = 239, (19) gives ADV(P7) = 154.87, and (14) gives ADV(P?) = 154.87; then
(15) gives ADV(P3) = 719, (19) gives ADV(Pg) = 621.21, and (14) gives ADV(P3) = 621.21.

Output. Compound process latencies: £2 = 24.1 us, (2 = 288.6 us and £3 = 34.752 us; periods: PER(P5) =
37.04 us, PER(Pg) = 333.33 us, PER(P;) = 154.3 ns and PER(Pg) = 462.96 ns. Burstinesses are large,
ADV(Py) = 154.87, ADV(Pg) = 621.21, ADV(P5) = 699.19 and ADV(Pg) = 102.82, but this only reports a
high variability around the average period. The clock’s effect on resource usage is more significant: the
parallelism degree is

maxpll(P7) =2 and maxpll(pg) = 3.

RR n® 4496

This demonstrates how HPN achieve a precise description of the burst rate within an average periodic
scheme. Finally, we get the bandwidth and buffer results:

maxbw(P2p{) = 30 Mpixel/s maxbw(PZpPi) = 10 Mpixel/s
maxbw(P}) = 80 Mpixel/s maxbw(P%) = 30 Mpixel/s
maxbw(P}) = 22.5 Mpixel/s maxbw(PZ) = 10 Mpixel/s

Eventually, we compute the buffer size for the atomic flat channel between the two filters again: message
liveness is

Q3
Qs
= ACT(Pg, 0) + £g — ACT(P5,0),

=192.2 us+ 288.6 us— 0 = 480.8 us

d= max (ACT(P(;, [(n +1)
0<n<1080

-| - 1) + 4 — ACT(P5,n))

hence

maxbuf(PZp§) = QZoverlap(Ps, d)overlap(Ps, d)
=720 x [0.4808 x 41.667] x 1 = 720 x 21
= 15.12 kpixel

This buffer is 116.7% larger than a single stripe buffer between the two filters. This overhead was expected
because the evaluation of the maximal buffer assumed worst-case conditions on message input/output
delays (we assume that reading/writing the buffer takes up the whole activation time).

7 Extensions

Applicability of the previous model is vastly improved when considering three simple extensions. First of all,
we provide two special kinds of atomic processes for multiplexing and demultiplexing streams. For example,
such processes refine the modeling of a picture-in-picture application, where a rectangle of a larger frame
is replaced by a downscaled frame from another video stream. Activation of a splitter process sends one
message alternatively through each of its output ports, whereas activation of a selector process receives one
message alternatively from each of its input ports. We proved that a periodic alternation of process ports
preserves the periodic nature of message and activations events.

Moreover, it is quite natural to relax the periodic constraint on input streams, and only require an
average periodicity. This is easily achieved in adding a burstiness parameter to source processes. We proved
that conservative reference dates can be deduced from the “latest” execution scheme associated with the
“latest” valid schedule of source processes (a periodic one).

Eventually, we consider cyclic networks whose semantics differs from iteration modeling in Petri nets: in
stream-processing frameworks, cycles model feedback or data reuse. The latency for a message to traverse
a given circuit must be less than or equal to the average period of the initiating process. In other words,
a cyclic path is legal as long as it has no influence on the global throughput; it can be statically checked
through a path constraint (analogue to the scaling rule) and an additional bootstrap constraint. Dynamic
noise reduction is a typical example: a noise threshold is updated to provide dynamic control over the filtering
stage.

8 Conclusion and Future Work

Multi-periodic process networks are an expressive model and a powerful tool for statically manipulating real-
time properties, concurrency, and resource requirements of regular stream-processing applications. Primarily
influenced by synchronous extensions to Kahn process networks, they exploit the application’s regularity and
hierarchical structure to extend the range of possible analyses and transformations. Six major properties can
be expressed:

INRIA

abstraction: nested processes allow for different levels of specification, both for messages (hierarchical
nature of data structures) and activation events;

composition: the same property set describes all processes (latency, period...); nested processes are analyzed
only once and reused through MPPN libraries;

synchronization: nesting of processes and hierarchical data-flow activation provides an elegant and efficient
tool for modeling synchronization;

jitter: event dates — whether messages or process activations — are bounded within “earliest” and “latest”
deterministic functions;

bursts: deterministic bursts of events can be captured explicitly within periodic event schemes, using hier-
archical layers of periodic characterizations;

sequencing: communication uses First-In First-Out (FIFO) channels, but implicit reordering is allowed
when assembling/splitting messages.

As a result, tradeoffs between synchronization (thus, concurrency), buffering and bandwidth requirements
can be expressed and manipulated in a unified framework. This greatly simplifies the design and refinement
of applications, providing quantitative feedback on resource usage early in the design process.

A prototype of the verifier was implemented in Java; it uses XML representations of MPPN for easy
integration into application design environments. In the context of a software/hardware co-design project,
we are carrying large-scale experiments to evaluate the benefits of MPPN for design space exploration
and resource allocation. We envision a direct inference of MPPN parameters from a high-level language
specification and a machine description.

Acknowledgments: We received many contributions from the further members of the SANDRA team: Christine
Eisenbeis, Laurent Pasquier, Valerie Rivierre-Vier, Francois Thomasset and Qin Zhao. We thank them for their
support and in-depth reviews.

References

[y

. F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity. Wiley, 1992.
. G. Berry, P. Couronné, and G. Gonthier. The synchronous approach to reactive and real-time systems. Proc.
IEEE, 79(9):1270-1282, Sept. 1991.

3. B. Berthomieu and M. Diaz. Modelling and Verification of Time-Dependent Systems Using Time Petri Nets.
IEEE Trans. on Software Eng., 17, Mar. 1991.

4. J.-Y. L. Boudec and P. Thiran. Network Calculus. Springer LNCS 2050, Jan. 2002.

5. J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A framework for simulating and prototyping
heterogeneous systems. J. Comp. Simulation, 4, 1992.

6. P. Caspi and M. Pouzet. Synchronous Kahn Networks. In ACM SIGPLAN Int. Conference on Functional
Programming (ICFP), Philadelphia, May 1996. ACM.

7. G. Cohen, S. Gaubert, and J.-P. Quadrat. Algebraic system analysis of timed petri nets. Idempotency, Cambridge
University Press, 1997.

8. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In IFIP 7/ Congress, Amsterdam,
1974. North-Holland.

9. B. Kienhuis, E. Rijpkema, and E. Deprettere. Compaan: Deriving process networks from matlab for embedded
signal processing architectures. In Proc. 8th workshop CODES, pages 13-17, NY, May 3-5 2000. ACM.

10. E. A. Lee and J. C. Bier. Architectures for statically scheduled dataflow. J. Parallel and Distributed Computing,
10(4):333-348, Dec. 1990.

11. H. Leverge, C. Mauras, and P. Quinton. The ALPHA language and its use for the design of systolic arrays. J. of
VLSI Signal Processing, 3:173-182, 1991.

12. P. Sénac and M. Diaz. Time Streams Petri Nets, A Model for Timed Multimedia Informations. In 16th Int.

Conf. Appl. and Theory of Petri Nets, Turin, June 1995.

N

RR n® 4496

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technop6le de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

