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Abstract: This short paper is devoted to the study of effective hardware architec-
tures for the RC6 block cipher using Virtex-E and Virtex-II FPGA devices. The
key point of the implementation is the design of an arithmetic operator computing
f(X)=(X(2X +1))mod 2™. Significant speed and area improvements are obtained
by taking full advantage of the small multiplier blocks available in Virtex-II devices.
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Implantations haut débit de ’algorithme de chiffrage par
blocs RC6 sur des circuits Virtex-E et Virtex-II

Résumé : Cet article est consacré & 1’étude d’architectures performantes pour
I’algorithme de chiffrage par blocs RC6 & 1’aide de circuits FPGA des familles Virtex-
E et Virtex-II. La principale difficulté consiste & implanter efficacement un opérateur
calculant f(X) = (X (2X +1)) mod 2". Des gains importants en surface et en vitesse
sont obtenus en utilisant les petits blocs de multiplication disponibles sur les circuits
Virtex-1II.

Mots-clé : FPGA, algorithme de chiffrage par blocs, RC6, arithmétique des ordi-
nateurs, cryptographie.



High Throughput Implementations of the RC6 Block Cipher 3

In 1997, the National Institute of Standards and Technology (NIST) initiated a
process to specify a new symmetric-key encryption algorithm capable of protecting
sensitive data. RSA Laboratories submitted RC6 [7] as a candidate for this Advanced
Encryption Standard (AES). NIST announced fifteen AES candidates at the First
AES Candidate Conference (August 1998) and solicited public comments to select
five finalist algorithms (August 1999): MARS, RC6, Rijndael, Serpent, and Twofish.

Though the algorithm Rijndael was eventually selected, RC6 remains a good
choice for security applications and is also a candidate for the NESSIE project, the
NP 18033 project, and the Cryptrec project initiated by the Information-technology
Promotion Agency in Japan.

A version of RC6 is more exactly specified as RC6-w/r /b, where the parameters
w, r, and b respectively express the word size (in bits), the number of rounds, and the
size of the encryption key (in bytes). Since all actual implementations are targeted
at w = 32 and r = 20, we use RC6 as shorthand to refer to RC6-32/20/b. A key
schedule generates 2r + 4 words (w bits each) from the b-bytes key provided by the
user (see [7] for details). These values (called round keys) are stored in an array
S[0,...,2r + 3] and are used in both encryption and decryption. The encryption
algorithm involves four operations:

Integer addition modulo 2% (denoted by X BHY').

Bitwise exclusive or of two w-bit words (denoted by X & Y).

Computation of f(X) = (X(2X + 1)) mod 2", where X is a w-bit integer.

Rotation of the w-bit word X to the left by an amount given by the loge w
least significant bits of Y (denoted by X <« Y).

Note that the decryption process requires moreover integer subtraction modulo 2%
and rotation to the right. As the algorithm is similar to encryption, we will not
consider it here.

In this paper, we study effective hardware architectures of this block cipher using
Virtex-E and Virtex-II field programmable gate arrays (FPGAs). In section 1, we
investigate various implementations of f(X) and show that the choice of an algo-
rithm depends on the target FPGA family. We also describe architectures of RC6
processors. Section 2 digests our main results and compare them with recent works
on RC6.
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4 Jean-Luc Beuchat

Repeat for r rounds

Figure 1: Encryption with RC6.

1 Hardware implementation

Designing an efficient operator dedicated to f(X) is the key point of the hardware
implementation and depends on the target FPGA resources. After a brief overview
of useful features of Virtex-E and Virtex-II devices, we describe and evaluate three
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algorithms computing f(X). We propose finally some architectures of a RC6 pro-
Cessor.

1.1 Some Features of the Virtex-E and Virtex-1I Devices

Virtex-E and Virtex-II configurable logic blocks (CLBs) provide functional elements
for synchronous and combinatorial logic. Each CLB includes respectively two (Virtex-
E) or four (Virtex-1II) slices containing basically two 4-input look-up tables (LUT),
two storage elements, and fast carry logic dedicated to addition and subtraction.

A Virtex-II device also embeds many 18x18 two’s complement multipliers (the
MULT18x18 blocks), each of them supporting two input ports 18-bit signed or 17-bit
unsigned wide. Furthermore, each multiplier has an internal pipeline stage. Surpris-
ingly, this feature is poorly documented in the Virtex-II data sheet and synthesis tools
seem unable to automatically deal with it. The MULT18x18S component, available
in the Virtex-1II library of Synplify Pro, allows us to write VHDL multipliers that
take advantage of this pipeline characteristic.

1.2 Dedicated operators for f(X) = (X(2X + 1)) mod 2*
1.2.1 Algorithm 1

An artless approach consists in writing the VHDL code depicted by Figure 2. When
the size of the operands is strictly greater than 17, tools like Synplify use the well-
known divide-and-conquer approach (see for example [6]) in order to synthesize un-
signed multipliers for the Virtex-II family. Consequently, Synplify allocates three
MULT18x18 blocks to carry out the product (X (2X + 1)) mod 2% (Figure 3).

1.2.2 Algorithm 2

Consider the problem of computing f(X) = (X(2X + 1)) mod 2% when X is a 8-bit
unsigned integer. As shown in Figure 4, the partial products can be significantly
simplified before performing their addition using the identities x;x; = z; and x;x; +
xjx; = 2x;x;. Finally, based on the relation x;x; +x; = 2z;7; +x;T; we remove x3x2
and x9 from the leftmost column and replace them by z372. As f(X) is computed
modulo 28, we ignore the term 2z3z5.

RR n -~ 4495
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entity rc6_f is
port (
X : in std_logic_vector (31 downto 0);
Q : out std_logic_vector (31 downto 0));
end rc6_f;
architecture behavioral of rc6_f is
signal d0 : std_logic_vector (31 downto 0);
signal d1 : std_logic_vector (31 downto 0);
signal p : std_logic_vector (63 downto 0);
begin -- behavioral
d0 <= X;
dl <= X (30 downto 0) & ’1°;
p <= d0 x di;
Q <= p (31 downto 0);
end behavioral;

Figure 2: Algorithm 1: naive implementation of f(X).

(2% x wew5T4T3 X T3T22120) Mod 28 Weight
2nd multiplier \Q

T5T1 T4l T3T1 T2T1  T1T1  TOT1 Z1
T4T2 T3T2 T2XT2 T1T2 TOT2 z2

T3T3 T2T3 T1T3 TOT3 T3 §\

3Tr2x1x0 X :132:1311'01

T1T5 TOT5 5 1st multiplier
Zox6 6 §\
x7

(2% x xrrersTs X T2T1T01) MoOd 28
3rd multiplier

Figure 3: Synthesizing the code illustrated by Fig. 2 with the divide-and-conquer
strategy; in this example w = 8.

Let us formalize the algorithm sketched in this example. If w is even, the com-
putation of f(X) involves the addition of ¥ partial products PP; defined by:

w—1
> @2 ifi=%—1
j=0
PP; = xml:zizw—l + z;2073 ifi=2%2 -2 (1)

] 2141 .
E (:Ejfi72l'¢2j + z; 2% ) otherwise
j=2i+3
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27 26 2° 24 23 22 2t 2f
Te6 x5 x4 x3 T2 x xo 1
iird T6 X5 X4 xrs3 o X1 Xo
60 Ts5T0 T4To T3To 220 T1Z0 ToTo Zo
51 X421 r3x1 X2X1 11 o1 X1 0
X422 32 To2T2 12 Tox2 T2 0 0
xr3x3 XoX3 r1x3 XoZx3 xrs3 0 0 0
ToX4 X1T4  ToT4 T4 0 0 0 0
15 ToTs xTs 0 0 0 0 0
Tox6 T 0 0 0 0 0 0
T7 0 0 0 0 0 0 0
50 X420 r3Xo 2o X1To 0 Xo 0
T4T1  X3T1  T2T1 0 T1 0 0 0
X3X2 0 T2 0 0 0 0 0
X3 0 0 0 0 0 0 0
xr7 Te x5 X4 x3 T2 T1 Zo
T5To  TaTo T3To T2To  T1Xo 0 X0 0
T4T1  X3T1  T2T1 0 T1 0 0 0
X3X2 0 T2 0 0 0 0 0
xr7 Te x5 X4 x3 T2 x1 Zo

Figure 4: Algorithm 2: computation of f(X) = (X(2X + 1)) mod 2® with AND
gates and a few carry-propagate adders.

Equation (1) allows us to automatically generate a VHDL operator for any even
value of w. A proof of this algorithm is available in [1].

1.2.3 Algorithm 3

Remember that the divide-and-conquer requires three embedded multipliers in order
to implement f(X) on a Virtex-II device. Consequently, this method leads to a
small operator in terms of slice number. Though algorithm 2 allows simplifications
of the partial products, it doesn’t make use of the Virtex-II embedded multipliers and
generates larger circuits. We propose here an algorithm combining the benefits of
these two methods. Consider again the computation of f(X) with w = 8 (Figure 5).
The trick consists in performing the rectangular multiplication (2 - X3.0 + 1)X3.0,
where X,., denotes ;?:p x;2'. Examine now the remaining terms of the partial
products:

e The product X5.4X1.0 appears two times; therefore, we compute it with a single
embedded multiplier and left-shift the result.
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8 Jean-Luc Beuchat

e As the weight of 2zgx¢ and 2x9xy4 is strictly greater than 27, we discard these
terms.

e Finally, we add the two products and the higher half of X modulo 2°8.

For w = 32, this method requires a 16x17 multiplication, a 14x14 multiplication,
and two additions. Formally, this algorithm is described by:

(X(2X 4+ 1)) mod 2%

w_q w_q
= Z z;20 - 27 11 mod 2% +
=0 =0
%*3 w—3
2 220> 227 | mod 2+
i=0 =5
w—1
Z x;2" | mod 2" (2)
=

The proof of this equality is straightforward and will not be addressed here.

. 25 . X5.4 - X1.0) mod 28

Discard ( 5:4 1:0)

T5T0 TaTQ TITO XT2To T1TO TOTO Lo
T5T1  T4T1  T3T1  T2®1  TIT1  ToT1 T

xr3xr2 2T Xr1T2 oxr2 2

T3T3 T2x3 T1T3 TOxL3 L3 k\

PLT4 FOTAT T4 (9. X5+ 1) - X3.0) mod 28
15

ZoT5 Z5

A

(25 - X5.4 - X1.0) mod 28

Figure 5: Algorithm 3: computation of f(X) = (X(2X + 1)) mod 2% with two
embedded multipliers and two carry-propagate adders.

1.3 Comparison of the algorithms

We have written a C library which generates VHDL descriptions of the operators
described above. The VHDL code was synthesized using Synplify Pro 7.0.3 and

INRIA
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implemented on several Virtex-E and Virtex-II devices using Xilinx Alliance Series

4.1.03i. Table 1 summarizes the results of some experiments.

Algorithm 1

Algorithm 2

Table 1:

Device
Slices MULT18x18 Delay [ns] Slices MULT18x18 Delay [ns]
XCV1000E-6 | 288 - 18.8 181 - 16.5
XC2V1000-6 18 3 11.0 193 0 10.9
Device Algorithm 3
Slices MULT18x18 Delay [ns]
XCVI1000E-6 | 233 - 19.9
XC2V1000-6 17 2 10.7

Comparison of several f(X) operators for Virtex-E and Virtex-II devices.

Algorithm 2 is the best choice for the Virtex-E family. On a Virtex-II device,
algorithm 3 leads to the smallest and fastest circuit. As the complete RC6 pipeline
involves 40 f(X) operators, this method saves up to 40 MULT18x18 blocks compared
with algorithm 1. Note that our VHDL generators allow to pipeline the operators.

1.4 Architecture of the RC6 processor

Now that we have efficient f(X) operators, the design of a cipher round is straight-
forward: integer addition modulo 2* takes advantage of fast-carry logic, a barrel
shifter achieves the rotations, and LUTs implement bitwise exclusive or. In order to
shorten the critical path, we insert registers as illustrated by Figure 1. Note that
the depth of the pipeline depends on the latency « of the f(X) operator (« = 0 or
a=1).

Figure 6a shows a first architecture consisting of the input round, » = 20 rounds,
and the output round. The 2r + 4 round keys are stored in w-bit registers. A shift
register implements the control unit. A token indicates the validity of the data on
the corresponding pipeline stage. However, this approach involves 40 f(X) operators
and will only fit into large FPGAs.

Figure 6b depicts an iterative architecture with partial loop unrolling and pipelin-
ing. The circuit implements k rounds (k is an integer divisor of the total number of
rounds r), the input round, and the output round. This methodology was inspired
by hardware implementations of the IDEA block cipher described in [9] and [5]. The
control unit requires a minor update in that the token addresses now the round key
memory. At the price of a lower throughput, this approach permits the implemen-
tation of RC6 in smaller and cheaper devices.

RR n -~ 4495
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. cin S[i] X
|
S[i] X Cin !
|
|
|
' Input round
S |
= | i
Input round L 4w bits
T |
IRITT
|
|
Round [
! 111 B! Round
: Do %: I T T
RTINS
I EEEEE S
! Round N Lo ~
| =
|
[ Round
§ Output round [
|
|
|
=
_ | Output round
Registers v Cout :
|
|
|
: Cout Y
(a) Full loop unrolling and pipelining : (b) Partial loop unrolling and pipelining
Figure 6: Two architectures of a RC6 processor.
2 Results

A VHDL generator allows us to specify the parameters w and r, the latency « of
the f(X) operator and the number of rounds physically implemented on the FPGA.
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This tool is useful to study the trade-off between the choice of a device and the
throughput. Table 2 summarizes some results. In all our experiments, the f(X)
operator has an internal pipeline stage and the latency of a round is therefore equal
to three. XC2V500 and XC2V250 devices have not enough I/Os to deal with 128-bit
words. Our solution consists in defining 64-bit input and output ports and spending
two clock cycles for data transmission.

Rounds MULT Delay Throughput
Device Algo Slices

(# iterations) 18x18S [ns] [Gb/s]
XCV1600E-8 | 2 20 (1) 14110 (90%) - 132 9.7
XCV1000E-8 2 10 (2) 7157 (46%) - 13.2 4.8
XC2V3000-6 | 3 20 (1) 8554 (59%) | 80 (83%) | 84 15.2
XC2V3000-6 | 2 10 (2) 7456 (52%) | 0 (0%) | 13.3 4.8
XC2V1000-6 | 3 10 (2) 4391 (85%) | 40 (100%) | 8.6 7.4
XC2V500-6 3 5 (4) 2365 (76%) | 20 (62%) | 8.2 3.9
XC2V250-6 3 4 (5) 1534 (99%) | 16 (66%) | 8.9 2.8

Table 2: Characteristics of our RC6 processors.

Table 3 digests results published by some other researchers. A NSA team has
implemented RC6 with semi-custom ASICs based on a 0.5 pm CMOS library [8].
Using the architecture depicted by Figure 6a with a pipeline stage between two
consecutive rounds and algorithm 1 to compute f(X), the NSA team reports a
throughput of 2.2 Gbits/s.

Gaj et al. have proposed an architecture similar to Figure 6 [3][2]. The main
differences lie in the f(X) operator and in the number of pipeline stages per cipher
round (3 in our case versus 28 in their system). However, four XCV1000-6 devices are
required to implement the algorithm with full loop unrolling. While the throughput
is close to ours, this solution is more expensive and requires a larger area on the
PCB.

J.-O. Haenni has studied software implementations of RC6 for Itanium and G4
processors [4]. The code was written in assembly language to benefit from the po-
tential of multimedia instructions. FPGA and ASIC approaches clearly outperform
optimized software solutions.

3 Conclusions

In this paper, improved architectures of the RC6 block cipher for Virtex-E and
Virtex-II FPGAs have been described. Our dedicated VHDL generators provide a

RR n -~ 4495



12 Jean-Luc Beuchat

Throughput

Reference Technology [Gb/s]
NSA team [8] 0.5 pm CMOS 2.2
Gaj and Chodowiec [3] | XCV1000-6 (4 devices) 13.1

. Itanium (733 MHz) 0.33
Haenni [4] G4 (450 MHz) 0.47
Best solution of this XC2V3000-6 15.2
paper (see table 2)

Table 3: Results of some other researchers.

wide parameter space exploration: choice of the dedicated f(z) operator, number
of pipeline stages per round, and number of rounds physically implemented on the
FPGA. Significant speed and area improvements are obtained by taking full advan-
tage of Virtex-II MULT18x18 dedicated multiplier blocks.
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