N

N

Impact of Mixed—Parallelism on Parallel
Implementations of Strassen and Winograd Matrix
Multiplication Algorithms

Frédéric Desprez, Frédéric Suter

» To cite this version:

Frédéric Desprez, Frédéric Suter. Impact of Mixed—Parallelism on Parallel Implementations of Strassen
and Winograd Matrix Multiplication Algorithms. [Research Report] RR-4482, INRIA. 2002. inria-
00072106

HAL 1d: inria-00072106
https://inria.hal.science/inria-00072106
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072106
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4482--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Impact of Mixed—Parallelism on Parallel
Implementations of Strassen and Winograd
Matrix Multiplication Algorithms

Frédéric Desprez, Frédéric Suter

No 4482
June 2002

THEME 1

apport
derecherche

Zd I N R I A

RHONE-ALPES

Impact of Mixed—Parallelism on Parallel
Implementations of Strassen and Winograd Matrix
Multiplication Algorithms

Frédéric Desprez, Frédéric Suter

Théme 1 — Réseaux et systémes
Projet ReMaP

Rapport de recherche n° 4482 — June 2002 — 31 pages

Abstract: In this paper we study the impact of the simultaneous exploitation of data— and
task—parallelism on Strassen and Winograd matrix multiplication algorithms. We present
two mixed—parallel implementations. The former follows the phases of the original algo-
rithms while the latter has been designed as the result of a list scheduling algorithm. We
give a theoretical comparison, in terms of memory usage and execution time, between our
algorithms and classical data—parallel implementations. This analysis is corroborated by
experiments. Finally we give some hints about an heterogeneous version of our algorithms.

Key-words: Mixed—parallelism, matrix product, Strassen, Winograd.

(Résumé : tsup)

This text is also available as a research report of the Laboratoire de I’Informatique du Parallélisme
http://www.ens-lyon.fr/LIP.

Unit e de recherche INRIA Rhdne-Alpes
655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN (France)
T el 'ephone : 04 76 61 52 00 - International : +33 4 76 61 52 00
T el "'ecopie : 04 76 61 52 52 - International : +33 4 76 61 52 52

Impact du parallélisme mixte sur des implémentations
paralléles des algorithmes de produits de matrices de
Strassen et Winograd

Résumé : Dans cet article nous étudions "impact de I'utilisation simultanée du parallélisme
de taches et du parallélisme de données sur les algorithmes de produit de matrices de Strassen
et Winograd. Nous présentons deux implémentations a parallélisme mixte. La premiére suit
les phases originales des algorithmes tandis que la seconde a été congue comme le résultat
d’un algorithme d’ordonnancement par liste. Nous donnons une comparaison théorique a
la fois en termes de consommation mémoire qu’en cotlit de calcul, entre nos algorithmes
et des implémentations data-paralléles classiques. Cette analyse est corroborée par des
expérimentations. Enfin, nous donnons quelques suggestions pour une version hétérogéne
de nos algorithmes.

Mots-clé : Parallélisme mixte, produit de matrices, Strassen, Winograd.

Impact of Mized—Parallelism 3

1 Introduction

Parallel scientific applications can be divided in two major classes: data— and task—parallel
applications. The former consists in applying the same operation in parallel on different
elements of a data set, while the latter is defined to be concurrent computations on dif-
ferent data sets. These two classes can be combined to get a simultaneous exploitation
of data— and task—parallelism, so called mized—parallelism. In mixed—parallel applications,
several data—parallel computations can be executed concurrently in a task—parallel way.
Mixed-parallelism programming employs a M-SPMD (Multiple SPMD) style which is the
combination of both task—parallelism (MPMD) and data-parallelism (SPMD). Such an ex-
ploitation of mixed—parallelism has many advantages. One of them is the ability to increase
scalability because it allows the use of more parallelism when the maximal amount of data—
or task-parallelism that can be exploited is reached. A good overview of this topic is
given in [2]. Most of the researches about the simultaneous exploitation of data— and task—-
parallelism have been done in the area of programming languages to give simple high level
accesses to more parallelism and in the area of compilers, where problems such as scheduling
and allocation of concurrent data—parallel tasks are studied [19]. In [18], Ramaswamy intro-
duces a structure to describe mixed—parallel programs: the Macro Dataflow Graph (MDG),
a direct acyclic graph where nodes represent sequential or data—parallel computations and
edges represent precedence constraints, with two distinguished nodes, one preceding and one
succeeding all other nodes. Once the MDG is extracted from the code, a two step algorithm
is applied to place and schedule tasks on the computing resources.

On a second hand matrix multiplication is the kernel of many scientific applica-
tions [16, 21| and several parallel implementations have been proposed, most of them using
data—parallelism. Some algorithms substitute multiplications by additions and thus reduce
the number of multiplications computed. Strassen [22] and Winograd [12] are such algo-
rithms that are best suited for a practical implementation. They have been extensively
studied on monoprocessor machines to increase the computational performances of numeri-
cal applications [1, 8, 14, 15, 23]. Several parallel implementations of Strassen and Winograd
algorithms have been proposed. In [5], data-parallel implementations of Strassen and Wino-
grad on a SIMD machine are presented. In [9], authors present task-parallel implementations
of Strassen algorithm’s on rings of processors that performs better than the classical ring
algorithm. A mixed parallel implementation of Winograd is presented in [11]. The classical
parallel algorithm is used as a kernel for a task parallel version of Winograd on hyper-grids
with 7% processors. Both implementations of [13] and [8] use data-parallel algorithms with
efficient data-distributions. Finally, Ramaswamy [18] uses Strassen as a benchmark code
for the Paradigm parallelization tool. Mixed parallelism is obtained through a two steps
approach (computation of the number of processors needed and then scheduling of the par-
allel tasks). The data distribution is chosen by the tool and no library is used for low level
kernels.

Our motivation is to build efficient parallel algorithms for client—server applications. We
thus assume that matrices are distributed on disjoint grids of processors because of previous
computations. Let compute the operation C = AB, where A and B are two square matrices

RR n-° 4482

4 F. Desprez, F. Suter

of dimension M distributed on two separate square grids of processors of the same size.
Moreover C is distributed on the same grid as A. The “classical” way to compute this
product is to align matrices and then call an efficient parallel routine, using a library like
ScaLAPACK or a data—parallel implementation of Strassen algorithm. At the end of the
computation, the result is finally redistributed. In this paper we propose a mixed way that
keeps all matrices in place and evenly distributes tasks (e.g., additions' and products on
matrix quarters) on the two grids. We use a sequential language like C or Fortran with
high-performance libraries like ScaLAPACK [6] and its associated communication library,
the BLACS. Mixed—parallelism is applied to Strassen and Winograd decompositions. Lower
level products are computed using the standard high—performance level 3 PBLAS routine
pdgemm.

The remainder of this paper is organized as follows. Section 2 recalls Strassen and
Winograd algorithms. In Section 3, we present two optimized data—parallel implementations
of these algorithms. Then in Section 4, we present the implementation choices leading us to
the different mixed—parallel versions. Section 5 gives a theoretical evaluation of the different
algorithms in terms of memory usage and execution time. Then in Section 6 we give some
hints about an heterogeneous version of our mixed—parallel implementations. Experimental
results that corroborate our theoretical study are shown in Section 7. Finally and before a
conclusion, we explain why we only use one recursion step.

2 Strassen and Winograd Algorithms

In 1969, Strassen [22] introduced an algorithm to multiply M x M matrices which has a
lower complexity than the classical O(M?3). This algorithm and its MDG are presented in
Figure 1. It is based on a scheme for the product of two 2 x 2 matrices which involves 7
multiplications and 18 additions instead of the usual 8 multiplications and 4 additions.

If we compute the total number of arithmetic operations done using Strassen algorithm,
the 7 multiplications on quarters being computed with the traditional algorithm, we have:
T(2(M)2)3 = (M/2)*)+18(M/2)? = (7/4) M3+ (11/4) M?. The ratio between this complexity
and the complexity required by the classical algorithm tends towards 7/8 when M gets large.
This implies that for sufficiently large matrices, there is a theoretical gain of 12.5%.

This scheme can be easily applied to 2 x 2 block matrices. To compute the product
C = AB, if A and B are distributed in square blocks of dimension M /2, we have:

Cuu Crp \ _ ([Au An By1 Bia

Co1 Co Az Aa By B
. Strassen algorithm can also be recursively applied on square matrices of dimension M =
2¢ to finally obtain a complexity of O(M'8(")) = O(M?#°7). Several other variations of

this algorithm allow to handle matrices of arbitrary size, most of them being referenced or
detailed in [15].

n the following, we denote either additions or subtractions by addition.

INRIA

Impact of Mized—Parallelism 5

Input : Matrices A, B

Phase 1
Ty =An + A Ts = B11 + Bay
Ty = Ag + Ag T7 = B1s — By
T3 = Ay + Agz T3 = By — By
Ty = Az — Apy Ty = By1 + Bi»
Ts = Ajp — Ayp T =By + Ba»

Phase 2
Q1=T1*T6 Q5=T3*B22
Q2 =15 * By Qe =Ty xTy
Q3= A Ty Q7 =Ts5 % Ty
Q4 = Apy x Ty

Phase 3

Ui =Q1+ Q4 Us = Q5 —Qr
Us = Q3+ Q1 Us=Q2— Qs
Cii=U -Us Ci2 =Q3+ Qs
Co1 = Q2+ Q4 Crp =Us - Uy
Output : C = (Cy;)

Figure 1: First level of recursion of Strassen algorithm (left) and its MDG representa-
tion (right).

Winograd variant of Strassen Algorithm, introduced in [12], uses the same number of
multiplications but reduces the number of additions from 18 to 15. This algorithm and its
MDG are presented in Figure 2.

3 Optimized Data—Parallel Algorithms

In this section, we present data—parallel implementations of Strassen and Winograd algo-
rithms. As matrices A and B are distributed on two disjointed grids, they have to be aligned
before computing the product using a ScaLAPACK parallel routine. This alignment implies
two redistributions before the execution of the algorithm. Furthermore, at the end of the
computation, we want C' to be aligned with A. This induces an other redistribution.

The following implementations for both algorithms focus on the reduction of temporary
variables. They do thus not exhibit phases as shown in Figure 1 but an alternation between
operations of phases 1 and 2. Figure 3 shows our data—parallel version of Strassen matrix
multiplication algorithm, while Figure 4 shows a data—parallel implementation of Winograd
variant, which can be found in [15].

RR n -~ 4482

6 F. Desprez, F. Suter

Input : Matrices A, B

Phase 1
Ty = Ay + Ag Ts = B1s — By
T, =T —An Tg = Bay — T3
T3 =A11 — Ay T7 = Byy — By»
Ty = A1 -1 Ts = By + 15

Phase 2
Q1= A * B Qs =T3xT7
Q2 = A2 x By Q6 =Ty * By
Q3 =Ty %T; Qr = A x Ty
Qs =Ty xTg

Phase 3
Uy =01+ Qs Uy =U; + Qs
Us =U1 + Q3
Cii=Q1+ Q2 Cia=Us+ Qs
Co=Uz+ Q7 Ca=Uz+ Qs
Output : C = (C;)

Figure 2: First level of recursion of the Winograd variant (left) and its MDG representa-
tion (right).

4 Mixed—Parallel Algorithms

4.1 Implementation choices

To benefit from the use of mixed-parallelism in Strassen algorithm, the strategy employed
keeps matrices in place and distributes tasks among processors instead of aligning matrices
before computing. As we use standard parallel numerical routines from ScaLAPACK, we
need to keep the data distribution imposed by these kernels (full-block or block-cyclic dis-
tributions). Our goal is thus to reduce communications and to balance as much as possible
computations among the processors. The two processor grids (or contexts) where matrices
A and B are distributed are square and of dimension p = 2¢, but our algorithms are not
limited to such values for p. This restriction is made in a pedagogical purpose. We consider
these contexts are sub-grids of a virtual rectangular processor grid of size p x 2p (leading to
a total of 2p? processors). Processors of this global grid are row major numbered from [0,
0] in the upper left corner to [p— 1, 2p — 1] in the lower right. We will keep this numbering
from the global context to identify processors until the end of this paper.

It is important to note that parallel versions of Strassen algorithm are better than the
standard matrix multiplication algorithm if accumulations of matrices can be computed
in linear time without communications. If A (or B) is distributed following a full-block
distribution, the addition of two quarters will introduce communications. To avoid these

INRIA

Impact of Mized—Parallelism 7

Input : Matrices A and B
Temporary variables: X, Y, Z, R1, R2, R3
Store to: Computation Algorithmic
Variable
Redistribute A — X
Redistribute B -+ Y

Ry — Xo1 — X111 Ty

R2 — Y11 + Y12 Ty

R3 “— Ri * R> Qs
Ry — Xo1 + Xo2 T>

Ry — Ry Y11 Q2
Zao — R3 — Ro —Uy
Ry — Yo1 — Y11 T3

R3 «— X292 % R1 Q4
Z21 — Ry +R3 Z2
Ry — X11 + Xo2 Ty

Ry — Y11 + Yoo Ts

Z11 — R1 * Ro Q1

Z22 — Z2 + Z11

Z11 — Z11+ R3 Uy

Ry — Yi2 — Yoo 17

Ry . X11 xRy Qs
Z2a — Z22 + Ra Z22
Ry — X11 + X2 T3

R3 — Ry x Yoo Qs

Z12 — Ry + S3 Z12
Z11 — Z11 — R3

R — X12 — Xo2 Ts

R> — Y21 + Yoo T1o
R3 — R1 % Ro Q7
Z11 — Z11+ R3 Z11

Redistribute Z — C
Output : C = (Cy;)

Figure 3: Data—parallel Strassen matrix multiplication algorithm.

communications, each processor involved in the computation must own a part of each matrix
quarters. The bidimensional block-cyclic distribution is the most adapted to obtain such
property, but the block size parameter has to be carefully chosen. Indeed a too little block
size will induce extra memory accesses and will increase communication cost as we will see
in section 5.2. R = M/2p is the maximum block size that allows the local computation of
all additions. Figure 5 shows an example of the chosen data distribution when p = 2. For
each block, subscript gives its matrix quarter and superscript corresponds to the block-cyclic
distribution.

RR n-° 4482

8 F. Desprez, F. Suter

Input : Matrices A and B
Temporary variables: X, Y, Z, R1, Ra
Store to: Computation Algorithmic
Variable
Redistribute A — X
Redistribute B -+ Y

R — X11 — X2 T3
R> — Y22 — Y12 T
Z11 — Ry * R Qs
Ry — Xo1 + Xo2 Ty
R2 — Yi2 — Y11 Ts
Z22 — Ry * Rp Q3
R1 A Rl — X11 T2
Ro> — Yos — Ro Ts
Z1 — Ry * Ry Q4
R1 — X12 — R1 Ty
Ro> — Y21 — Ra Ty
Z12 — Ry % Yoo Qs
Z12 — Zh2 + Za2

Ry — X11 % Y11 Q1
Z — Zo1 + Ry Us
Z12 — Zo1 * Z12 Z12
Z21 — Zo1 + Z11 Us
Z11 — X22 % Ra Q2
Z11 — Zi1+ R Z11
Ry “— X21 * Ry Q7
Z2 — Z21 + Ry Z2

Redistribute Z — C
Output : C = (Cjy;)

Figure 4: Data—parallel Winograd matrix multiplication algorithm.

4.2 Strassen

Once contexts are defined, tasks from the MDG have to be assigned as evenly as possible.
We have developed two mixed—parallel implementations following two different approaches.
The first is inspired of the basic representation of Strassen algorithm presented in Figure 1,
as it follows the phases of this algorithm. The version given in this paper is an improvement
of the one presented in [10]. The second implementation has been designed as it was the
result of a list scheduling algorithm. We describe these two implementations in the next
two sections.

INRIA

Impact of Mized—Parallelism 9

Context 1 | Context 2 Context 1 i Context 2
|
AR} A% | A% AR | BIY | BYE B | BRS Cip | CY N | O
AR AT | A% | ASS | BRY | BE B3 | B3 Ci |3 |5 | C33
AR A | A (A | B | BiE B | Bid Cip |G |C |G
AR AS | A | A3 | BRY | BE | B | B3 CH | CE |3 | O3

Figure 5: Mapping of matrices A, B and C on a 2 x 4 processor grid.

4.2.1 Phase—based Algorithm

In this implementation we have studied which data are involved in each task to determine
how to share computations out. In phase 1, all operations concern only A or B. To keep
locality, these tasks are mapped close to the data they use. In phase 2, each multiplication
involves a matrix coming from context 1 and a matrix coming from context 2. When a
computation needs data that are not distributed on the right context, copies of missing data
from one context to the other have to be performed. In that phase, the placement of the
tasks was driven by the reduction of communication cost. Products involving unmodified
parts of A (resp. B) are thus computed on context 1 (resp. context 2). Finally additions
of phase 3 are executed on the context where matrix C' has to be distributed, in order
to reduce the communication amount. This choice comes from the fact that addition cost
is lower than communication cost for a given matrix size. These choices lead us to the
phase-based mixed—parallel implementation of Strassen algorithm, shown by Figure 6.

4.2.2 List—Based Algorithm

In this section we detail the principle of our list—based algorithm. A major assumption is
made in this implementation. Indeed we assume that we know how products are shared
out before the beginning of the list scheduling algorithm. To determine that sharing, we
consider the seven products as a chain, which is built as follow: There is a relation between
two products if their results are both operands of a given addition in phase 3. Figure 7
shows the chain of products and the proposed cut-line determining the placement.

As for Strassen, we decide to compute accumulations of phase 1 close to the data they
involve. Concerning the additions of phase 3, most of them (Uy,Us, Uy, Cia, and Cay)
can be computed without any data movement as we can see in Figure 7. Remaining ad-
ditions are performed on the context where matrix C has to be distributed to avoid extra
communications.

RR n-° 4482

10

F. Desprez, F. Suter

Input : Matrix A

Temporary variables R1, R2, R3, R4, R5, Rg, R7

Store to: Computation Algorithmic

variables

R, “— Aqr + Az T

Ry — A1 + Azz T>

R3 — A1 + Ap T3

Ry — Az — A Ty

Rs — A1z — Az2 Ts
Redistribute
Redistribute
Redistribute
Redistribute
Redistribute
Redistribute
Redistribute

R7 A11 * Rg Qs

Rg “— Az x Ry Q4

Ry — R4 * R Qs

Ro> “— Rs5 * R3 Q7
Redistribute
Redistribute
Redistribute

C'11 — Ra + R6

Ci1 <« C11 — Ry

Ci1 « Ci11 + Ro Cin

Ci2 « R7 + Rs C12

Coa R4+ Rs C21

Coa < R3 + Ry

Ca2 Ca2 — Ry

Coa < Coz2 + Ry Ca2

Output : C = (Cjj)

Input : Matrix B
Temporary variables S1, S2, S3, S4, S5, Se, S7

Store to: Computation Algorithmic
variables

S1 — B11 + B2 Ts

S — Biy — Ba2 T

S3 — B21 — Bi1 Tg

Sy — B11 + B2 Ty

Ss — B21 + Ba2 T1o
Rg + S2

R; — S2

Ry < S3

R2 — 53

Ry < S4

R3 — S4

R3 — 55

55 «— So * S1 Ql

Se — S3 * B11 Q2

S7 — S4 * B2z Qs

R3 < S5

R4 < Sg

Ry < Sy

Figure 6: Phased—based mixed implemention of Strassen algorithm for Context 1 (left) and
2 (right).

N CONTEXT 2

CONTEXT 1

Figure 7: Chain of products and cut-line for Strassen algorithm.

INRIA

Impact of Mized—Parallelism 11

To determine the scheduling of our algorithm, we use a list of ready tasks. These tasks
are: additions, products, sends or receives. Addition and product tasks are considered
ready as soon as both operands have been produced. For communication operations, a task
is ready once a data to transfer is produced.

The choice of the ready task to execute is driven by several criteria. The most important
is the aim to balance computations between contexts as long as possible. Then communica-
tion operations have priority over additions. Finally additions which produce a ready task
have priority over the other ones. Following these rules we obtain the algorithm presented
in Figure 8.

4.3 Winograd

To implement the phase- and list—based mixed—parallel versions of the Winograd variant,
we kept the same notion of contexts and the same data distribution presented in section 4.1.
But several optimizations have been made in both implementations due to the properties of
the Winograd MDG. We detail these optimizations in this section.

4.3.1 Phase-based algorithm

This implementation of Winograd variant have been implemented aiming at reducing the
communication amount. To achieve this goal we used the following optimizations. First we
used redundant computation. Indeed the computation of Ty can be performed on context 1
as both operands (B2 and Tj) are already redistributed for the computation of Qs and @3
respectively. It allows us to exchange 6 matrix quarters instead of 7 between phases 1 and 2.
Then phase 3 is computed only on one context as for Strassen. This choice unbalances the
amount of computation between contexts but reduces the amount of data exchanged with
regard to the implementation presented in [10]. Both algorithms for contexts 1 and 2 are
presented in Figure 9.

4.3.2 List—based algorithm

As for list—-based implementation of Strassen algorithm, we tried to find a chain of products.
The structure obtained is not so simple, as shown in Figure 10, but it is still possible to
determine a cut-line inducing a good task mapping. The algorithm presented in Figure 11
follows this mapping. We can see that the two additions of phase 3 that are computed on
context 2 are overlapped by the computation of Qg on context 1.

5 Theoretical Evaluation

In this section, we evaluate the theoretical costs, in terms of memory usage and execution
time, of different versions of Strassen and Winograd algorithms: data—parallel Strassen,
phased- and list—based mixed—parallel Strassen, data—parallel Winograd, phased- and list—
based mixed—parallel Winograd.

RR n~ 4482

12

F. Desprez, F. Suter

Input : Matrix A

Temporary variables Ry, Ra, R3, Ra
Algorithmic | Store to:

Store to:
Ry —
R3 <
R —
Ry <~
C21 —
Ro A
R4 —
Caa —
Cao —
Rs —
Caa —
R4 —
C11 —
C11 “—
Caa —
Output :

Computation

Az21 + Aao
R2 * Rl
A1 + A

A22 * R2
R + R3

Az — An
A1z — Ao

Ro * Ry
C22 — R3

A1 + Aao

C22 + R3

R2 x R3
Ci11+ Ry
Ci11 + Ry
Co2 + Ry

C = (Cy)

variables

Redistribute 411 — S1
Redistribute R1 < Bi1

Ts Sa —
Q2 S3 «—
T3 S1 —

Redistribute R2 < S1
Redistribute Ry — S1

Q4 Sa —
C21 S1 —

Redistribute C13 < Si

Ty S1 —
T5 S 4 —

Redistribute R4 — S5
Redistribute R4 <+ S4

Qs S —
—Uy S1 —

Redistribute C11 < S1
Ty Sa —

Redistribute R3 < Sg3

Redistribute R3 < Sy

Q1

C11
Ca2

Input : Matrix B
Temporary variables Si, S2, S3, Sa, S5
Computation Algorithmic

Bia — Ba2
Sl *52
B21 — B

51 * Bzz
S2+ S3

B1 + B2
Bi1 + Bi2

55*51
S4— 8>

B11 + Baa

variables

17

Qs
Tg

Qs
C12

T1o
Ty

Q7
—Us

Ts

Figure 8: List—based mixed implementation of Strassen algorithm for Context 1 (left) and

2 (right).

INRIA

Impact of Mized—Parallelism

13

Input : Matrix A
Temporary variables R1, R2, R3, R4, R5, Rg, R7
Store to: Computation Algorithmic

Input : Matrix B

Temporary variables S1, S2, S3, S4, S5, Se
Computation

Store to:
51 <
So —
53 «—
Sa —
R3 — S5
R5 «— S1

Redistribute A;; — S
Redistribute Re < Baa
Redistribute Az — S1
Redistribute R7 < Bai

variables

R1 — Aoy + Ao T

R — Ry — A11 p)

Ry A1l — An T3

R4 «— A12 — R Ty
Redistribute
Redistribute

R3 «— Ry x Rs Q3

Ry« R4 * Rg Qs

Ry A2 * Ry Q2

Rg “— Rg — R3 Tes

Rs Ry * Rg Q4
Redistribute

Cii + Re + Ry C11

Ra — Re + Rs T
Redistribute
Redistribute

Rg — R4+ Ro T

C12 — Ry + RB

Ci2 + Ci2+ Ry Ci2

Co1 Rs + Rs Co1

Coa < Re + R3 Ca2

Output : C = (Cy;)

So —
56 «—
55 <

Re(—SQ

R2(—56
Ry < Sk

B2 — B1y
Baz — 51
Bz — Bia
Bs1 + S2

Sﬁ * B11
Sy * S3
S1 %S4

Algorithmic
variables

Ts
Ts
17
Ty

Q1
Qs
Q7

Figure 9: Phased-based mixed implementation of Winograd algorithm for Context 1 (left)

and 2 (right).

RR n-° 4482

14 F. Desprez, F. Suter

~ CONTEXT 2

CONTEXT 1

Figure 10: Chain of products and cut-line for Winograd Variant.

5.1 Temporary Variables Allocation and Memory Usage

The results of the 18 additions and the 7 multiplications of the Strassen algorithm have to
be stored in temporary variables. If we consider the algorithm presented in Figure 1(left), 10
temporary variables are needed in phase 1, 7 in phase 2, and 4 in phase 3. As we compute the
product of matrices of size M distributed on square grids of size p x p, all these temporary
variables are of dimension M /2p. With a naive policy for temporary variables allocation,
this algorithm needs 21(M/2p)? temporary elements on each processor. In this section, we
study and compare the different parallel implementations with regard to their optimizations
in terms of memory usage.

In the data—parallel implementations presented by Figure 3 and 4, the alignment of A
and B implies the allocation of two temporary variables of size M /p x M /2p. Furthermore,
at the end of the computation, the alignment of C' induces an other temporary variable of
the same size. In addition of these variables that do no not depend of the computation,
Strassen algorithm needs three temporary variables each being of size M/2p x M /4p. This
algorithm thus needs at least 15M?/8p? temporary elements per processor. Concerning
Winograd variant, the algorithm needs only two temporary variables of size M/2p x M /4p
leading to a total amount of 7M?/4p? temporary elements per processor.

In [10] we proposed implementations of Strassen and Winograd algorithms using mixed—
parallelism which need 2(M/p)? temporary elements on each processor of context 1 and
3(M/p)? temporary elements on each processor of context 2. The implementations pre-
sented in this paper clearly reduce this amount. This reduction comes from a change in the
communication policy which has an influence upon the number of needed temporary ele-
ments. In [10] we did message grouping during communication phases to reduce the number
of latencies. To do that, we used big temporary variables of size M /p. Here the temporary
variables are smaller (M/2p as we give importance to temporary variable reuse instead of
message grouping.

The phase-based implementations of Strassen and Winograd algorithms thus need
7(M/2p)? temporary elements per processor. As the use of list scheduling allows a bet-

INRIA

Impact of Mized—Parallelism

15

Input : Matrix A
Temporary variables R1, R2, R3

Store to:
Ci1 —
R1 —
Rs —
Caa —
Ry —
Rl <
C21 —
Ci2 —
C11 —
Ci2 —
Ci2 —
C21 —
Cao —
Qutput :

Computation Algorithmic

A2 * Ry
A1 + Ao
A1l —An

R1 x R3
Ry — Anx
A12 — R

Rl *R2

Cui+ Ry

Ci2 + Ry
Cr2 +Ca22

Co1 + Ry
Ca2 + Ry

C = (Cyj)

variables

Input : Matrix B
Temporary variables Si, S2, S3, S4, S5

Store to:

Redistribute 417 — S1
Redistribute R; < Baj

Q2
T
T3

52 —
S1 —
53 «—

Redistribute R3 < S1
Redistribute Ry — Sy

Qs
T
Ty

Ss —
Ss3 “—
51 <

Redistribute Ry — Sy
Redistribute Ry <+ S1

Q7

51 <

Redistribute Ry < Baa

Qs

51 <
Sk —

Redistribute Ry < S2

C11

Redistribute Ry < S1

Ci2

Redistribute Ry < S5

Co1
Ca2

Computation

Sl *Bll
Bis — By
Baa — Bi2

S4 % S3
B2z — 51
B21 + S3

S4 % S3

S1+ S2
S5+ S1

Algorithmic
variables

Q1
Ts
17

Qs
Ts
Ts

Uy
Uz

Figure 11: List-based mixed implementation of Winograd algorithm for Context 1 (left)
and 2 (right).

RR n-° 4482

16 F. Desprez, F. Suter

ter reuse of temporary variables, the list—based implementation of Strassen only needs four
temporary variables for each processor owning A and C, i.e., those of the first context, and
five on those owning B, each of these variables being of size M/2p. Concerning Winograd
variant the list—based implementation of Winograd needs less temporary variables (only 3
of size M /2p) on processors of the first context than on those of the second one (still 5).

As we want to evaluate the maximum amount of memory needed by our algorithms,
including input and output data, we will only consider the memory usage of processors
allocating this maximal amount and not an average value. Figure 12 shows the needed
memory space of the different versions for p = 2 when M varies. Input and ouput data are
taken into account in this estimation.

Data-Parallel Strassen R

384 | Data-Parallel Winograd -
Phase-based Mixed-Parallel Strassen -~~~

Phase-based Mixed-Parallel Winograd

List-based Mixed-Parallel Strassen e /

List-based Mixed-Parallel Winograd s /

320 /’ 1

256

192

Memory space (in MB)

128 |

64

_ L
0 1024 2048 3072 4096 5120 6144 7168
Matrix sizes

Figure 12: Memory space needed for the different implementations when p = 2.

We can see on this figure that the data—parallel implementation of Strassen algorithm
is the worst in terms of memory usage. Data—parallel Winograd and phase—based mixed—
parallel implementations need the same space. Then we find the list—based mixed—parallel
implementations. We can conclude that with a limited available memory space per processor
(for instance 256 MB on Figure 12), mixed—parallelism using list-based algorithms allows to
handle bigger sizes of matrices than data—parallel versions.

INRIA

Impact of Mized—Parallelism 17

5.2 Time Cost Models
5.2.1 Parallel Machine and Basic Operation Models

Our communication model is the classical 8 + LT where 8 is the network latency, L the
message size, and 7 the inverse of the network bandwidth. As our network is switched, we
do not have to take contention into account.

In [15], a classification of operations involved in Strassen algorithm is done because each
of those may have different execution speed. We can distinguish two main classes: Matrix
multiplication and matrix addition. the former is computed by the routine pdgemm of the
PBLAS library while the latter is handled by a modified version of a PBLAS internal routine.
Since our block size is carefully chosen, we do not have cache effects. Now, we give detailed
models for each of the basic operations involved in our different algorithms.

Matrix multiplication In [7] a model is given for the ScaLAPACK routine pdgemm, which
is used in our algorithm to compute the seven inner matrix multiplications. Let be p
the number of rows, and ¢ the number of columns of the processor grid and assume
that involved matrices are square and of size M. We have the following cost model

Tutae = time dgerm, | 21|, [2] a0+ g+ spyare + (534 89) | 3|

where time is a routine allowing us to acquire the execution time of a sequential
routines for a given set of calling parameters, dgemm is the sequential counterpart
of pdgemm, R is the block size, and 7P and BP (resp. 7] and B]) are functions of
grid topology and communication pattern for bandwidth and latency in a row (resp.

column) broadcast.

Matrix addition Because of our data distribution, all additions are executed locally with-
out communications as explained in Section 4.1. The cost of an addition is given
by

—y LU 1

5.2.2 Data—Parallel Algorithms

The main difference between Strassen and Winograd algorithms is their number of additions.
But both algorithms need 7 products and 3 redistributions to align source data and bring
back the result on context 1.

To be still able to perform additions without communications once matrices are aligned,
the block size has to change during the redistribution. For instance, Figure 13 shows the
new data distribution of matrix A when p = 2. As in Figure 5, subscript gives, for each
block, its matrix quarter and superscript corresponds to the block-cyclic distribution.

RR n - 4482

18 F. Desprez, F. Suter

Context 1 ! Context 2

00 04 01 05 02 06 03 07
All A12 All A12 All A12 All A12

20 24 21 25 22 26 23 27
All A12 All A12 All A12 All A12

40 44 41 45 42 46 43 47
A21 A22 A21 A22 A21 A22 A21 A22

60 64 61 65 62 66 63 67
A21 A22 A21 A22 A21 A22 A21 A22

10 14 11 15 12 16 13 17
All A12 All A12 All A12 All A12

30 34 31 35 32 36 33 37
All A12 All A12 All A12 All A12

50 54 51 55 52 56 53 57
A21 A22 A21 A22 A21 A22 A21 A22

70 74 71 75 72 76 73 7
A21 A22 A21 A22 A21 A22 A21 A22

Figure 13: Mapping of matrix A on a 2 x 4 processor grid after the alignment step.

To perform such a redistribution, we used the redistribution routine of ScaLAPACK [17],
based on the caterpillar algorithm which is efficient for most communication pattern. Its
principle is the following. Source and destination processors are considered as a single list.
Each processor computes the communication pattern, i.e., the amount of data it has to
exchange with any other involved processor, including itself. Once this pattern computed,
each processor has rendez-vous with other processors to exchange data. Figure 14 shows how
a list of 8 processors rolls like a caterpillar to ensure that all communications are performed.
During even steps, 2 processors execute self-communications, i.e., memory copies.

To estimate the cost of the redistribution involved in the data—parallel algorithms, we
first have to determine the communication patterns. In this case each processor of context
1 (i.e., p? sending processors) sends 4 blocks of size M/4p x M/4p to 4 processors. The
entire matrix is thus communicated. To simplify our analysis we assume there is one, and
only one, communication per step of the caterpillar algorithm. Leading us to the following
model for the alignment of a matrix from a p x p processor grid to a p x 2p processor grid

TAlign = M?*r + 2p2/3

Once matrices are aligned both algorithms perform 7 products even if the execution order
is different. These products involve quarters of matrices of size M distributed on a p x 2p
processor grid. As said before the block size has been changed during the redistribution step
and is now equal to R’ = M /4p. The cost model corresponding to products is then

INRIA

Impact of Mized—Parallelism 19

Step 1 Step 2 Step 3 Step 4
0o 1 2 3 o 1 2 7 0 1 2 7 0 1
LELL = s LD =l] =
7 6 5 4 6 5 4 6 5 4 3 5 4 3
Step 5 Step 6 Step 7 Step 8
6 7 0 1 6 7 0 5 6 7 0 5 6 7
L=l LD = e
5 4 3 2 4 3 2 4 3 2 1 3 2 1

Figure 14: Communication pattern of the caterpillar algorithm.

M M M
Ty = 7 (time (dgemm, ’71-‘ , ’71-‘ , —))
P 2p|° 2
M\?* M
((5) e §).
p

Models are distinguished for additions as 18 are computed in Strassen and 15 in Wino-
grad. As for products, these additions involve quarters of matrices of size M distributed on
a p x 2p processor grid, leading to

Tgtrassen — 18 (time (add, [

time (add, ’V :
If we sum these cost, we obtain

M M|l M M M
TData// — . 1 i _
Strassen 7 { time | dgemm, | || 2 + 18 { time | add, | |1

TM?
+— (75, + 7F) + 3M?r + 14p (B3, + B}F) + 6975,

Winograd __
T44q = 15

SHNSSIESHNIS
—_— 1
- 1

SESESNS

—_1
N——
N——
©
=
o,

for Strassen and

RR n -~ 4482

20 F. Desprez, F. Suter

Data// _ . % % % . % %
TWinograa = 7 (tzme (dgemm, [211-‘ , [413-‘ 5)) +15 (tzme <add, [211 | 2p

7M?
+— (7, +77) + 3MP7 + 14p (85, + B7) + 695,

for the Winograd variant.

5.2.3 Mixed—Parallel Strassen Algorithms

When a data is missing on a context to execute a computation, we have to perform a inter—
context copy. In both implementations, we use locally blocking send and receive functions to
perform these communications. Because the two sub-grids have same size and same shape,
data exchange can be done in parallel between processor pairs. Processor [MyRow, MyCol]
from context 1 exchanges data with processor [MyRow, MyCol + p] in context 2.

In both versions there are 10 Send/Receive operations where a matrix of size M /2p is
communicated from a context to the other. It gives us a communication cost model equal
to

5
TRedist = @M% + 108.

4 products are computed on the first context and 3 on the second one. As each product
deals with matrices of size M /2, we have

4 (time (dgemm, [%-‘ , [M-‘ ; M/2> +2(M/2)*E + 2]\];[//22]9 5)

Tnmu
Mult 2p

= 4 (time(dgemm, R, R, M/2)) + ZMQT;’ + 8ppk.

Concerning additions we have to distinguish phase- and list—based algorithm. Indeed as
phase 3 is not handled the same way in both implementations, the critical path varies. It has
12 additions for the phased-based algorithm and only 10 for the list—based one. Assuming
that all operations work on matrices of size M/2, we get

M M
Tf;xdase = 12 (tzme (add, ’75-‘ s "%-‘)) =12 (tzme(adda R’ R)) X
; M M
Th = 10 <time (add, [%-‘ , [%W)) =10 (time(add, R, R)).

If we sum these costs, we get the following cost model for each version of mixed—parallel
Strassen algorithm

INRIA

Impact of Mized—Parallelism 21

TERase = 4 (time(dgemm, R, R, M/2)) + 12 (time(add, R, R))
5 .
+2M>7F + 2—p2MZT + 8pfy +105.
TList .. = 4(time(dgemm, R, R, M/2)) + 10 (time(add, R, R))

5
+2M°7P + @M% + 8ppk + 108.

5.2.4 Mixed—parallel Winograd Variants

In the Winograd variant of Strassen algorithm, the basic operations are the same as in
Strassen version. If we consider the critical paths of phase- and list—based implementations
we have: 8 sends/receives, 12 additions and 4 products for the phase-based implementation
and 10 sends/receives, 9 additions, 4 products for the list-based implementation.

The cost model of the 4 products, the common part of both critical paths, has already
been given in section 5.2.3. If we detail the remaining component of these critical paths, we
have

9M>2
Tghise = WT + 94, and
. 5M?
Tllielgst = 2p2 T+ 10:87

for the communications and

M M
ritge = 12 (time (aad, | o] [52|)) = 12 ime(ada, R, R, and

2|’ | 2p
; M] [M
Tid = 9 (tz‘me (add, [%w , [%D) = 9 (time(add, R, R)),

for additions. If we sum all these costs (communications, additions and products) we
obtain the following models for our mixed—parallel implementations of Winograd variant

Tihestaa = 4(time(dgemm, R, R, M/2)) + 12 (time(add, R, R))

9
+2M?7p + @M% +9pB; + 88

RR n-° 4482

22 F. Desprez, F. Suter

TVLVif,fogmd = 4 (time(dgemm, R, R, M/2)) + 9 (time(add, R, R))

5
+2M°7P + ﬁM% + 8pBh + 108.

5.2.5 Comparisons and Analysis

Tables 1 and 2 respectively give a summary of the different components of the computation
and communication models for the different versions of Strassen and Winograd algorithms:
data—parallel Strassen, phased- and list-based mixed—parallel Strassen, data—parallel Wino-
grad, phased- and list-based mixed—parallel Winograd.

Computation
Algorithm product addition
nb ‘ M ‘ N ‘ K | nb ‘ M ‘ N
Strassen Data 7 % % Y18 % %
Strassen Phase 4 % % Y12 % %
Strassen List 4 % % M 10 % %
Winograd Data | 7 | 55 | & | 5 | 15 | % | ©&
Winograd Phase | 4 % % Mo112 % %
Winograd List 4 % % 49 % %
Table 1: Summary of computation costs.
Communication
Algorithm M? ‘ Latency
Strassen Data 3r+7/4 (5, +1°) | 14p (8%, + ByF) + 6p°
Strassen Phase 57/2p” + 27F 8pB5 + 1083
Strassen List 57/2p° + 27F 8pBL + 1083
Winograd Data | 37 +7/4 (1, + 7,7) | 14p (85, + B27) + 6p°B
Winograd Phase 97/4p” + 277 8pBL +§98
Winograd List 57/2p® + 27F 8pBk + 1083

Table 2: Summary of communication costs.

INRIA

Impact of Mized—Parallelism 23

f ot p 2 D 2 :
In communication costs, values of 75, 7, 7,7, 87, B5,, and B,P can be replaced by their

actual values (assuming that we have a tree based broadcast), respectively [log,(p)] * 7/p,

([logy (p)1+1)*7/p, ([logz (p)1+1)*7/p, [log2(p)1 B, ([loga (p)1+1) 3, and ([log, (p)]+1)*.
Table 3 gives the new communication costs.

Communication

Algorithm M7 | 8

Strassen Data 3+ 7(2log,y(p)] +1)/4p | 14p(2 [log,(p)] + 1) + 6p>
Strassen Phase 5/2p? + 2 [log,(p)] /p 8p [log,(p)] + 10
Strassen List 5/2p + 2 [log,(p)] /p 8p [log,(p)] + 10
Winograd Data | 3+ 7(2[log,(p)] + 1)/4p | 14p(2 [log,(p)] + 1) + 6p®
Winograd Phase | 9/4p® + 2 [log,(p)] /p 8p [log,(p)] +9
Winograd List 5/2p® + 2 [log,(p)] /p 8p [log,(p)] + 10

Table 3: Summary of communication costs as functions of § and 7.

Data—parallel implementations of Strassen and Winograd have almost the same cost
model. Indeed the only difference is the number of additions (18 vs. 15). As the complexity
of addition is in O(M?), this difference is negligible with regard to the rest of the cost model.
For the same reason, we claim that the mixed—parallel implementations of Strassen and
the list-based implementation of Winograd have comparable cost models. Concerning the
phase—based implementation of Winograd, the redundant computation induces a reduction
of the communication cost.

Figure 15 shows instantiations of some cost models with experimentally measured values
for 7, # and sequential execution times of products and additions. These values correspond
to a cluster of Pentium IIT connected by a Fast Ethernet network. We can see that a mixed—
parallel implementation achieves better performance than data—parallel implementations
when one has to multiply matrices distributed on disjointed grids. This gain can be greater
than 45% on a cluster such as the one simulated in Figure 15.

6 Heterogeneous Version

Few work has been proposed for the implementation of numerical kernels on heterogeneous
platforms. In [3, 4], the authors prove the NP-completeness of the data-distribution problem
for the classical matrix-multiplication problem with different processors speed and present
a polynomial column-based heuristic. The algorithms presented are very efficient but the
distribution used is highly irregular and leads to high redistribution costs when using other
kernels before (and after) the matrix-matrix product.

RR n - 4482

24 F. Desprez, F. Suter

180
Data Parallel Strassen —_—
List-based Mixed Parallel Winograd —-X---

160 |

120

100

80 |

Time (in Sec.)

60 |

40

20 |

o . oo
0 512 1024 1536 2048 2560 3072 3584 4096 4608 5120
Matrix sizes

Figure 15: Theoretical performance of data—parallel Strassen, phase- and list—based mixed—
parallel Winograd on a cluster of Pentium III connected by a Fast Ethernet network.

Self adapting libraries to variable loads have also been studied [20]. Parameters (block
size and grid shape) are computed at run-time. However, the data distribution is still regular.
This optimization improves the performance but it is not really tolerant to high differences
between the processors speed.

To derive the heterogeneous algorithm from our homogeneous implementation of Strassen
algorithm, we have to move the cut-line depending on the relative speed of processors in
each context. Figure 16 shows the chain of products and the proposed cut-line determining
the placement. As the matrix multiplication is the most time consuming task of Strassen’s
algorithm, an efficient algorithm has to evenly balance the matrix multiplication load be-
tween the two contexts. Figure 17 shows the sharing of tasks between contexts given by
the list algorithm. We can see that each computation task executed on context 2 (right)
corresponds, as much as possible, to two tasks of the same kind executed on context 1 (left).

Nl - CONTEXT 2

CONTEXT 1 oo A

Figure 16: Strassen chain of products and cut-line for the heterogeneous algorithm.

INRIA

Impact of Mized—Parallelism

25

Input : Matrix A

Temporary variables R1, R2, R3, R4, R5, Rg, R7

Store to: Computation

Ry « A1 + Az
Ry «+ Ag1 + A2
Rs “— A11 + Are
Rs — A2 — An
Ry “— Ro x Ry
Rs — All * R5
sz “— R7 4+ Ro
Ry A1z — Aa
Ry — R3 x Ry
R — Az * Ry
Co1 — Rs + Ry
Ci1 <+ R7 + Ry
Ry “— Rg * Ry
Coo — Cayo — Rs
Caa — Cy2 + Ry
Co — Ry + Ry
011 < Cll + RS

Output : C = (Cy;)

Algorithmic
variables

Input : Matrix B
Temporary variables Si, Sa, S3, Sa

Store to:

Redistribute R; < Bii

T
T

Redistribute

T3
Ty

Redistribute
Redistribute

Q1
Q3
Us
Ts

Redistribute
Redistribute

Q2
Qa
C21
Uy

Redistribute

Qs

Redistribute
Redistribute

51 <

Ry < 51
S1 —

Rs — So

Rs + S1
S1 —
Sa —

R4 — S3
R4 < Ss

R1 < Ss
Sa —

Ry < S1
Rs(—SQ

Computation

Bi1 + B2z

Bz — Ba»

SQ * B22

B21 — Bii

B21 + B2a
S3 * Sa

Bi1 + Bi2

Sa— 51

Algorithmic

variables

Ts

T

Qs

T3

Tio

Ty

— U2

Figure 17: Heterogeneous mixed implementation of Strassen algorithm for Context 1 (left)

and 2 (right).

RR n-° 4482

26 F. Desprez, F. Suter

7 Experimental Results

To experimentally verify the impact of mixed—parallelism on parallel implementations of
Strassen and Winograd algorithms, we ran tests on homogeneous and heterogenous plat-
forms. The former is icluster which is a cluster of HP e-vectra nodes (Pentium IIT 733 MHz
with 256 MB of memory per node) connected through a Fast Ethernet network via HP
Procurve 4000 switches. The latter is built upon the connection of two homogeneous clus-
ters by a Fast Ethernet link. The first cluster is composed of 4 Pentium Pro 200 MHz
connected through an Ethernet network, while the second includes 4 Pentium II 450 MHz
connected through a Fast Ethernet network. This implies a 2.25 speed ratio between the
two contexts.

For all experiments, we used for communications a version of the BLACS library on top
of MPI (LAM on icluster and MPICH on the heterogeneous platform). The PBLAS v1.0
library is used for inner matrix multiplications. The sequential BLAS kernel is the one
generated by ATLAS. Here we compare performance of all of the algorithms presented in
Section 5.

7.1 Homogeneous Implementations

We ran each implementation of Strassen and Winograd algorithms on 8 and 32 processors
of icluster. Figures 18 shows the resulting executions times on 8 and 32 processors.

On 8 processors, the measured execution times match the theoretical times of Figure 15.
This result corroborates our analysis. Phase-based implementations achieve slightly better
performance than list—based implementations. This may be due to a better synchronization
between contexts in the phase—based version.

We obtain the same kind of results on 32 processors. We can also see that using 4 times
more processors, we can deal with 4 times bigger matrices. The scalability of our algorithms
in term of memory consumption is thus verified. For comparison purpose we ran a pure
ScaLAPACK code that aligns of A and B, computes a pdgemm on all processors and then
redistributes the result C. We can see that the execution time of this code is very close to
those of our mixed—parallel implementation. But, as we will see in the next section, our
algorithms can easily be adapted to run on heterogeneous platforms.

7.2 Heterogeneous Implementations

To validate our heterogeneous version of the list—based mixed—parallel Strassen algorithm, we
compared it on two heterogeneous platforms. First, we simulated heterogeneity on icluster.
To achieve this processors belonging to context 2 execute each computational task several
time. The number of consecutive executions defines the “speed ratio” between contexts. It
has to be noticed that the network is still homogeneous in this platform. Figure 19 (top)
presents the results of this experiment. We can see that the gain increases as the speed ratio
between the two contexts. Of course, we loose time when the entire cluster is homogeneous.

INRIA

Impact of Mized—Parallelism

27

400
Data Parallel Strassen —
Data Parallel Winograd e
Phase-based Mixed Parallel Strassen R
350 |-Phase-based Mixed Parallel Winograd 8 B
List-based Mixed Parallel Strassen -
List-based Mixed Parallel Winograd -0
Pure ScaLAPACK version o -
300 |
250
g
Q
n
£ 200
)
£
Z
150
100
50 - . 1
- .4’(,
A
0 ! L L L L L L
0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240
Matrix sizes
180
Data Parallel Strassen —
Data Parallel Winograd e
160 | Phase-based Mixed Parallel Strassen R /1
Phase-based Mixed Parallel Winograd o /
List-based Mixed Parallel Strassen - /
List-based Mixed Parallel Winograd --0--
140
120 |
§ o}
£
E sof
Z
60
40
20
0 L N L L L L L L
0 512 1024 1536 2048 2560 3072 3584 4096 4608 5120
Matrix sizes

Figure 18: Comparison of the execution time of the different homogeneous implementations
of the matrix product kernel presented in this paper on 8 (top) and 32 (bottom) processors

of icluster.

Then we run our mixed—parallel implementations (homogeneous and heterogeneous) and
a ScaLAPACK code that performs the alignment of A and B, the multiplication and the
redistribution of the result on our cluster of clusters. Figure 19 (bottom) shows that the

RR n - 4482

28 F. Desprez, F. Suter

40

Speed Ratio = 1 —
Speed Ratio = 2 X
Speed Ratio = 3 B
30 | A

20 1

10 - 1

Gain (in %)
o

40 ! ! ! ! ! ! !
0 512 1024 1536 2048 2560 3072 3584 4096

Matrix sizes

40

Gain over homogenous version —+—
e Gain over ScaLAPACK version ---x---

20 F |

10 - 1

Gain (in %)
o

-40 ! ! ! ! ! ! !
0 256 512 768 1024 1280 1536 1792 2048

Matrix sizes

Figure 19: Gains of the heterogenous implementation over the homogeneous version on
a simulated heterogeneous platform with different speed ratios (top). Gain obtained over
ScalLAPACK and homogeneous version by the heterogenous version (bottom).

gain is clear between the homogeneous version of the mixed implementation of Strassen
algorithm as well as the ScaLAPACK code and this even for small matrices.

INRIA

Impact of Mized—Parallelism 29

8 A Word about Recursion

The O(M?2897) asymptotic complexity of Strassen and Winograd algorithms can only be
achieved if the decomposition is applied recursively. We can easily derive recursive versions
of our mixed—parallel implementations. Indeed each of the seven inner products involves a
matrix distributed on context 1 and a matrix distributed on context 2. The assumptions
we made to build our algorithms are thus respected. We just have to write versions where
the result is distributed on context 2. For instance such a list-based mixed—parallel im-
plementation of Strassen algorithm can be derived of the sharing of products presented in
Figure 20. Moreover the block size is the only parameter to adapt, as a distribution allowing
the computation of additions without communications has to be kept until the most inner
level. R = M/2'p, where i is the number of recursion steps is a_size satisfying this condition.

CONTEXT 1)

J CONTEXT 2

Figure 20: Strassen chain of products and cut-line for version where the result on context 2.

But if a recursive mixed—parallel implementation of Strassen algorithm reduces the num-
ber of products, it introduces a non-negligible amount of communications. On a platform
with fast processors and a slow network, such as icluster, the gain in terms of computation
can not divide out the cost of this communication amount increase. Performance is thus
worst than this of a non-recursive implementation. We plan to study whether recursion can
improve performance on a platform with a high communication/computation ratio.

9 Conclusion and Future Works

In this paper, we have presented mixed—parallel implementations of Strassen and Winograd
algorithms in the scope of client—server applications (i.e., the different data involved in com-
putations are already distributed on disjoint grids). We chose these algorithms because they
are composed of several data—independant tasks which are easier to schedule and place com-
pared to a classical matrix multiplication. Our algorithms are simple and allow the use of
high performance numerical kernels (e.g., ScaLAPACK). After giving details about the pro-
posed mixed—parallel algorithms and their related issues, we gave theoretical models of these
algorithms. We also showed how an implementation of the list-based version of Strassen
targeting heterogenous platforms can be derived from the homogeneous implementation. We
claim that Strassen algorithm is more interesting than the classical matrix-matrix product
for an implementation on a heterogeneous platform. To validate our approach, we compared
theoretical models and experimental results of our work with data—parallel implementations
of Strassen and Winograd algorithms. Experiments corroborated our theoretical analysis.

RR n- 4482

30 F. Desprez, F. Suter

We aim to develop recursive versions of our mixed—parallel implementations. Indeed
the complexity of O(M?8%7) can only be reached if the Strassen decomposition is applied
recursively. We also plan to study an other way to perform matrix multiplication on an
heterogeneous platform using mixed—parallelism. The idea is to keep the algorithm designed
for the homogeneous case given in section 4.2.2 and execute it on a platform such as the
one used in section 7. But in this case the aggregate powers of the clusters will be quite
equivalent, as more slow processors will be involved. Our future work finally concerns the
automatization of the scheduling process and the implementation of other numerical kernels.

References

[1] D. Bailey, K. Lee, and H. Simon. Using Strassen’s Algorithm to Accelerate the Solution
of Linear Systems. Journal of Supercomputing, 4(4):357-371, Jan 1991.

[2] H. Bal and M. Haines. Approaches for Integrating Task and Data Parallelism. IEEE
Concurrency, 6(3):74-84, Jul-Sep 1998.

[3] O. Beaumont, V. Boudet, A. Legrand, F. Rastello, and Y. Robert. Heterogeneous
matrix-matrix multiplication, or partitioning a square into rectangles: NP-completeness
and approximation algorithms. In FuroMicro Workshop on Parallel and Distributed
Computing (EuroMicro’2001), pages 298-305. IEEE Computer Society Press, 2001.

[4] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix multiplication on hetero-
geneous platforms. IEEE TPDS, 12(10):1033-1051, 2001.

[5] P. Bjorstad, F. Manne, T. Sorevik, and M. Vajtersic. Efficient Matrix Multiplication
on SIMD Computers. 13(1):386-401, January 1992.

[6] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R.C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, 1997.

[7] E. Caron and F. Suter. Parallel Extension of a Dynamic Performance Forecasting Tool.
In proc. of the Int. Symposium on Parallel and Distributed Computing, lasi, July 2002.

[8] S. Chatterjee, A. Lebeck, P. Patnala, and M. Thottethodi. Recursive Array Layouts
and Fast Parallel Matrix Multiplication. In Proceedings of Fleventh Annual ACM Sym-
posium on Parallel Algorithms and Architectures, Saint-Malo, France, June 1999.

[9] C. Chou, Y. Deng, and Y. Wang. A Massively Parallel Method for Matrix Multiplica-
tion Based on Strassen’s Method. Technical Report SUNYSB-AMS-93-17, Center for
Scientific Computing, The University of Stony Brook, November 1993.

[10] F. Desprez and F. Suter. Mixed Parallel Implementations of the Top Level Step of
Strassen and Winograd Matrix Multiplication Algorithms. In proc. of the 15th Int.
Parallel and Distributed Processing Symposium (IPDPS’01), San Francisco, April 2001.

INRIA

Impact of Mized—Parallelism 31

[11] B. Dumitrescu, J.L. Roch, and D. Trystram. Fast Matrix Multiplication Algorithms
on MIMD Architecture. Parallel Algorithms and Applications, 4(2):53-70, 1994.

[12] P. Fischer and R. Probert. Efficient Procedures for Using Matrix Algorithms. In
Automata, Languages and Programming, volume 14 of LNCS, pages 413—-427. Springer-
Verlag, Berlin, 1974.

[13] B. Grayson and R. Van de Geijn. A High Performance Parallel Strassen Implementation.
Parallel Processing Letters, 6(1):3-12, 1996.

[14] N.J. Higham. Exploiting Fast Matrix Multiplication Within the Level 3 BLAS. Techni-
cal Report TR89-984, Dept of CS—Center of Applied Math.—Cornell Univ., April 1989.

[15] S. Huss-Lederman, E. Jacobson, J. Johnson, A. Tsao, and T. Turnbull. Strassen’s Al-
gorithm for Matrix Multiplication: Modeling, Analysis, and Implementation. Technical
Report CCS-TR-96-147, Center for Computing Sciences, Argonne National Lab., 1996.

[16] B. Kagstrom, P. Ling, and C. Van Loan. GEMM-Based Level 3 BLAS: High Per-
formance Model Implementations and Performance Evaluation Benchmark. Technical
Report UMINF-95.18, Umea University, October 1995.

[17] L. Prylli and B. Tourancheau. Fast Runtime Block Cyclic Data Redistribution on
Multiprocessors. Journal of Parallel and Distributed Computing, 45(1):63-72, Aug 1997.

[18] S. Ramaswany. Simultaneous Ezploitation of Task and Data Parallelism in Regular
Scientific Applications. PhD thesis, University of Illinois at Urbana-Champaign, 1996.

[19] T. Rauber and G. Riinger. Scheduling of Data Parallel Modules for Scientific Comput-
ing. In STAM, editor, Proceedings of Ninth SIAM Conference on Parallel Processing for
Scientific Computing (PP99), San Antonio, Texas, March 1999.

[20] K. J. Roche and J. J. Dongarra. Deploying Parallel Numerical Library Rou-
tines to Cluster Computing in a Self Adapting Fashion, April 2002. Submitted to
Parallel Computing, http://www.netlib.org/netlib/utk/people/JackDongarra/
PAPERS/dyn_pnumlibYs.pdf.

[21] W. Ronsch and H. Straufs. The Level 3 BLAS Forms of Parallel Factorization Methods.
In D.J. Evans, G.R. Joubert, and F.J. Peters, editors, Parallel Computing 89, pages
85-92. Elsevier Science Publisher B.V., 1989.

[22] V. Strassen. Gaussian Elimination Is Not Optimal. Numerische Mathematik, 14(3):354—
356, 1969.

[23] M. Thottethodi, S. Chatterjee, and A. Lebeck. Tuning Strassen’s Matrix Multiplication
for Memory Efficiency. In Proceedings of Supercomputing’98, Orlando, Nov 1998.

RR n-° 4482

/<

Unit"e de recherche INRIA Lorraine, Technopdle de Nancy-Brabois, Campus scientifique,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES NANCY
Unit"e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
Unit e de recherche INRIA Rhéne-Alpes, 655, avenue de I’Europe, 38330 MONTBONNOT ST MARTIN
Unit e de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
Unit e de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex

Editeur
INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex (France)
http://www.inria.fr
ISSN 0249-6399

