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Abstract: We study the performance of several TCP connections through the bottleneck
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Evaluation de performance d’une file d’attente unique
soumise & des connexions TCP multiples, version 2

Résumé : Nous étudions les performances de plusieurs connexions TCP soumises au gou-
lot d’étranglement d’un réseau lent desservi par une file d’attente de grande capacité. En
utilisant la méthode asymptotique du champ moyen nous établissons des résultats asymp-
totiques sur la distribution de la longueur de la file d’attente et des tailles de fenétre quand
le nombre d’utilisateurs croit proportionnellement ‘a la capacité de la file d’attente. Nous
montrons que la quantité de places libres dans le buffer d’attente suit une loi exponentielle.
Nous évaluons précisément la distribution de la longueur des fenétres de retransmissions.
Nous prouvons que cette distribution est log-normale.

Mots-clés : Internet, TCP, évaluation de performances, comportement asymptotique,
approximation par le champ moyen, équité.
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1 Introduction

The protocol TCP [1] is widely used in the Internet (Web, FTP). The proportion of con-
nections made on this protocol is overwhelming (close to 99.9%). The protocol TCP is an
end-to-end flow control protocol based on dynamic transmission windows. The protocol does
not make any assumption on the underlying network and on how heterogeneous networks
are connected. The reason of the success of TCP is mainly based on its high dynamic that
make it able to adapt itself to any kind of network capacity from few bauds to several gigabit
per second.

The protocol TCP has received special attention since its formulation as an internet stan-
dard. In particular its performance has been the research focuse of several researcher. The
paper [3] is a pioneer paper where the performance of TCP is analyzed in the specific case of
a single TCP connection on a single router connected to an infinite capacity channel with a
fixed independent error rate p. More recently Baccelli et al. [2] have analyzed a single TCP
connection through a sequence of finite capacity routers. The analysis is interesting because
it relyes on an explicit formulation of the problem in (max,plus) algebra. The problem of
several connections even a single router has been only simulated with the notable exception
of [4], but limited to very specific phases of the protocol.

The aim of this paper is to investigate via analytic methods the multi-connection cases
where N TCP connections coexist on the same finite capacity router connected to a finite
capacity network. We denote B the finite capacity of the router, and T = B/N. Extending
the already difficult single connection case to the multi-connection case is absolutely out of
reach of the present performance evaluation toolbox. However our analysis is made possible
because we consider the asymptotic case where NNV is large and the analysis is much simplified.
Indeed the calculation of the steady states turns out to be much simpler compared to the
single connection case.

Practically we investigate the case where N users access N server under TCP/IP and the
bottleneck is a router with a finite buffer and a slow network interface. The servers are not
necessarily different, as well as the users, but we assume that NV connections are active. The
network is divided into two areas:

e a local loop with relatively low speed (telephone line, cable TV, ADSL)
e a backbone with high throughput (ATM, DWDM)
We assume that the users are located on the local loop and the servers are located on the

fast backbone. We assume that there is a router at the border of the local loop and the fast
backbone (head-end, etc).

We will consider that every user is downloading a file of infinite size and we are interested
into analyzing the steady state of every connection. We also assume that the round trip
delay between server and user is large.

RR n° 4478



4 C. Adjih, P. Jacquet, N. Vvedenskaya

This paper is version 2 of [8]. The paper is divided into the following sections. A first section
is devoted to a short presentation of TCP. A second section describes of the models. A third
section presents the analysis of a simplified model and the result are used to the analysis of
a more realistic model. A last section is devoted to numerical example with interpretations
about traffic fairness. In particular it will be shown that the remaining space in the queue
tends to be exponentially distributed when N — oo. When T and N tend both to infinity,
the window size distribution rescaled by T—'/2 tends to a continuous distribution g(y) given
by figure 1. In [9] the same limiting function has been extracted in the more general approach
of TCP control with side control traffic as in the RED protocol.

04 r \\\ /

Figure 1: Limiting function g(z) and its primitive for window size distribution.

In particular, function logg(y) ~ —log2log®y when y — 0, therefore small window size
distribution is log-normal as illustrated in figure 2. Since the window size is proportional
to the instantaneous throughput of the connection, we have proven that the throughput is
log-normally distributed.

2 The TCP connection protocol and its model

2.1 TCP overview

The connections are done under a window protocol like TCP/IP. Packets are transmitted in
order and must be acknowledged by the end-user. A packet is loss when the acknowledgement

INRIA
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Figure 2: Limiting function log,q ¢(10*) and —+/log; g(10%) as function of z.

does not arrive within the estimated round trip delay. A packet loss is considered as a
congestion event.

In order to cope with the round trip delay, several packets are transmitted in advance without
waiting for acknowledgement. The set of unacknowledged packets is called the window and
its size varies in order to handle congestion.

e when no packet is lost in a window (successful window), the next window size is
incremented of 1 unit.

e when a packet loss occur (failed window), packet retransmission starts from this packet
but with a window size halved.

There are several feature that add to the previous one that allows TCP to be more reactive
on networks event. Among them are self-clocking and slow start.

Self-clocking The server updates its window size on-line with each acknowledgement re-
turn. The server synchronizes the transmission of its new packets with the acknowledgement
returns leading to a self-clocking of packet transmissions. Packets can be acknowledged in
batch via appropriate tuning of parameter k.

RR n® 4478




6 C. Adjih, P. Jacquet, N. Vvedenskaya

Slow start There is also the slow start process where the window is doubled at each
successful window as long the window size is below a pre-defined threshold. We will not
discuss of this feature here, since we focus on steady state analysis.

2.2 The models
2.2.1 The continuous model with batch transmission

We consider that the router has a very large buffer but whatever its size the window protocol
strives to almost fill it in steady state situation. The parameter of interest is the current
available room in the buffer at time ¢ called R(%).

We assume that the buffer contains continuous data (fluid approximation), and R(¢) is a
positive real number. The buffer is served at speed p > 0.

The current window size at server i is W;(t), which is also a real number. We consider the
following simplified mode of operation:
¢ the server transmits all the packets within its window at the same time;

e The backbone has an infinite speed so that all the packets of the same window arrives
simultaneously in the buffer;

e the end-user acknowledges all the packets received from the same window in the same
packet (aggregated acknowledgement).
When server ¢ transmits its window, we assume
1. If the current window W;(t) < R(t), then R(t) becomes R(t)—W;(t) and W;(t) becomes
W;i(t) + 1;
2. else, if W;(t) > R(t), then R(t) becomes 0, and W;(t) becomes W;(t)/2.

2.2.2 The Discrete model
In this model we suppose that the buffer length R(#) and the window length W;(t) are
discrete, r = 1,2, ..., w; = 1,2,..N are integers.

It is supposed that the length of the window is increased by 1, or w; — [w;/2] at any step
the window is addressed (here we have to specify that when w = 2¢ — 1 it becomes 4); the
length of free buffer can increase by 1 or can be made 0, following the model proposed above.

We will mainly focuse our presentation on the continuous model, but we will outline some
sketches from the discrete model as often as possible.

INRIA
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2.2.3 The exponential round trip delay

We make a further approximation by assuming that windows arrive on buffer according to
a Poisson process of rate A > 0. Within this model the round trip delays per server is i.i.d.
and is Poisson with mean N/A. Windows arrive on buffer according to a Poisson process
of rate A. A further level of abstraction in the model consists into monitoring the arrival
point as Poisson events and at each Poisson event to randomly select the transmitter server
i, uniformly in (1, N). Within this model there is no need to keep track the exact matching
between server and window size. It suffices to keep track of the repartition function W (y, t):

number of servers at time ¢ with window size > y
W(y,t) = N 1)

With W(0,£) = 1.

The exponential round trip model is convenient for a first analysis but it is highly non
realistic. First, it varies in too large proportion: a difference between two consecutive round
trip delay will be interpreted as a packet loss by the server and cause a window halving.
Second the propagation delay contains the buffer delay experienced by the last packet of the

window, i.e. exactly BfTR(t) which is not expected to have an exponential distribution. In

fact it will be proven that the buffer delay will be close to %.

2.2.4 A realistic model with fixed delay plus random processing time
In this model we assume that the propagation delay has two components:

o A fixed buffer delay NT = Z;

e A random exponential delay of mean %, assumed to be much smaller than NT'.
We can see the factor N as the nominal buffer capacity per server. For the convenience of
the presentation we will call the small exponential delay the processing time, but it can be
just a component of the propagation delay, for example some buffer time in the high speed
part of the network.

In this model, the server are either (i) transmitting, (ii) in fixed propagation delay or (iii)
in random processing delay. We keep the repartition function W (y,t) but with a different
meaning;:

number of servers in processing at time ¢ with window size > y

W(y,t) = ~ (2)

In this case W(0,t) < 1. Indeed, quantity W(0,¢) is equal to the proportion of server in
1

processing at time ¢. The average value of W (0,t) over ¢ is equal to x77-

RR n° 4478



8 C. Adjih, P. Jacquet, N. Vvedenskaya

This very model is much realistic than the previous one and can be treated as well. But we
will first handle the first unrealistic model which will give the foundations of our framework.

3 Main results

3.1 Notations and system description

We denote R(z,t) = P(R(t) > z) and w(y,t) = 5—5W(y,t), i.e the density of window size
distribution.In other words, w(y,t) = + E:zf’ 0(y — W;(t)) where () is the Dirac function.

In the model with processing time, this is equal to the window size density of server in
processing state. We shall immediately outline two important points:

1. The quantity R(z,t) addresses a probability distribution.

2. The quantity W (y,t) addresses a state function of the system and a priori is not a
probability distribution

Therefore quantities R(z,t) and W (y,t) are not sufficient to describe the probabilistic be-
havior of the system. The complete probabilistic description of the system should be given
by function p(z, f,t) = P(R(t) > z, W (y,t) = f(y)), where f(.) is a positive function.

3.2 Results

In this section we mainly deal with the exponential delay model. We will also show prelim-
inary results for the fixed delay plus exponential processing time. We present the results
equations that describe the performance of this model and justify the asymptotic approach.

3.2.1 Fixed window distribution and fixed R(t) distribution models

We consider the side system where the distribution of W is fixed and does not change with
the R(t). This is not the real system since R(t) and W (¢) are actually dependent. Therefore
we denote this fake system R(t) and @ denote the fixed window distribution. We call this
model the Fixed Window Distribution (FWD) model.

Lemma 1 In the FWD model the functional equation of R(z,t) = P(R(t) > z) is

OR@,t) _ R _ponyran [ R+ b, (3)
dt 31‘ k=0

INRIA
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Proof: In absence of window transmission, quantity R(t) increases at rate u. Windows are
transmitted at rate \. When a window of size y (which occurs with differential probability
w(y)) is transmitted between ¢t and ¢ + dt (dt infinitely small) two cases are possible:

e R(t) >y, in this case R(t + dt) = R(t) — y.

e R(t) <y, in this case R(t+dt) =0

Translating these events into stochastic equations leads to equation (3). B

We assume now that there is a > 0 such that E[e?"] < cc.

Lemma 2 In FWD model let assume a that E[W] > p/\. The steady state distribution of

R(t) is exponential with parameter @ > 0: limy_,oo P(R(t) > z) = exp(—axz). Parameter @
satisfies: )
A1 —E[e™™]) = pa (4)

and the convergence rate to steady state is at least max,,{uw — A(E[e“W] - 1)}

Proof: Let consider an initial distribution such that E[e“R(O)] < A for some A > 0.

We denote by R*(w) the Laplace transform E[e“"R(t)]. From equation (3) we get by Laplace:

%R*(w,t) = —p — pwR* (w, 1) + AR* (w, 1) (E[e*V] - 1) . (5)

Therefore the stationary distribution is Poisson of rate a > 0 such that
AL~ Efe™™]) = pa (6)

Moreover if two initial distributions Ry (z,0) and Ry(z,0) satisfies E[e*F(®)] < co. Therefore
their transient distribution, characterized by their Laplace transform Rj(w,t) and R%(w,?)
tend to converge.

Namely it comes from 5 that
Ri(w,t) = R5(w,t) = exp(—(uw = A(E[e*"] = 1)) (R (w, 0) - R3(w,0)) (7)

and the convergence is exponential of rate max, {uw — A(E[e“"]-1)} > 0. m

3.2.2 The Independent R(t) Distribution models

We can also define the Independent R(t) Distribution (IRD) model where the distribution
of R(t) is time independent, i.e R(t) is independent of R(') as soon as t # ¢'. We denote
by R(z,t) the distribution of R(t). Let i be a fixed integer in [1, N), for example i = 1.

Let w;(y,t) be the distribution of Wj;(t), the window of server i. We denote wl (y,t) =

RR n° 4478
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Lemma 3 In the IRD model the evolution equation of wX (y,t) is

50 (1) = AR(y — Lyw (y = 1,1) + 221 = B2y, ))w]’ (2p,1) - Ao’ (y)  (8)

Remark The independence hypothesis of R(t) with R(¢') as soon as t # t' can be relaxed
by the weaker hypothesis that R(t) is independent at each transmission times of server i.

Proof: After time re-scaling by factor N, window transmission of server ¢ occur at rate .
If at time ¢, server ¢ transmit and its window size is y, then either

e R(t) <y, and W;(t+ dt) =y/2

e R(t) >y and W;(t+dt) =y + 1.

These alternatives translated into stochastic equation (8).1

3.2.3 Main theorems

The kernel of our result is in the following theorem.

Theorem 1 In the real system, when N — 0o, let assume that limy_,o W (y,0) = W(y,0)
and X [ W(y,0)dy > p. In this case limy_,oo W (y, Nt) = [ w(z,t)dz such that:

9wl ) = A= OO Duly —1,8) 4+ 201 (2, 6) ~ () (9)

such that a(t) is the non-negative solution of
A([ (1= eyl 0y = ). (10)

Furthermore R(t) is exponential of parameter a(t/N).

Proof: The proof of the theorem is given indetail in the appendix. It proceeds in three
steps:

(i) OW (y,t)/0t = O(A/N)
(i) R(t) is exponential of rate a(t/N)

(iii) OW (y,t)/0y tends to be equal to & >, w;(y, t).

INRIA
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Point (i) is given by the fact that during any time interval of length At an average of AA¢
servers transmit leading to a modification of order O(AAt/N) of repartition function W (y, t).

Point (ii) comes from the fact that R(t) has time to converge to the exponential steady
state of parameter a(t/N) as in FWD model before W (y, t) has enough time to significantly
change, when N increases. For example, given a(t/N) given by (15) at time ¢, the random
variable R(z,t) has time to converge to exp(—a(t/N)z) during the interval [t,t + Atv/N]
during which W (y,t) remain inchanged at +O(AAt/v/N).

Point (iii) comes first from the fact that for any given fixed server, the distribution of R(t)
is independent and exponential of parameter a(t/N) at each transmission time of the server
when N — 0o. Therefore the IRD model applies. Second a straightforward application of the
r.nean—ﬁeld approximation to the system leads to W (y,t) = 1— % >, [¢ wi(z, t)dz+ O(ﬁ)

Corollary 1 When N — oo the steady state of window size is the function w(y) which
satisfies the equation:
w(y) = e @ Nw(y — 1) +2(1 - e7*¥)w(2y) . (11)
and
[ty =1 (12
where a is the non-negative solution of

JA — e )w(y)dy

_ K
3 (13)

It is clear that the best way to solve the above equations is to use a as a parameter and
then to express A/p as a function of a.

The realistic model where the round trip delay of each server is a constant delay NT plus a
processing time before transmission exponentially distributed with parameter A\/N (therefore
an average round trip delay equal to NT + N/A) can be expressed by a modification of
theorem 1. In the following theorem W (y,t) now denotes the distribution of window size on
the server in processing time. In particular W(0,t) < 1 and its average value is ﬁ

Theorem 2 In the fized delay plus exponential processing time model, when N — oo, let
assume that for t € [0,T] limy_,oc W(y,t) = W(y,t) and X\ [ W(y,t)dy > p. In this case
limy 0o W(y, Nt) = [} w(z,t)dx such that:

Ew(y,t) =X DNy — 1,6 = T) + 201 — e~ 22O w(2y,t — T) — Mw(y) (14)

such that a(t) is the non-negative solution of

A / (1 — e )u(y, )y = pat). (15)

RR n° 4478
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Furthermore R(t) is exponential of parameter a(t/N).

Proof: We don’t have yet the complete proof of the theorem (which is therefore formally a
conjecture). The proof however proceeds the same way as with theorem 1 but is significantly
complicated by the retarded mechanism.

Corollary 2 When N — oo the steady state of window size is the function (AT + 1)w(y)
which satisfies the equation (11) and (13) but with

ey = (16)

4 Large round trip delay

4.1 Window size stationnary distribution

Our aim is to exploit the results obtained in previous section in the case where the round
trip delay is large (i.e when T or 1/ is large). In this case the quantity a that characterizes
the Poisson parameter of the qunatity R(t) (the buffer free space) is small.

We are interested into the unconditional distribution of the window size. It is interesting to
consider case when 1> a.

Theorem 3 When a — 0 the window size distribution w(y) satisfies:

limw(y/v/a)/va = g(y) (17)

where

\/7 [Ta-47%277" ) anexp(-4"?/2) , (18)

k>0 n>0
with ay, satisfying the Taylor identity:
And

non @nZ" = [[50(1 = 47Fg).
A
Va=(1+ O(\/E))pg (2) (19)
with *(2) = /2 Tys0 15iener ~ 1309833,

Let’s make the change of variable can consider w(y) = v/ag(y+/a). Equation (11) rewrites

g(y) = e Wotag(y — Va) +2(1 — e V) g(2y) (20)

INRIA
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when a — 0 the equation expanded to first order in 1/a becomes

(1 —yva)(g(y) — Vag'(y)) + 4yVag(2y) = g(y) (21)
where ¢'(y) is the first derivative of function g(y) at point y.

Simplifying we obtain the differential equation:

y9(y) + g'(y) = 4yg(2y) (22)
This equation is easy to solve via Mellin transform g*(s) = f0°° g(y)y*~dy:
g (s +1)+ (s —1)g*(s = 1) =2'°g* (s + 1) (23)

By fixing g*(s) = v(5)2%/2T'(s/2) we get

v(s) =v(s+2)(1-277). (24)
The above formula is easy to solve with v(s) = a[];sq(1 — 27¢~2*). Therefore
9%(s) = a2°/’T(s/2) [J(1 - 47*27) (25)
k>0

The value of a is extracted from the identities g*(1) = [w(y)dy = 1, and it comes

(s) = . 2°/°T(s/2) [ Lo (26)
9=\ o 1—4 kg1

k>0
Notice that function g*(s) has no singularity since poles of I'(s/2) at s = —2k, k natural

integer, are exactly cancealed by being root of 1 — 47%27%. Therefore the function g(y) will
have all its derivatives at zero at y = 0.

It comes that

9*(2) 2 1— 4kt
E[W]| = = 27
W] Va V2ra oo 1 4-k2-1 (27)
and (13) becomes to
1— [ e~ %uw(y)d
§_ S ea w(y)dy ~ B[] (28)

which leads A = pv2ra[];5, %.

By reverse Mellin it comes that

o) =\ 2 TL0 - 47427) Y apexpl-a72/2) (29)

k>0 n>0

with a,, satisfying the Taylor identity: > o, an2™ = [[;5o(1 —47F2)m

RR n° 4478



14 C. Adjih, P. Jacquet, N. Vvedenskaya

Corollary 3 When a — 0 the average window size is

1 —4-h-1

2
E[W]| =
W] %Igl_4,k2,l

(30)

The average packet retransmission E[W]% — 1 — 0, and the average number of dropped
packet per window £ (E[W?] x a) tends to 1.

In the case of the fixed delay plus exponential processing time model we have the following
theorem.

Theorem 4 when T 4+ 1/\ — o,

(T + Dw(y/v/a)/Va = g(y) (31)
and
Vi = 1+ 0Wa) o £ (32)

4.2 log-normal distribution of small windows

The aim of this section is to show that the distribution is log-normal for small windows,
namely that log Pr{W < z} = —0(log® z).

Theorem 5 In large propagation delay condition we have —log Pr{W < z} ~ (log, z)?
when z — 0.

Proof: We know that Pr{W = z} = +/ag(y/az). The point is to prove that logg(z) ~
—(log, z)%. We have

1 [etico
o@) = g5i= [ oo (53)
for some c in the real definition domain of g*(s), i.e. the whole real axis. We can rewrite
o [etioo
o(z) = oo / B k];[()u g2k (34)

With «, a constant defined in section xx, which has no impact on the asymptotic expansion.

We will define ¢ = —1 — k(z) where k(z) is an integer function of z. We define k(z) =
argming{— logz — klog2 — 1 logk}. For z — 0 the minimum tends to be smaller to 1 and
k(z) ~log, x.

INRIA
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For k integer we have

g°(s — 2k) = a [[ (1 — 275+2k=2)25/2=F( 2 _ ) (35)
2
£>0
We first use
=k
H(]- _ 2—3-‘,—2/‘:—213) — H(]- _ 2—s+2€) H(]- _ 2—8—213) (36)
£>0 (=1 £>0
— (1 + O(Q—k))2—ks+(k+1)k
x [J -2 —2772) (37)
£>0

We second use

s (% _k)%fkfl/Qkk71/2 s
T(;—kKrk) = vor OIGE r(3) (38)
= DR EE ) (14 0() (39)
Therefore
Fs—2k) = (1+ O(%))az—ks+(k+1)k—(s—1)/2S(s—l)/Qk%—l
x(=1)( /22D (2)2"/2 7K p(s) (40)
with p(s) = []p5o(1 — 2°726) (1 — 2757%).
And
P RO G (s~ 2k(@) = (1+O(3))aexp(~A@)s) (=) T(2)p(s)
x exp(2k(z) logz + k(z)? log 2 — log k(z)) (41)
and
g(z) = aexp(2k(z)logz + k(x)?log2 — log k(z))G(A(x)) (42)

where G(y) = 5= f_léﬂoo Y2 (=1)(=D/2e5/2T(£) p(s)ds.

2imw — 35—

Since A(z) is bounded and consequently G(A(x)) we have log g(x) = —log® zlog 24O log x)
and the theorem is proven.l

RR n° 4478
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5 Simulation results

5.1 Simplified TCP

We have simulated the simplified TCP with different number of connections and different
buffer size and random delay. By simplified TCP we mean the approximated version of TCP
we have analysed in the paper, i.e.:

e windows are transmitted and acknowledged by batches;
e window sizes are real numbers;

e connection never come again in slow start.

Each of the connections start at a random time after time ¢t = 0. The connection starts in
slow start mode. A connection leaves the slow start mode when it meets its first congestion.
The connections never come back to slow start mode. The simulation runs are enough long
so that every connection has left its slow start mode and that the process has attained its
stationary state to be compared with analytical results. In all simulations of simplified TCP,
the buffer service rate p is 1 packet per time unit.

5.2 Real TCP

We have simulated the real TCP using the ns2 simulation tool of [5]. The used TCP version
is Reno. The link from the buffer to the clients is 8 Mbps. The packet size is 1K octets.
Each server has a private link to the buffer at 1 Gbps (see figure 3).

5.3 Histograms of TCP connections
5.3.1 Simplified TCP

Figure 4, 5 show the histogram of the buffer occupancy during a certain interval of time.
Figure 4 shows the buffer occupancy when the number of connections N = 100 and the
buffer size is B = 100. Figure 5 shows the buffer occupancy when the number of connections
N = 100 and the buffer size is B = 300. In both figures, the average processing time is
10. We also added a waterline which indicates the average buffer occupancy computed with
the asymptotical formula of the section about window size distribution. For figure 4, 5 the
mean field parameter (i.e the average number of servers in processing time) is respectively
10 and 3.2.
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Figure 3: ns2 simulation diagram for TCP Reno

5.4 Buffer ocupancy distribution
5.4.1 Simplified TCP

Figure 6 displays the buffer occupancy distribution obtained via simulation. On each plot
the scale is logarithmic and the straight line shows the theoretical exponential repartition
function with the rate computed from limiting formula (32). In figure 6, the parameters are
the same excepted that the average processing time is 100.

5.4.2 TCP Reno

Figures 7 displays the window distribution throughout the simulations. In each simulations,
the buffer size has been sampled and the sample set fas been ranked from the smallest to the
largest. The rank of size z divided by the number of samples gives the estimated probability
P(R(t) > z). Therefore a linear look in log scale outlines an exponential behavior. In every
figure the number of samples is 35,000.
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Figure 4: Histogram of buffer occupancy versus time for simplified TCP, for 100 connec-
tions, buffer size 100, buffer service rate u = 1, average random processing time 10. The
dashed waterline is the theoretical average buffer size computed from the limiting approxi-
mation (32).

5.5 Window size distribution
5.5.1 Theoretical plots

Figure 8 displays the theoretical function g(z) and figure 9, the theoretical primitive of g(z).
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Figure 5: Histogram of buffer occupancy versus time for simplified TCP, for 100 connec-
tions, buffer size 300, buffer service rate p = 1, average random processing time 10. The
dashed waterline is the theoretical average buffer size computed from the limiting approxi-
mation (32).

5.5.2 Simplified TCP

Figure 10 display the simulated window distribution. The distribution is obtained after
having frozen the simulation at a certain time. Notice that non-integer values are attainable.

5.5.3 TCP Reno

Figure 11 displays the distribution of window size with TCP reno, simulated for 100 perma-
nent connections with buffer size 800, service rate u = 1, average processing time 10.
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le-1q

dle-2-

Figure 6: Repartition function of buffer occupancy, simplified TCP, for 100 connections,
buffer size 100, buffer service rate u = 1, average random processing time 100. The straight
line is the theoretical exponential distribution computed via the approximated formula (32).
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Figure 8: Theoretical function g(x) for window size distribution.

Appendix

5.5.4 Discrete model

It was mentioned in section 3.2 that in discrete model the window length is supposed to be
integer, and so is the length of the free buffer (to make the text more readable we write
below ’buffer’ instead of ’free buffer’.) The length of a window is measured in number of
packets this window addresses to the buffer. It is supposed that the length wy of I-th window
is changed at a moment the window is addressed:

wy = wr +1 if the buffer length r > wy
wr = wr/2 if the buffer length r < wy
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Figure 9: Primitive theoretical of function g(z) for window size distribution.

The length of buffer r is measured in number of new packets it can room, this number
changes at moments the windows are addressed and at moments a packet is processed and
leaves the buffer,

r — max{0,r — i} when a window of length i is addressed
r—r+1 when a packet is processed
(V)

The number of windows is N. Denote by w; "’ (¢) the fraction of windows of length ¢ at time
moment ¢, 4 =0,1,..., w = {w;}32, >, w; = 1. Denote by R§-N) (t) the probability that at
time moment ¢ the length of buffer is at least j, j = 0,1,2,.., R(M) = {R§-N) 120

The windows are addressed at time moments that form a Poisson flow of intensity A. The

windows are i.i.d distributed and are addressed randomly. A packet service time is dis-
tributed exponentially with mean p.
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Figure 10: Window size distribution frozen at a random time for simplified TCP, for 100
connections, buffer size 800, buffer service rate p = 1, average random processing time 100.

Thus, if the buffer length at moment ¢ is j, then at moment ¢ + At it may becomes j + 1 or
j—k, k=1,...,j (At is supposed to be ’very small’). The description of the model suggests
that the buffer distribution function R()(¢) changes following an equation

(V)
dR™ (1)

i = rENO RV 0 @Yo - BLOwN 0 @)

j—

= w(BM 1) - BV (1) = ARM ) + 2 Y. BN 0w™ (1),
k=0

Further, fraction of windows wZ(N) at time moment ¢ may become wz(

t+ At if a window is addressed during time interval A¢. Thus the changes of the value R

N4 + at moment
(N)
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Figure 11: Window size distribution sampled at periodic time for TCP Reno, for 100 con-
nections, buffer size 800, buffer service rate yu = 1, average random processing time 10.

are O (IV) times larger than the changes of value w™) | Intuitively,considering % as a small
parameter we can describe the evolution of RY) using the technic adjusted for equations
with slowly changing coefficients ng) .

To be more rigorous consider a Markov process (w(™ R(™). The generating operator of

the process is
An f(w ™, RN () (44)

= lim — (F ™t + A8, RM (2 + A) — Fw™ (1), RN (1)),
At—oco At

Here f(w™), R(™) is a function defined on the sequences w¥), R®Y). We suppose that

of of 9*f 9*f

9w’ DR D’ BRE e bounded. Rewrite (44) in the form

An f(w™ RM) (1) (45)
= Jm (™ A0, RN+ A9) = fw ™M+ A5, RV (1)

+£(wN (¢ + AL, RM @) — fF(w N (¢ + At), RN (1)) ).
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The first two summands of (45) can be presented in the form

= 9j(,R™M)dR, (1
2" or, @ TO\w (46)
Jj=0

N RO [ ey e S M), 1o (L

= oR, p(B;N) = B3 = ARG + A RiGwy |+ N/

j=0 k=0

Two last summands of (45) can be presented in the form
AZ ( w™ _ _, L)~ F(w™, .)) w; (47)
€;
+ (Fw ™+ 2= Fw ™, 9) @M RN+l (1 - RE) + w1 - BED))

s (V)
S 2O ()R — w4 (1 ) 4wl (1 - BEY,))

i=0 w’
2f 1

Here ¢; is a vector e; = (0, ...,0,1,0,...) with 1 at the ith place.

_2
N

Consider a dynamic system defined on the real value sequences w = {w; }2,, R = {R;}32:

50— (Ry 1(8) = By 6) = ARy )+ A S Ry (o), )
k=0
du;t(t) = % (wi—1 (t)Ri—1(t) — wi(t) + wai(t) (1 — Rai(t)) + wai—1(t)(1 — Rai—1(t))), (49)

Zwizl, R; >Rjy1, Ro=1, R; >0 as j— oo, (50)

with given w(0), R(0).

System (48) — (50) is a system with small parameter 3.

Our aim is to investigate the behavior of solutions (R, w) to (48) — (50) as N — oo and

to show that as N — oo Markov process described above converges to the dynamic system
defined by (48) — (49).

First, the properties of solution (R,w) have to be investigated. For example, it has to
be show that R;, w; decrease sufficiently fast as ¢ — oo. Also, introducing the metric
p((w,R), (w',R") = sup,{|w; — wj|/(i + 1), |R; — R;|/(i+ 1)} on a set of sequences (w,R)
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one has to shown that a solution to linearized equations (48), (49) continuously depends on
initial data for any finite t < T < oo.

The convergence of Markov process to the dynamic system means that for a space of smooth
functions f defined on the sequences (w,R)

lim E|f(w™ (), RN (1) - f(w(t),R())] = 0 (51)

N—oo
if w¥)(0) —» w(0), R™)(0) = R(0) as N — oo.
Equality (51) follows (see [EK]) from the fact that on a properly chosen space of functions
f the generator An f(w(™),R™M) tens to limy_,o0 A(ny (W, R) = M, where (R, w)

is a solution to (48) — (49). We will not present the proof of convergence here, one can find
a similar proof, for example, in [6].

Let us consider now equations (48), (49) and an equation of type (48) but with coefficients
Wy not depending on ¢, say Wi = wg(0):
dR;(t - - . — y
SO By 2 ()~ Ry (0) M0+ XY Ry (0, (52)
k=0

Equation (52) has a stationary solution

(loc) _ —apj
R, =e a0l (53)
where ag is a solution to equality
a A - —ak,~
et —1=2(1=) e M) (54)
K k=1

If ag is close to 0, then (54) gives
o0
Z e—aok ~
k=1
It is easy to show that for any initial values R;(0)
R;(t) — Rgloc) as t— oo.
Let Aj(t) = RV — R;(t). If A;(0) >

to suppose, that A;(0) > 0 (or A ;(0)
(52), 2illo) 5 o (Rillo) 0 thus Aj(t

(<0), then Aj(t) > 0 (< 0). Really, it is sufficient

0) as t < tg and Aj(tg) = 0, to > 0. Than, by
>0(<0) Vi>0.

0
<
)
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Further, for A; > 0 (< 0) consider }_, |A;(t)|. By (52)

>y A - :
W:_N|A1(t)|—AZ|Aj(t)I(1—ZU"Jk)<0-

=0 k=0
Integrating over ¢ we get that [~ |A;(t)|dt < oo, and A;(t) — 0. Using induction in k one
shows that ¥V & Ax(t) — 0. For R; (0) = min{R{"*”, R;(0)}, R} (0) = max{R{*”, R;(0)}
we have R; (t) < R;(t) < RI(t), |RF(t) — R\ — 0ast — oo, thus R;(t) — R\ as
t — 00. To estimate the rate of convergence consider R;(0) = e~%. By (52)

da =

= e =) =M1 =Y e ). (55)
k=1

Equations show that % < 0if a > ag and % > 0 if a < ag and the rate of convergence
depends on |a — ag| and on W. That means that for any e > 0 3T , |R;(t) — R}°| < ¢ as
t>T.

Let us turn to equation (49). Here it is natural to rescale the time variable, tN — ;.

Remark that the coefficients R;(t) are close to R;(t) for t > T, t; > T1/N and w;(t) are
close to w;(0) for 0 < t; < 2Ty = 2T/N if N is sufficiently large. Therefore for T < t; < 2T}
solution to (7) is close to solution of equation

dwi (t)
dt

=A (w"*IRz(l—of) = wi +wi(1 = REYY) + w1 (1 - Rgzo—c%) 7

with initial data w(0).

Let R be a solution to equation of type (52)

dR;(t) . " . — A "
= u(R; -1 (t) = Ri() — AR;(8) + A D Ry (8) ik (8), (56)
k=0
where Wy (t) = w(IT) as IT <t < (I +1)T, | = 2,3,.... During time intervals of length
T = T1 /N the values of w change little if N is sufficiently large, therefore the values of R(t)
stay in g1 neighborhood of Rl(l"c), 1=1,2,.., g1 = O(e), where R, (09 = R,(to0) (w(lTy)),
(B{"*)j = eI,

e —1= i(]. — Ze_alkwk(lTl).
p k=1

The values of solution to (49) depend continuously on coefficient. Therefore for any ¢ < oo
there exists such sufficiently large Ny that for N > Ny the values of solution to (49) are
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close to the solution to (56). And as N — oo for any ¢ < oo solution to (56) tens to solution
of equation

dw;(t)
dt

where R(°¢) (w(t)) is defined by (53) with w = w(t) .

= A (wi 1 R (w(t) + wai(1 = RS (w(t)) +wai (1 RES, (W), (57)

5.5.5 Continuous model

If the number of packets in a window increases, the intensity A of the moments the windows

are addressed increases and the service time of a packet decreases we come to an equation
for w(t)

dw,' t A

W) - 2 O Rs (1) = wilt) + w1~ Raslt) + i 1 ()1~ Roia (1),

(58)

where H is a large number. Solution (R, w to (48), (50),(58)has the properties similar to

the properties of solution to (48)-(50).

Next step is to consider a continuous model, for which (58) is a difference approximation.

Here the window length is supposed to be a real value, and so is the length of the buffer.
It is supposed that the length wr of I-th window is changed at a moment the window is
addressed:

wr — wr+1 if the buffer length r > w;
wr = wr/2 if the buffer length r < wy

The length r of the buffer changes at moments the windows are addressed and as some data
is processed and leaves the buffer,

r — max{0,r —y} when a window of length y is addressed
r increases with rate pu as some data is processed

The number of windows is N. Let w®™) () be the probability distribution of window lengths
and let RN)(z) be the probability that the buffer length is at least . As N — oo the
performance of Markov process converges to a dynamic system defined by the equations

8RC(;’ B _ uaRa(z’ D \R(z, 1) + A :0 R(z +y,tw(y, t)dt, (59)
awz(aijt) - % (wly = LOR(Y = 1,8) —w(y,t) + 2wy, )(1 - R(2y,1)),  (60)

/w(y)dy =1, R(z,t)decreases inz, Ro=1, R(z,t) = 0as z — oo, (61)
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with given w(0), R(0).

To prove that as the number of windows N — oo the solution to (59)—)61) represents the
limit of a Markov process one has to consider a smooth functionals f(w™)(z,t), RN (x,1)
and f(w(z,t), (z,t) where (w, R) is a week solution to (59)—(61) and to show the convergence
of the first functional to the second one. Such technic is used in [7], we will not deal with
it here.

For given w = w(y) the stationary solution to (59) has the form
R(loc) (.’L’) — efaz’ (62)

where a selves the equality
A oo
a=—(1 —/ e~ *w(s)ds). (63)
1Y 0

As N — oo the solution to (59) — (61) converges to solution of equation

6“} ’t oc oc
O]\ (wly ~ 1L,ORO ~ 1,0) — wly, ) + 202,001 - ROI20,1)), (64
(loc) _ ,—a(t)y _ A oo —as
RY(y,t) =e , a(t) = ;(1 — e”*w(s,t)ds).
0

The proof of this convergence repeats the proof of the discrete case.
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