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Abstract: This report proposes a linearised Euler discretisation that will be compatible
with some existing state of art in numerical methods for compressible flows on unstructured
triangulations. The important property is the use of a stabilisation terms involving sixth-
order derivatives. The main idea is to realize this programme by developing a scheme that
enjoys superconvergence, i.e. a high convergence order when it is applied to a cartesian
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Un schéma MUSCL d’ordre élevé applicable aux
équations d’Euler linéarisées de ’acoustique

Résumé :

Nous proposons un schéma numérique pour les équations d’Euler linéarisées qui est com-
patible avec certains schémas standard en triangles pour la mécanique des fluides compres-
sibles numérique. Le point important est I’introduction de termes de stabilisation reposant
sur des dérivées d’ordre six. Cela est réalisé en construisant un schéma superconvergent,
c’est & dire d’ordre élevé quand on l'applique & des triangulations cartésiennes. Nous pré-
sentons le calcul d’un cas test validant ’ordre théorique de précision puis un cas test dia a
Tam permettant des comparaisons avec d’autres schémas typiques en aéroacoustique.

Mots-clés :  Acoustique, schémas numériques, modéles hyperboliques, Euler linéarisé,
maillages non-structurés
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1 INTRODUCTION

The numerical simulation of the propagation of waves with first-order partial differential
equations of hyperbolic type involves a difficult approximation problem. Rather simple
second-order accurate methods have been much used and appreciated for elliptic problems.
In contrast, for first-order hyperbolics, not only the derivation of genuinely second order
methods has costed a lot of efforts, but also it seems that most of second-order methods
(and even most of third-order ones) are too dissipative to allow efficient enough accurate
computations of acoustics for real life problems.

Several good high order schemes are now available for regular meshes (see, for example,
[1]). They are derived from schemes with low dissipation, at least fourth-order accurate, or
with a dissipation not larger than the dissipation applied in fourth-order accurate schemes.

The case of regular meshes is a relatively easier one. We can understand this if we con-
sider the simplified case of advection with constant velocity. In that case, finding a good
advection scheme is essentially finding an interpolation scheme. In the case of a Courant
number equal to 1., some schemes can even be exact. Further, regular meshes are partic-
ularly favourable to the derivation of high-order accurate schemes that cost a rather small
number of operations for their assembly.

The case of unstructured meshes represents the maximal difficulty. First, mesh irreg-
ularity amplifies dispersion phenomena. Secondly, many useful numerical methods do not
extend easily (traditional compact schemes, for example) to the “unstructured” case. Today
essentially two families of schemes enjoy high-order of accuracy, conservation properties and
dissipation ones, the adaptation of ENO-type schemes to unstructured meshes ([2]), and the
Discontinuous-Galerkin method ([3]). But these two family of schemes are accurate enough
only if they are of fourth-order. In that last case, they consume a large computing effort
for each unknown, and they are efficient only when enough nodes are used and a very small
error is demanded.

From these remarks we can derive the following recommandations for unstructured
meshes:

- (i) build second-order schemes that involve as few dissipation as do high-order schemes,

- (ii) equip the second-order scheme of superconvergence properties on cartesian meshes
and use as often as possible cartesian meshing of subregions of the computational domain.

By superconvergence properties we mean that the scheme applies to arbitrary unstruc-
tured meshes but in region where the mesh is cartesian, the truncation error is smaller
by several orders of magnitude. As far as (i) is concerned, we emphasize that the task is
complex. Indeed, dissipation should offer a compensation to dispersion in the sense that
excessively dispersed high frequencies should be damped in order to avoid oscillations and
large errors. The balance is generally obtained by choosing high-order accuracy. However,
in the derivation of the DRP scheme, Tam and co-workers prefer to optimize the scheme for
low phase error better than keeping accuracy ([1]).

RR n° 4459



4 Abalakin € Dervieur € Kozubskaya

In this work we propose to extend a family of vertex-centered upwind schemes applying
to triangulations. It will have the following properties:

(i) the scheme is conservative,

(ii) the dissipation is derived from sixth-order derivatives,

(iii) the scheme is fifth-order accurate when it is applied to a cartesian mesh.

2 LOW DISSIPATION ADVECTION SCHEMES : 1D

Upwind schemes of Godunov type enjoy a lot of interesting qualities due to the perfect
adequation of the upwinding mechanism they involve with unsteady waves. Unfortunately,
the amount of dissipation they contain seems much larger than necessary for an accurate
non-oscillatory numerical answer. As a consequence, the dominant term of the numerical
error is carried by the dissipation.

We suggest to forget about strict monotony and to get inspired by Direct Simulation
techniques in which non-dissipative high order approximations are stabilised in good accu-
racy conditions thanks to filters which rely on very-high even order derivatives. We shall first
show how this can be done with a one-dimensional high-order MUSCL method modified in
such a manner that the dominant dissipation term is a sixth-order derivative. In the linear
case, this is exactly the construction of [4] also used in [5].

2.1 Spatial 1D MUSCL formulation

Let us first consider the the one-dimensional convection equation
U + cuy, =0 (1)

The finite-volume method is used for the spatial approximation. z; , 1 < j < N denote the
discretization points of the mesh. For each discretization point, we state : u; ~ wu(z;) and

, z; + T

we define the control volume C; as the interval [z;_1,z; 1] where z; 1 = %ﬁ'l
Let U = {u;} the unknown vector whose components are approximating the function
u(z) in each node j of the mesh. We build the vector ¥(U) according to spatial approxima-

tion of (f(u))s, which can be written as :

1
¥;(U) = A_x(¢j+% _ijé) ; @iy = @(uj+%_7u‘j+%+) 2)

where U1+ denote the values of u at boundaries of control volume C; with ®(u,v) =
5 [(1 = dsign(c))u + (1 — dsign(c))v].
According to the MUSCL methodology ([6]), the left and right control volume boundary
states u;, 1+ is built using linear interpolation formulas :
2

INRIA



A vertex centered high order scheme 5

Schemes | 6 | 13 o° 67 Order
1 1[1/3] 0 0 3
2 |1]1/3|-1/6] o0 4
3 |1|13] o |-1/6]| 4
4 1]1/3]-1/10 |-1/15| 5
4 0|1/3[-1/10|-1/15| 6

Table 1: Accuracy of different versions of the new scheme in 1D case

= wiq — L
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where Auj 41+ are slopes, i.e. approximations of derivative term —.
2

Muj - = (1= B)(uir —uy) + 6wy — ;%) (4)
Augar = (1=08) (w1 —uy) + B (w2 —ujp)
()
where (3,is upwinding parameter that controls the combination of fully upwind and centered
slopes. For § = 1/3 the scheme is the standard third order accurate scheme.

In the present vertex-centered context, high order accuracy is not obtained by a higher-
order interpolation but by an interpolation that compensates the error coming from the
final central differencing in (2). This writes as follows:

Augpa- = (1=0) (wjpr —uj) + B(u; —uj-1)
+0°(—wj—1 + 3u; — 3ujp1 + ujt2) (6)
+ 0% (—uj o + 3u; 1 — 3u; + ujp1)

Augae = (1= B)(ujpr —uy) + B(ujp2 — 1)
+0°(—wj—1 + 3u; — 3ujp1 + ujg2) (7

+0% (—u; + Bujpr — 3ujyn + ujts)

where 3, ¢ and ¢ are upwinding parameters that control the combination of fully
upwind and centered slopes.

We observe that schemes described in (5) are in general second-order accurate but they
become high-order accurate for some values of the parameters 3, §, ¢ and #%. We note that
for ¢ =0, 6; = —1/6 we maximise the degree of upwinding. Also, fifth order accuracy
is obtained with an adequate choice of the three coefficients. For this last case, but with
6 = 0, then we get a central-differenced sixth-order accurate scheme.

RR n° 4459
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3] 6 97 [ CFLmax
13| 0 0 2.310
13| -1/6 | © 0.263
13| 0 | -1/6 | 1.332
1/3 | -1/10 | -1/15 | 1.867

Table 2: Maximal Courant numbers (explicit RK6 scheme) for the four different spatial
schemes (1D analysis)

2.2 Time advancing stability

We can combine the above scheme with the standard Runge-Kutta time advancing.
Since the purpose is to compute linear acoustics, we can simplify the Runge-Kutta scheme
to the linearised Jameson variant ([7]) which writes as follows:

v =gn

At
Uk =y 4 =" 1 (k-1 k=1...N 8
Ut U(IVJ)rN_k+1 ( a ?

We recall in Table 2 some typical maximal CFL numbers for the six-stage RK scheme,
which ensure a global accuracy of five for the two best schemes of the proposed family. This
table illustrates that the above schemes can be used with CFL number of the order of the
unity.

3 UNSTRUCTURED TWO-DIMENSIONAL CASE

The family of 2D schemes that is considered is a mized finite-volume finite-element approxi-
mation, applying on triangulations, and of vertez-centered type. We refer to [8] for a detailed
description of this family of scheme.

Around each vertex is built a cell following to main options:
- either the cell is limited by part of the medians of surrounding triangles,
- or the cell is built according to an idea of Barth ([9]) by joining the center of edges with
the center of smallest circle containing the considered triangle.

The fluxes are assembled on an edge-based process, i.e. for each edge ij between two
nodes ¢ and j, and then summed for each node i as follows:

area; Wi,t F +3 q)ij =0 (9)

INRIA



A vertex centered high order scheme 7

Figure 1: Median cell construction

Figure 2: Circumcenter “Barth” cell construction

where ®;; are elementary fluxes computed with Riemann solvers.
We first recall the features of an extended version proposed in [4], [5] for Euler calculations.

The numerical integration with an upwind scheme generally leads to approximations
which are only first-order accurate. The MUSCL methodology of van Leer has been extended
to vertex-centered unstructured formulations in order to reach second order accuracy (see
for example [8]). This extension relies on the evaluation fluxes with extrapolated values W;;,
W;; at the interface of the cells (Figure 3): with:

Wi = W; — 0.5 (VW)j.ig
where the “extrapolation slopes” (ﬁ W )ij 5 are obtained using a combination of centered

and upwind gradients.

In order to increase the accuracy of the basic MUSCL construction, we propose to define
these slopes as follows : _ .
The centered gradient (VW);; is defined as (VW)5; .ij = W; — W,.

The nodal gradient (ﬁW)Z is calculated on the cell C; as the average of the gradients of the

RR n° 4459
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—

Figure 3: Position of W;; and W;; on [S;,5;]

triangles which include the considered node :

- 1 aire(T) -
VW), = — W,V o 11
( ) aire(C;) T;i 3 k;T k (11)

The upwind gradient is computed according to the definition of the downstream and up-

stream triangles which can be associated with an edge [S; S;] (Figure 4). The downstream

and upstream triangles are respectively noted T;; and T};. One has so :

(VW)Y = YWz, and (VW)Y = VW |z, where VIV [r = Y WiV®|r are the P1-
keT

Galerkin gradients on triangle 7. This option allows extensions to Local Extremum Dimin-

ishing (LED) schemes as shown in [7].

We now specify our method for computing the extrapolation slopes (ﬁ W),; and (6 W)

(VW)ijij = (1= B)(VW)5.ij + BVW);.i]
+ee (V)] — 2VW)E i + (VIW)E.ij (12)
)

) 2]
-

D 3 = 2VW)idj + (VW);45|
The computation of W}, is analogous:

-

(VW)jeij = (1= B)VW)S.ij + BVW)Y,.ij
+eo |(VW)2i5 = 2VW)5,.i7 + (VIW)E,.4] (13)
)

7t

+&a (6W D;‘Zl.; - 2(6W)]l‘-]‘ + (6W)123 ,

The term (ﬁW) is the gradient at the point D};. This last gradient is computed
D,

by interpolation of the nodal gradient values at the nodes contained in the face opposite to

¢ in the upwind triangle T;;. The coefficients 3, {° and &4 are upwinding parameters that

INRIA
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Figure 4: Localisation of the extra interpolation points D;; and D7; of nodal gradients

B & € [ 6 | Order

B-scheme 1/3 0 0 1 3

B3-scheme 1/3 0 0 0 4

Present Method | 1/3 | -1/30 | -2/15 | 1 5

Present Method | 1/3 | -1/30 | -2/15 | 0 6

Table 3: Accuracy of different versions of the new scheme in 2D regular case

control the combination of fully upwind and centered slopes.

To sum up, these schemes have only sixth-order dissipation and are in general second-
order accurate but they become higher-order accurate in the linear case for some values of
the parameters 3 (see [10]) £&¢ and &2, see [11] and Table 3.

4 LINEARISATION

The natural model for the propagation of acoustics in a fluid is the compressible Navier-
Stokes equations. However their use for this purpose is difficult small amplitude of variation
that corresponds to acoustics phenomena.
In that case the linearised Euler model is generally a reasonable one. The Euler equations
are denoted by:
Wi + F(W). + G(W), =0 (14)

and their linearisation near a steady flow Wy, writes:

W, + (F'(Wo)W)z + (Gl(Wo)W)y = 0. (15)

RR n° 4459
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In an ideal situation, we wish an approximation of the linearised system that be con-
servative and non dissipative. In practice, we need to introduce some dissipation with a
Riemann solver.

4.1 Linearisation of a Riemann solver
The interest of a good upwinding is a rather rational way in introducing dissipation. The
flux difference splitting proposed by Roe writes:

(F(Ur) + F(Ur))/2 — |A(U)|(Ur = Ut)/2 (16)

where U holds for the Roe average of Up and Uy. This average ensures that Roe’s splitting
is upwind in supersonic case, but this holds only in nonlinear case. A not identical, but very
close, formulation is the following:

(F(Up) + F(Ur))/2 — sign(A(U))(F(Ur) = F(UL))/2 (17)
in which sign(A) for a diagonalisable matrix A = T—'AT, with A = Diag(A1, A2, A3) holds
for the expression:

sign(A) = T~ 'Diag(sign(\y), sign(Xz), sign(X3))T. (18)

We can easily check that this form allows full upwinding if all A; are of same sign, this time
without assuming that U is the Roe average. As a linearised version, we suggest:

(F'(UL)Wp + F'(Up)Wr)/2 = bsign(A(0)(F(Wg) — F(WL)) (19)

Where U can be produced by any symmetric averaging. Coefficient § is to be chosen
small, in order to gain benefit of the extra stability of a linear formulation.

4.2 Linearisation and global approximation

We now extend the high-order accurate construction of the first section to the case of variable
coefficients. We first start from a 1D scalar case:

Wi + (e(x)u(x)), = 0. (20)

One novelty with respect to [4] and [5], is that we want to save the order of accuracy for
a non-uniform background flow, represented here by c¢(z). Our proposition for this purpose
is to apply the high order derivation operators to the fluzes c(x)u(z).

This is done by interpolating variable cu(z), from its values (cu); on each node, and
from its nodal gradients (Vu);. We obtain cell interface values (Cu)jﬂ /o and (cu) ity /2 at
abscissae  T;y1/2.

The resulting spatially semi-discretized scheme writes:

INRIA



A vertex centered high order scheme 11

area(i) Wi + ®iy172 — ®i_1y2 = 0 (21)

with
<I>i-|~1/2 = 05 ((Cu);1/2+(cu);+l/2) (22)

The above averaging of plus and minus values corresponds to a central differencing for-
mulation (“no Riemann solver”). According to the choice among the above “interpolations
parameters”; it can be of second to sixth order accuracy. We note in passing that the idea
of choosing flux interpolation allows to escape to the second-order limitation advocated by
Wu and Wang ([12]) for MUSCL schemes.

4.3 Stabilisation

It can be necessary to stabilise the scheme define in the previous section, especially when
non-uniform meshes are used.

As criteria of design for designing the stabilisation terms, we propose the following ones:

(i)- stabilisation is directly governed by the discontinuities produced by the interpolations
chosen in the central differenced term

(ii)- stabilisation should allow full upwinding (as far as all characteritics are in the same
direction, and the interpolation is also full upwind)

(iii)- since the leading error will be directly governed by the first derivatives of eigenvalues,
we do not need to interpolate them in a costly way.

o7V = ®ig1j2 — Digay (23)
with
Dit12 = 056 sign(ci_l_l/g)((w)j}rl/2 - (C“);ﬂ/z) (24)

where c¢; 115 is the simple average (¢; +¢;11)/2. The coefficient 6 will allow a fine tuning of
the spatial dissipation of the scheme and should be less or equal to 1.

4.4 1D linearised Euler Formulation

The interpolation is now applied to the values of the linearised fluxes F'(U)W. Stabilisation
is inspired by the Riemann solver proposed below. This results in :

‘I’;Tlu/iznd = @110 —Dig1y2 (25)

with:
Bips = OS(F WY,y + (FOW);, ) (26)

and:
Diy1j2 = 056 Sign(A’i‘l'l/Q)((FI(U)W);:_l/Q — (F(U)W)41/2) (27)

RR n° 4459
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4.5 2D linearised Euler Formulation

The Euler equations are written in short:

w, + F(W), + GW), = 0 (28)

or:
wy + divF = 0 (29)

Let us denote n,; the integral of the normal vector along the interface between two cells,
Cell; and Cell;.

The interpolation is now applied to the values of the linearised flux vectors in the normal
direction F'(U)W . n;;. This gives:

ot = &, — Dy (30)
with:
By = 05((F ()W) - nij + (F(U)W)ji - nij) (31)
and:
Dit172 = 0.5 6 sign(Ay)(F' (U)W )j - nig — (F (U)W )i - niz) (32)
where A;; is defined by:
Ai; = F(U; +U;)/2) . nij. (33)

4.6 Summary of the spatial scheme

The global algorithm for computing the fluxes can be summed as follows.

0. A background flow U = (p, pu, pv, E) and a perturbation
W = (ép,8(pu),é(pv),8E), on each vertex of the mesh are given.

1. Compute the linearised fluxes F = F'(U).W, G = G'(U).W on each vertex (ver-
texwise loop).

2. Compute the nodal gradients VF, VG of the linearised fluxes on each vertex (ele-
mentwise loop). This is done by applying the nodal gradient formula:

@)= - v Dy, Gal (34)

aire(C;) Tec; keT

INRIA
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3. Start edgewise assembly loop:
compute the extrapolated slopes :

(VF)ij= (1-pB)V
F

(and analog for V(F(U,V)))s;.
The central differenced flux is deduced:

®;; = 05 (]t-l + V]:—ij + ﬁj — V]?j,‘) . Ny (36)
in which: B -
F = (F,G) (37)
4. Evaluate the stabilisation term:

Di+1/2 = 056 sign(.Aij)((}'ij - N5 — (.7‘-3'1' . nij) (38)
where A;; is defined by:
A = (F',G"Y (U +Uj)/2) . ny. (39)
5. Compute the final edge flux as:
e = @i — Dy (40)

and add (substract) it to flux assembly at vertex i (j).

4.7 Boundary conditions

Boundary conditions have a crucial influence on the quality of practical acoustic simulations.
Non-reflecting boundary conditions are necessary in order to avoid spurious reflecting waves
to travel in the computational domain. In this preliminary study, we shall not consider
problems with possible reflections, and we shall use in the presented calculations upwind
farfield conditions relying on the Steger-Warming flux splitting. In short, fluxes between
boundary cell and external medium are computed as follows:

@fziernal — A+(U1)W’L + Ai(Uoo>Woo
where A = g—g . n, n being the normal to boundary, U, and W, respectively the
background flow and perturbation specified at farfield.
4.8 Time advancing

The time advanging is as for the 1D scheme a Runge-Kutta one, that can be used in the
linearised version defined in (8).

RR n° 4459
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5 Numerical experiments

In this first presentation of our scheme we shall concentrate on uniform background flow. An
example of non-uniform background flow is given in [13] and [14]. The numerical experiments
presented here are of two types. Firstly, we check the accuracy order of our schemes.
Secondly, we compute a well known test case in order to evaluate their accuracy in a more
practical context.

5.1 Accuracy validation

In order to have an analytical context for accuracy validation, we choose a solution which is
very small near the boundaries of the computational domain. For realizing this programme,
we have to introduce sources terms in our formulation.

5.1.1 Test case description
We define the background flow U as:

1.0
M,
M’U
1/

The system of linearized Euler equations with time and space dependent source terms is
prescribed as

U =

op  OMeptu) OMyp+v) _ o cos(wt)e(—A (=) =

ot ox oy
ou + A(Myu + p) N OMyu _
ot Ox Ay

B (—M,wcos(wt) +2M2 Azsin(wt) — 2 sin(wt) Az + 2 M, M, sin(wt) Ay) (-4 +v")
v N OMuy O(Myv + p)
ot ox Oy

B (—Myw cos(wt) + 2 M, M, sin(wt) Az +2 M2 sin(wt) Ay — 2 sin(wt) Ay) e(=4@+v%)
o0 d0Lp+w) | A(Myp+)

= Bw cos(w t)e(’A (=*+v%))

ot oz oy
(41)
The initial data is taken equal to zero that is
p(0,2,y) =0, u(0,2,y)=0, v(0,z,9)=0, p(0,2,y)=0 (42)

INRIA



A vertex centered high order scheme 15

The resulting initial boundary value problem (41)-(42) has the following analytical solu-
tion

p(z,y,t) = Bsin(w t)e(_A (z"+3%))

uw(z,y,t) = —M, Bsin(wt)e (A (=*+y%))
(43)

o(z,y,t) = —M, Bsin(wt)e(=4 (=" +v*))
p(z,y,t) = p(x,y,t) .

The particularity of this solution is that it is a function of finite space support. This
property is expected to prevent from troubles connected with free boundary conditions.

5.1.2 Modification of time integration procedure

Let us study the time integration of the equations system (41). It is easy to verify that the
usual Jameson procedure (8) provides a high order of time approximation only for ordinary
linear differential equations of form dy/dt = Ay + at (where A and a are constants) and only
the second order for any other right hand side of the ODE.

In a general case including the validation test case, we have the following ordinary dif-

ferential equations
du
- = L+ 1) (44)

where L is linear differential operator and f(t) is the source term non-linearly dependent
on time t and independent on the solution U.

In order to provide high accuracy order, we should modify the Jameson time integration
for the case of nonlinear on ¢ source terms. In doing so as usually, let us apply the Taylor ex-
pansion of function y defined by the equation (44), replace the corresponding time gradients
by their values taken from (44) and rearrange the terms. As a result, the time integration
technique can be formulated as the following low storage multi-stage (N-stage) algorithm

U© =pyn
At k tl dlflf
Uk =g L2 U(kfl) k)! k=1...N
bl ;N F+ D) diL
Ut = U(N)
(45)

5.1.3 Numerical results

The test conditions are further specified by choosing M, = M, = 0.5cos(n/4) and A =
0.002, B = 0.1. Two variants are considered. They differ only by the choice of frequency w
in (43) and different final times Tf;inai:

RR n° 4459
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o TEST 1: w =27 x 0.0125, T = 27/w = 80., Tfina = 20.
o TEST 2: w =27 x 0.1, T = 21/w = 10., Tyina; = 40.

The integration has been done both according to the technique (45) and "classical" fourth
order Runge-Kutta method with the unique Courant number equal to 0.25.

All the computations have been done on regular meshes (coarse, Az = Ay = 2. and fine,
Az = Ay = 1.) with the use of Barth cells.

A study of the computational accuracy is presented with the use of three different norms,

_ _ aexact
Ilullc—lg%VIp P,

N
lullzs = 5 o = p*=2<!| meas(Cy)

1_1N 1/2
s = (z |p—pwt|2meas<c¢>)

where meas(C;) is computed with the Barth cell option. An numerical accuracy order n is
calculated by the following formulas

In “p _ pewact”ﬁnemesh —Iln “p _ pewactHcoarsemesh

47
ln(Dw)ﬁnemesh _ ln(Dx>coarsemesh ( )

We compare first the two test cases with the best scheme, corresponding to § = 0.
In Tables 4 and 5, we get confirmation that this scheme is of sixth order accuracy and its
implementation is validated.

C Error L1 Error | L2 Error

Coarse 0.908D-07 | 0.284D-03 | 0.278D-05

Fine 0.155D-08 | 0.520D-05 | 0.457D-07
Numerical order 5.872 5.771 5.927

Table 4: Density errors for 6 =0 : w = 0.0125 x 27, T = 80.

We added the computation of TEST 1 with the dissipative version, i.e. with § = 1.
Table 6 displays the results that validate the theoretical analysis (fifth order).

Some comments can be made. The main point is that the expected accuracy is verified.
We emphasize that this validation does not include the boundary region, since our solution
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C Error L1 Error L2 Error

Coarse 0.207D-07 | 0.232D-04 | 0.365D-06

Fine 0.358D-09 | 0.607D-06 | 0.823D-08
Numerical order 5.854 5.256 5.471

Table 5: Density errors for 6 =0 : w =0.1 x 27, T' = 10.

C Error L1 Error | L2 Error

Coarse 0.838D-06 | 0.269D-02 | 0.271D-04

Fine 0.264D-07 | 0.840D-04 | 0.854D-06
Numerical order 4.988 5.001 4.988

Table 6: Density errors for 6 =1 : w = 0.0125 x 2w, T = 80.

is very small near the boundary. However, the treatment of reflecting wall could with some
schemes be computed with high-order accuracy. In our options, the proposed scheme is not
able to do this, even with a cartesian mesh. This disadvantage is the result of our design
options, but we recall that our target computation is acoustics in complex geometry and
in general the mesh will not be cartesian in the direct vicinity of the walls, but it can be
cartesian in the rest of the computational domain.

5.2 Tam test case

A second test case is now considered in order to study the accuracy of the proposed scheme
on a more typical acoustic problem. The problem to solve is taken from the ICASE/LaRC
Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) held in Hamp-
ton, Virginia in October 24-26, 1994 ([15]).
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5.2.1 Test case formulation

We put again

U=
1/~

and the vector components of initial acoustic disturbances are described as

In2 In2
pla,y,0) = exp(~=5- (2 + 7)) + 0.1 exp(— = ((z = 67)° +17)
( _n2

)
u(z,y,0) = 0.04y exp( = (z —67)% +9?))
v(z,y,0) = —0.04(z — 67) exp(—lg—;((az —67)2 +4%)
P(2,9,0) = exp(— 22 (2 + 42)).

9

This initial boundary value problem has the following analytical solution

xz — Mt In2
u(@,y,t) = —3 511 +0.04(y - Myt)emp(—2—5((x — 67 — M,t)% + (y — Myt)?))
2——n
25

In 2 .
v(z,y,t) = 11?1/2 11+ 0.04(y — Myt)ea:p(—%((x — 67 — M,t)* + (y — M,t)?))

29" (48)

In2
pa,y,t) = p+0.1exp(— 5= ((z — 67— Mt)* + y?))

where

2

I(zy,t) = /0 exp(— o) (En)€ sin it de

oo 2
I2(x,y,t)=/0 exp(— 3 ) Jo(én)& cos Et dE

41n2

Jo and J; are the corresponding Bessel functions.
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5.2.2 Results

The following test cases are considered. In the first test problem (TEST 3) the mean flow
velocities are M, = 0.5, M, = 0.0 which corresponds to the case of a ’horizontal wind’
from the left. In the second test problem (TEST 4) these velocities are M, = 0.5 cos (%),

M, = 0.5cos (E) which corresponds to a ’diagonal wind’ from the left bottom corner of

a computational domain. Both problems are solved in a square z; = —100, zo = 100,
y1 = —100, yo = 100.

The numerical results of both test cases are represented only for the density disturbances
(Figures 5-13). The solution cuts are given at the same fixed time moment ¢ = 40. The
computations represented in Figures 5-13 have been carried out on Cartesian meshes (TEST
4) and unstructured meshes (TEST 3).

Cartesian mesh Unstructured mesh
Test 4 Test 3
Coarse mesh Fine mesh | Coarse mesh | Fine mesh
10201 nodes | 40401 nodes | 9693 nodes | 39527 nodes
MC/6 =1 9.910 x 1071 | 1.886 x 10~1 | 1.019 x 10° | 1.406 x 10~1
Num.Order 2.393 1.99
MC/6 =0 1.202 x 109 | 1.306 x 10~ T | 1.245 x 10° | 9.878 x 1072
Num.Order 3.202 2.54
BC/6=1 7.927x 1071 | 1.044 x 1071 | 1.009 x 10° | 1.420 x 101
Num.Order 2.925 1.97
BC/6=0 8.689 x 1071 | 5.217 x 1072 | 1.293 x 10° | 1.797 x 10!
Num.Order 4.053 1.98
Compact-RK(L2) 0.713 x 10° | 0.587 x 10!
Num.Order 3.623
DRP(L2) 0.473 x 10° | 0.981 x 107!
Num.Order 2.271

Table 7: Density L2 errors for four versions of the presented scheme, i.e. with dissipation
parameter § set equal to 1 and to 0, and with cell shapes of median type (MC) or of Barth
type (BC). The results are compared with the ones of cartesian calculations [16] with the
use of fourth-order compact finite-difference and DRP schemes.
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5.2.3 Some comments on results

The above results lead to the following comments.

e Numerical accuracy order varies from 2.3 to 4., but most of measurements are not fully
demonstrative since the results on the coarse meshes involve oscillations.

e The Barth cell option behaves better in the cartesian case and slightly worse in the
unstructured case.

e Numerical dissipation improves the solution quality on some coarse meshes but not on
all of them.

e The comparison between unstructured meshes and structured ones is possible since test
cases 3 and 4 are of equivalent difficulty. It is not so defavourable to the unstructured
case. The error on coarse meshes differs generally of only a few pourcents. On the
fine meshes, the smallest unstructured error (9.810~2) is not twice larger than the
best structured one (5.210~2). In most computation on the unstructured meshes, the
oscillations are observed at least on the coarse meshes, but the numerical order of
accuracy stays notably larger than 2.

e The test case is rather well computed with the cartesian fine mesh. Our scheme is well
compared with the standard schemes for structured or cartesian meshes (DRP scheme
[1], compact Runge-Kutta method [16]). We emphasize that none of the schemes
that was tried on this case could produce a numerical order of accuracy close to the
theoretical one. This is explained by the arising of details in the exact solution that
are smaller than the mesh size, at least for the coarse mesh.

e It should be noted that the exact solution is given only as a solution of linearised Euler
equations and can not be considered as a physical one. This fact is demonstrated in
Figure 14 where the result of using nonlinear Euler model is represented. The choice
of mathematical model for the acoustic waves description is very important since even
in the case of rather small disturbances the linear models can produce very inaccurate
results (see [13], [14]).
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6 Conclusion

We have proposed a new family of schemes for the linearised Euler equations without or
with sources.

The proposed schemes can be applied to unstructured triangulations. They are at least
second-order accurate, and involve a tunable small stabilisation term made with a sixth-
order derivative. The accuracy is much better that for usual second-order schemes.

The schemes also enjoy superconvergence properties on cartesian meshes, up to a small
vicinity of the boundary. Superconvergence order of accuracy can be as high as 5 or 6.

This order of accuracy is observed for adhoc test cases. For a basic acoustics test case
([15]), the accuracy is good on cartesian meshes and still rather good on unstructured meshes.

Further experiments of the schemes are in progress. In particular, the computation of
test case on acoustic waves in non-uniform flows fields is presented in [13], [14].

The proposed schemes appear suitable for the advection parts also with nonlinear fluxes.
The same papers ([13], [14]) consider the scheme modification accounting for nonlinear ef-
fects in acoustic waves dynamics. A specially elaborated test case is computed. The results
show the difference in linear and nonlinear models as well as the possibility of negative in-
fluence of round off errors.

One of the main further goals is the scheme extension for the 3D case. Although it is
not an evident task, the application of superconvergence principle seems to be possible.
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