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Abstract: We describe a method for the formal determination of signal bit width in fixed points
VLSI implementations of signal processing algorithms containing loop nests. The main advance
of this paper lies in the fact that we use results of the (max,+) algebraic theory to find the integral
bit width of algorithms containing loop nests whose bound parameters are not statically known.
Combined with recent results on fractional bit width determination, the results of this paper can
be used for 1-dimensional systolic-like arrays implementing linear signal processing algorithms.
Although they are presented in the context of a specific high level design methodology (based on
systems of affine recurrence equations), the results of this work can be used in many high level
design environments.
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Une nouvelle méthode pour déterminer la largeur des chemins
de données

Résumé : Nous décrivons une nouvelle méthode pour la détermination symbolique des largeurs
de chemins de données dans les implémentations VLSI d’algorithmes contenant des nids de boucle-
s. L’originalité principale de ce travail réside dans le fait qu’il utilise des résultats de la théorie de
l’algèbre (max,+) pour résoudre ce problème pour des nids de boucles paramétrés (c’est-à-dire des
nids de boucles dans lesquels les bornes des indices dépendent de paramètres qui ne sont pas néces-
sairement connus statiquement). Combinés avec des résultats récents sur la détermination des tailles
de bits fractionnaires des données codées en virgule fixe, les résultats de cet article peuvent être u-
tilisés pour des réseaux monodimensionnels de type systolique implantant des systèmes linéaires de
traitement du signal. Bien qu’ils soient présentés dans le contexte d’une méthodologie particulière
de synthèse de haut niveau (fondée sur la manipulation de systèmes d’équations récurrentes affines),
les résultats de ce travail peuvent être utilisés dans tout autre environnement de synthèse de haut
niveau.

Mots-clé : VLSI, conception conjointe, réseaux systoliques, largeur de chemin de données, syn-
thèse de haut niveau, algèbre (max,+).
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1 Introduction

With the combined explosion of the electronic appliances market and of the complexity of systems
implemented on a chip today, system designers face the challenge of silicon compilation. The long
and error prone manual design of VLSI systems will be replaced by a step by step compilation from
high level code in order to speed up and secure the design process. In this design process one difficult
stage is the determination of the data-path bit width. As pointed in [15], when processor memory
was expensive, programmers paid attention to this problem even for software implementations. The
problem however did not receive much attention from the software community because of the stan-
dardization of the 32 bits (and then 64 bits) architectures. In silicon design the area of a circuit is
always very important because the price of the chip is directly proportional to it.

The goal of the bit width determination stage in the design process is to find a compromise
between a large data-path ensuring correctness and precision, and a smaller data-path yielding low
power and cheap circuits. When going from a high level algorithmic description to a hardware
implementation, the designer has to transform variables with infinite precision and unbounded values
into bit vectors of fixed size. In this process, two distinct problems may arise: overflows, that appear
if the size of the integral part is too small, and precision loss, if the fractional part is too small.
These problems are solved during the determination of, respectively, the range of the signal and the
precision of the signal. This process is very dependent on the global design methodology which
makes it difficult to precisely formalize it.

In this paper, we consider this problem in the framework of the derivation of an architectural
description from a high level (functional) description. Starting from an algorithmic description of a
system, we refine it down to an architectural description in synthesizable VHDL. We focus on com-
putation intensive algorithms, i.e., loop nests. Moreover, our descriptions are generic, i.e., handle
symbolic parameters. In order to ensure reusability of the design, these parameters must be instanti-
ated as late as possible. Parametric loop nest manipulations uses the polyhedral model. The existing
tools for high level synthesis do not handle parameterized loop nest because of the complexity of
this model. In this paper we propose new techniques for the symbolic determination of integral bit
width in VLSI implementation of programs containing loop nests.

The paper is organized in the following manner: section 2 gives an overview of related work,
section 3 presents the modeling we use, section 4 illustrates our methodology on a simple example,
section 5 presents our main contribution, and section 6 gives concluding remarks.

2 Related work

Starting from a floating point (or theoretical infinite precision) representation of a system, one must
transform it into fixed point representation. One important preliminary issue in this process is the
determination of the coding system used for the values manipulated. We do not adress this problem
here, we will assume that the numbers are coded in the two’s complement system which is widely
accepted as the “default” standard. We also assume that we are able to design new algorithms, hence
we are not in the position of implementing bit true specifications given by normalizing comities
where the exact bitwidth of each signal is already given (IEEE, IETF, see [4] for this problem).
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4 D. Cachera, T. Risset

A real value � will be represented in two’s complement system by a value
�� . �� is a

����� �
signal

if it is composed of � binary digits before the dot (integer bit width needed to code the range of
the signal) and 	 binary digits after the dot (fractional bit width used to set the precision of the
implementation). In order to avoid overflow during an operation between two signals, operands can
be shifted (divided by a power of two): as a consequence, the range of the result will be reduced. This
shift information must be carried along the data path computation in order to restaur the correct range
of the final result. If overflow still occurs, the resulting signal is saturated to fit with the available
dynamic offered by its own representation (the designer may choose not to do any treatment in that
case).

Once the range of each signal is set, one can reduce the precision by truncating the results of
operations. This operation reduces the number of bits necessary to represent the result, but degrades
the precision of the computation. The VLSI designer chooses these different bit widths from informa-
tion obtained by static analysis tools (like the computation of the signal to noise ratio) or extensive
simulations. As the important information is the total number of bits, the determination of the range
and precision should not be handled independently. However, the complexity of the process is great-
ly reduced if they are treated in sequence. This determination becomes even more difficult when
the algorithm contains loop nests for which some parameters (number of iterations for instance) are
fixed later in the design process. The integral bit width determination of parameterized loop nests
algorithms was the major motivation of the present work.

One can classify the bit width determination methods into two categories: the formal methods
attempt to statically extract bit width information from the code and the simulation based methods
try to reach an admissible bit width by successive simulations. It turns out that a combination of
both types of methods is mandatory. Formal methods prove very useful to orient the design space
exploration for the simulation phase. The approach presented here should be classified in the formal
methods category.

Upon the methodologies using simulation, one can retain the following: [9, 8, 13, 3, 10] and
the proposed inmplementations in Ptolemy [6], DSP Station or SPW. The Ptolemy environment in
addition provides an interesting typing mechanism that defines a hierarchy of types, and allow data
refining within this hierarchy. As these methods are based on simulation, input samples have to be
carefully chosen, and no general symbolic result can be obtained for parameterized architectures.

The Gaut synthesis tool [14] uses a formal strategy to derive signal bit width in DSP applications.
This strategy defines a model for operators and computes noise standard deviation using algorithms
that operate on the data-flow graph of the architectural description. Given constraints such as the
output signal-to-noise ratio, Gaut is able to symbolically compute the signal bit widths. The main
restriction of this approach is the way it handles loops: loops are unrolled, preventing us from
treating specifications that contain loops with parameterized bounds.

An interesting methodology was presented by Amarasinghe et al. [15] and implemented in a
silicon compiler. Once again, a typing mechanism is proposed for finite precision numbers and a
refinement algorithm that allows the shortening of signal bit width by a bidirectional value range
propagation method, and a heuristic classification of variables appearing in loops. The bit widths of
variables appearing in loops are set according to their type (constant, linear, polynomial,...) and to
the loop bounds, but these bounds are not handled as symbolic parameters.

INRIA



Advances in Bit Width Selection Methodology 5

HP labs [11] propose a formal method for integral bit width selection in the PiCo system. Their
method is, as our, oriented towars high level synthesis of loop nests. Their algorithm executes a
static iterative constraint propagation until convergence (hence unapplicable if the loop bounds are
not statically known).

Recently a very interesting novel result was presented by Menard and Sentieys in [12]. They
used mathematical tools from the signal processing theory to compute the noise resulting of a lin-
ear1 system. By using the transfer function of the linear system they explain how to express as a
closed function the noise produced at the output of the system. Their method, used in conjunction
with the one presented here will enable us to derive the complete bit width of signals for hardware
implementation of loop nest programs representing linear systems (the case of non linear system
will still needed a simulation phase to derive the bit width of the fractional part).

3 Signals and operators modeling

As mentioned above, our aim is to determine the bit widths that are necessary to both range and
precision by means of formal techniques. We model the behavior of each operator with respect to
these two concerns: range and precision. The major emphasis of the paper is the derivation of the
integer bit width of signals. However, for illustrating purposes, we propose a possible simple model
for fractional bit width determination.

Modeling w.r.t. precision. Given any signal sequence ��� ��� of � successive values, we note���� ��� the approximated value of ��� ��� obtained, for instance, in a VLSI implementation of a func-
tion computing ��� ��� . We call noise associated with the signal ��� ��� the value �
	�� ��� : ��	
� �������� ����� ���� ��� . The noise is abstracted by its standard deviation ��	 . The signal to noise ratio (SNR):� 	���������� �"!$#&% !')(*,+ for a normalized signal is commonly used for evaluating the validity of an

implementation, it allows to derive static results concerning the necessary bit width of algorithm.
For each operator, we give an abstract version that models its behavior with respect to the noise

standard deviation. This abstraction is taken from [16]. When considering an operator, noise has
two sources: (i) generated errors, that result from truncation and appear at a local level, and (ii)
propagated errors that result from the accumulation of errors upstream.

Generated noise is a consequence of truncation in the fixed point format. If a signal � is encoded
in the two’s complement fixed point format with the fractional part encoded on - bits, the truncation
generates an error for each value of � , bounded by .,�0/�1�2 . Assuming this noise follows a uniform
probability density on the interval 34�5.768�
9 , mean and standard deviation are given by the following
equations. :�;�< =�>? @�A; < > AB ?

1Here, the word linear has to be understood within the context of signal processing theory.

RR n˚4452



6 D. Cachera, T. Risset

Propagation of noise depends on the nature of the considered operator. For instance, an addition
operator sums the input noise standard deviations. Let � and � be two signals with respective noises���	 and ���� . The resulting noise on output has a standard deviation given by@ A; ��� < @ A; � @ A�

Modeling multiplication is a little bit more tricky because it requires the knowledge of a proba-
bilistic estimation of signal powers. For a more precise modeling of noise (including, in particular,
possible correlation betweens signals) see [12, 8].

Modeling w.r.t. range. The integral bit width for signal � will be noted � 	 (by convention we
include the sign bit of the two’s complement representation in this length). As for the precision, the
range of signal can be abstracted by probabilistic distribution [8], but in that case the result should
systematically be validated by extensive simulation. A conservative approach is usually chosen to
prevent overflows, which leads to the following equations2:

� 	
	 � ����
�� ��� 	�6�� � ��� � and � 	�� � ��� 	���� � � �
These equations define, for each operator ��� , an abstract model

���� which specifies the behavior of
this operator with respect to integral bit width (e.g. �

�
�&- ����
�� ��� 6 - � � � ). This abstract mod-

el is called "Opcode transfer function" in [11]. This abstraction is naturally extended to complex
arithmetic expressions.

Solving these equations. Given a particular implementation of an algorithm, for each variable � ,
we have to compute two quantities: � 	 and � 	 . � 	 will give the integer bit width of the signal
and � 	 will indicate to the designer if the result is precise enough. For simple algorithms (non
parameterized loops), equations defining � 	 can be solved with traditional algebraic techniques [16]
and equations defining � 	 can be solved by iterative constraint propagation [11]. But if we want to
implement a loop for which we do not exactly know the number of iteration (parameterized loop),
� 	 determination is difficult due to the presence of ��
�� operations. We explain how to overcome
this difficulty in the following.

4 Parameterized nested loops: running an example

In this section, we explain on a simple example how we propose to determine the bit width of each
variable in a high level design flow from a nested loop program. The example we chose is the
Finite Impulse Response (FIR) filter which is a simple convolution filter used in many digital signal
processing algorithms (correlation, adaptive filtering, etc.).

2Other modeling may lead to slightly different integral bit width equations [11]. However these equations will always be
constructed with !�"�# and $ operations.

INRIA



Advances in Bit Width Selection Methodology 7

The problem is the following: given a possibly infinite sequence of values � � ��� , ( � � � ) and �
weights ����� � ( �����	�
� ��� ), compute sequence � � ��� , ( � � � ����� where

��
����
<�� ���� �

����� 
�� =�� �! "
 � � (1)

If we want to realize a VLSI circuit for this computation, we are given some information about the
inputs ( � and � ) and some requirements about the output ( � ). During the design of the circuit, we
will have to determine how to encode our signals.

For our example, we will assume that input signals � and � are composed of rational val-
ues which are encoded in a specific finite precision format and are associated with a null noise:��#0� ��$ ��� , and a similar bit width �%# � �	$ � � # . Provided there is no overflow during the
computation, the validity of the result � given by the circuit depends on whether the signal to noise
ratio is more than a particular value

� ��& �
, given by the specifications of the problem.

The first step of the design process is to write a program for the FIR in a high level language. Our
design methodology uses the Alpha language [5, 18] which is dedicated to the synthesis of highly
parallel (systolic-like) architectures. The FIR specification written in Alpha is shown on figure 1 ( �
is the width of the convolution filter, weights are denoted by ���'� � , and � is the number of inputs� � ��� ). The architecture in figure 2 is obtained with the high level design process using the MMAlpha
environment [5].

system fir : {N,M | 3<=N<=M-1}
(x : {n | 1<=n<=M} of integer;
w : {i | 0<=i<=N-1} of integer)

returns (res : {n | N<=n<=M} of integer);
var

Y : {n,i | N<=n<=M; -1<=i<=N-1} of integer;
let

Y[n,i] = case
{ | i=-1} : 0[];
{ | 0<=i} : Y[n,i-1] + w[i] * x[n-i];
esac;

res[n] = Y[n,N-1];
tel;

Figure 1: Specification of the FIR filter: high level description in Alpha. This specification is directly
obtained by serializing the summation in equation (1).

The methodology associated with the MMAlpha tool [5] leads to the space-time representation
of the program displayed on figure 3. The original specification of the FIR shown on figure 1 is
close to its mathematical formulation: in particular there is no specified order for computations. The
equations of the Alpha program represented on figure 3 exactly express the same computation (we
didn’t represent the inputs and output of the program which are identical to the ones of figure 1),
but in addition they explicitly define when and where each computation should take place. Indeed,

RR n˚4452



8 D. Cachera, T. Risset

y(n−N)y(n)
w(N−1)w(2)w(1)w(0)

x(n−N)x(n−1)x(n)

Figure 2: RTL description (in VHDL) semi-automatically derived from this specification of figure 1
with the systolic design methodology implemented in the MMAlpha environment.

by interpreting index t as time and index p as space (processor number), we have a very precise
description of a pipelined systolic execution of the FIR filter on a SIMD-like machine. We still have
to apply some transformations to refine this specification until we reach a complete description of
the architecture of figure 2, but we will show that all the information needed to derive the bit width
of each signal is present in the program of figure 3.

W[t,p] = case
{ | t=p+1} : w[t-1];
{ | p+2<=t} : W[t-1,p];
esac;

XP[t,p] = case
{ | p=0} : x[t+N-1];
{ | 1<=p<=N-1} : XP[t-2,p-1];
esac;

Y[t,p] = case
{ | p=-1} : 0[];
{ | 0<=p<=N-1} : Y[t-1,p-1] + W[t-1,p] * XP[t-1,p];
esac;

res[n] = Y[n+1,N-1];

Figure 3: Body of the Alpha program of figure 1 after scheduling and mapping in the MMAlpha
environment.

Consider for instance the equation defining XP (pipelined value of x) on figure 3. In each pro-
cessor, this equation represents a signal, hence we can associate with it : a noise � 	�� � � � (related
to its fractional part), and a range � 	�� � � � (related to its integral part) which both depend on the
processor number. The equation defining XP indicates that this value is simply propagated from one
processor to the next with a delay of two clock cycles. This equation directly leads to the equations
defining ��	�� and � 	�� :@ A; � 
���� <��� 	 @ A
 if �

<��
@ A; � 
�� = B � if ��


�
and �

;
� 
����

<��� 	 � 
 if �
<��

�
;
� 
�� = B � if ��


�
(2)

INRIA



Advances in Bit Width Selection Methodology 9

These equations are very easily solved, giving � �	�� � ��� � � and � 	�� � ��� � �	$ for any processor
� . Moreover, we know from our assumption about the input signal � that � �$ ��� and �	$ � � # .
Similarly, the same quantities may be computed for W: � �� � � �5� ���# � � and � � � ���5� � # � � #
for any value of � .

Observe now the equation defining Y in figure 3. We will first assume that signal Y has the same
fractional bit width - in each processor. The equations defining the standard deviation of the noise
of Y ���� � � � (we note . � /"1 2 ) and the range � � � � � of Y are the following:

@�A� 
���� <��� 	
�

if �
< = B@ A� 
�� = B � ��� (� A if ��

�

(3)

� � 
����
<��� 	 � if �

< = B������
 � � 
�� = B �	� ��
 
���� � � ; 
���� = B � � B
if � 


�
(4)

Truncations of the result to - bits explain the two
� (! � terms. We can solve equation 3 with a symbolic

solver and the solution we get is � �� � ��� � � � ����� � (
 . As explained earlier, the result Y[n+1,N-1]
of the circuit is valid if its SNR is greater than

� ��& �
:B � ����� � � � B� � (��������� ��� leading to :  � B? ���!� A#" � $ B �&%('*),+-/.10

Hence, if we assume that the fractional part of variable Y has the same bit width in each processor,
we can compute the exact minimal bit width that is necessary to obtain the required SNR for the
FIR. This could be done because of simplistic assumptions on input signals (no input noise). In the
general case, we will have to use the method presented in [12].

Consider now equation (4). We will explain in section 5 how to solve it for a given value of � # .
With traditional algebraic techniques, we can find the result if � # �0� . Indeed, in that case, we will
necessarily have � � � � � � � . Now, if we are able to solve equation (4) for any value of � # , we will
really have an automatic procedure for determining � and � � for loop nests programs as soon as we
have a space-time representation of the architecture. Note now that equation (4) can be automatically
generated. Indeed, equation (4) is very close to the Alpha program of figure 3 (intuitively, they are
obtained by “removing” indext of the program). This property is very important since it implies that
the whole process determining the bit width can be automatically driven from the Alpha operational
specification of figure 3. This is the main contribution of this paper, and it is detailed hereafter.

5 Solving integral bit width equations for parameterized nested
loops

In the previous section, we have shown how to generate integral bit width equations for the FIR exam-
ple. In this section, we generalize this process and solve the equations for any algorithm containing
loop nests implemented on a linear array architecture.

RR n˚4452



10 D. Cachera, T. Risset

5.1 Generation of integral bit width equations

We start from an operational description of the linear architecture: the initial Alpha program has
been scheduled, i.e., time and space indices have been identified. Such a scheduled Alpha program
defining 	 variables � ! 6������ 6�� � is composed of 	 recurrence equations of the following general
form:

� ! 3 � 6���9�� � ��� �	�

� ! � ! ��� 6 � ����� ! � ! ��� ! 3 � ! � ! � ! � 	 � 9 6������ 6�� � 3 � ! � ! � � � 	 �$9 �	�

� ! � � ��� 6 � ����� ! � � ������� ��������� ���
� � 3 � 6���9�� � ��� �	�

�

�
� ! ��� 6 � ����� � � ! ��� ! 3 � � � ! � ! � 	 � 9 6������ 6�� � 3 � � � ! � � � 	 �$9 �	�

�
�
�
� ��� 6 � ����� � � � ������� ��������� ���

�����
Each variable � & is defined over a polyhedral domain � & and can be considered as a generalized

array whose shape is not rectangular but polyhedral. In these equations, each � & � � is a sub-domain
of domain � & , and � & � � are arithmetic functions. Index � is the time index, while � is the processor
index, and each � & � � � � is an affine function on indices called dependency function. These two features
(affine dependencies between indices and polyhedral domains) are the basis for a rich set of formal
transformations that are the core of the MMAlpha environment.

For our purposes, we restrict ourselves to the case of uniform programs, i.e., programs where all
functions � & � � � � are translations on indices: � & � � � � � 	 � � 	 ��� & � � � � where � & � � � � is a constant value.
Note however that any Alpha program can automatically be translated into an equivalent uniform
one. Such a uniform Alpha program can be associated to its reduced dependence graph (dependence
graph for short) composed of vertices corresponding to the variables � & and arcs corresponding to
dependencies between these variables (each dependency � & � � � � leading to an arc labeled by � & � � � � ).

From these equations, we deduce the integral bit width equations of the system by using the
modeling introduced in section 3. To do that, we substitute each signal � & by its integer bit width
���
)

and each arithmetic expression � & � � by its abstract version
�� & � � . A variable � & ��� 6 � � corresponds

to a signal � & in processor � at time step � . In the final architecture, ���
) � � � must be the maximum

bit width of � & ��� 6 � � over time. This can systematically be obtained by projecting every polyhedral
domain and every dependency function on index � along the time axis (we note ���& � � � � for the projec-
tion of � & � � � � on index � ). The action of projecting parameterized domains can be easily performed
with the polyhedral library Polylib [17] which is the kernel of the MMAlpha environment.

After this projection, the case branches are merged into a single expression which is the maxi-
mum of all the expressions inferred from each branch. The system of equations we get after sup-
pression of time index has the following form (where each

�� & � � is an arithmetic expression involving
only ��
�� and � operations):

INRIA



Advances in Bit Width Selection Methodology 11

� � - � � � ����
�� � �� ! � ! ��� � - � � � � � ! � ! � ! � 6������ 6 � � ' � � � � � ! � ! � � � � 6�� ! � � � ��� - � � � � � ! � � � ! � 6������ 6���� ' � � � � � ! � � � � �8� 6������ �
� � ( � � � ����
�� � �� � � ! ��� � - � � � � ��

� ! � ! � 6������ 6 � � ' � � � � ��
� ! � � � � 6�� �

�
� � � � - � � � � ��

�
�
� ! � 6������ 6�� � ' � � � � ��

�
�
� � �8� 6������ �

�����

5.2 Solving the bit width equations in the
�������	��

�

algebra

To be able to solve this system, we will make two assumptions.

� The first assumption we make is that we have a linear monodirectional array: data are carried
in the array from one processor to its neighbor following a unique direction. Each � �

) � � �
depends on values � ���
� � � � � . It can be easily shown that any system of uniform recurrence
equations can be rewritten with unit dependencies by introducing temporary variables. Note,
however, that it may happen that � �

) � � � depends on itself ( ���& � � � � may be equal to 0). This hap-
pens, for instance, in auto-adaptive algorithms like the one of DLMS filter. In that case, we will
not be able to find the integer bit width (note however that none of the existing techniques will
be able to automatically find the fractional bit width either as DLMS is a non linear system).

� Our second assumption is that no multiplication occurs in a strongly connected component of
the dependence graph (they only occur between strongly connected components of the graph).
This situation almost never occurs in treatments implemented in VLSI (signal processing, cod-
ing, etc.). Indeed, this would lead to bit width growing too fast (values of order ��� after �
operations). In the following, we will decompose the dependence graph in strongly connected
components and treat them sequentially. This is exactly what we did in the example of sec-
tion 4: our dependence graph contained three strongly connected components which where
the three vertices X, W and Y. This decomposition into strongly connected components is also
adopted in the work of Amarasinghe et al [15], they refer to that as sequences.

Under these assumptions, the system of bit width equations for variables contained in a single
strongly connected component of the dependence graph is such that no addition between two bit
widths occur in the right hand side of any equation. As the addition operation is distributive with
respect to the ��
�� operation, we can extract all the ��
�� operations and keep only a single ��
��
operation applied on several sums. If two occurrences of a particular � � �
� ��� � � appear in the
definition of � �

) � � � , one of them can be statically eliminated by taking the maximum of the two.
The general form of the system can finally be restricted to:

��� - � � � � ��
�� ����� - � � � � � ��� ! � ! 6 ��� ( � � � � � ��� ! � � 6������ 6 ��� ' � � ����� ��� ! � � 6�� ! � � 	 ! �
� � ( � � � � ��
�� ��� � - � � � � � ��� � � ! 6 � � ( � � � � � ��� � � � 6������ 6 � � ' � � ����� ��� � � � 6�� � � � 	 ! ������

(5)

The idea that we introduce here is to use the � ��
�� 6��,� algebra theory [7, 1] to solve this system.����
�� 6��,� is an algebra where ��
�� stands for the additive operation and � stands for the multi-
plicative operation. We will show that, with the help of the Perron-Frobenius theorem adapted to
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����
�� 6��,� , we will be able to solve these equations. If we call � � � ��� the vector composed of the
� �
) � � � values, we can write the definition of � � � � � in terms of � � � � � ��� as a matrix vector mul-

tiplication in the � ��
�� 6 �,� algebra. From now on, we will note � for the ��
�� operator, � for the
� operator and � for the ����
�� 6��,� matrix vector product (hence, � ��� - � & � Max��� ! � � � � & � � � - � �5����� ! � � � � & � � � - � � ). We denote � the zero of � (usually �	� ).

The good thing with matrix vector is that it is a linear operation and hence, algebraic theory
provides solutions to equations of this form in a � ��
�� 6��,� algebra. In a first step, we assume that
all the constant coefficients � & � � 	 ! are � . We explain hereafter how to generalize the technique to
the case where these coefficients are not equal to � . Under this assumption, the integer bit width
system (5) can be expressed as:

���5� � � � �
�����5� � ����� where � �
����


� ! � ! � ! � � ����� � ! � �
� �
� ! � �

�
� ����� � �

� �
...

...
. . .

...
� � � ! � � � ������� � � � �

�����
�

Let us now consider the graph whose adjacency matrix is � . This graph is isomorphic to the
subgraph of the dependence graph corresponding to the strongly connected component we study (a
non- � value in � & � �

corresponds to a dependency between � & and � � ). A property of adjacency ma-
trices of strongly connected graphs is that they are irreducible. In classical algebra, the irreducibility
of a matrix � is used in the Perron-Frobenius theorem to show that the spectral radius ��� of � is
an eigenvalue of � and the associated eigenspace is a ray whose components are all positive. This
result can be used to approximate the value of the vector recursively defined by -
� ��� � � � -)� � ��� �
for large � (intuitively -)� ����������� �� � ).

In the � ��
�� 6��,� algebra, some result equivalent to the Perron-Frobenius theorem has been
shown. It can be shown [7] that the spectral ray of matrix � above is the maximal geometric
mean of weights of elementary cycles of the graph corresponding to the matrix. This gives us an
easy way of computing the spectral ray ��� of matrix � . The concept of cyclicity is also useful for
us. The cyclicity � � � � of a matrix � is the the GCD of the length of elementary cycles of the graph
associated to the matrix.

We can now use the extension to ����
�� 6��,� algebra of the Perron-Frobenius theorem:

Theorem 5.1 ����
�� 6��,� Perron-Frobenius. Let � 
 � �"! ��$# $ be an irreducible matrix in a ����
�� 6��,�
algebra with spectral ray � � and cyclicity � � � � . There exists an integer � such that% � � & � �

	('�)*�,+ � ��� � � '�)*�,+ ��� �

With this theorem, we can express the asymptotic behavior of the bit width � �
) � � � for the vari-

ables � & contained in one strongly connected component of the dependence graph. Their exact value
is computed by hand for small values of � . In summary, we have the following result: for every
2-dimensional uniform loop nest which satisfy the following conditions,

� the loop nest contains parallelism (this imply that it will lead to a linear array with the standard
systolic design methodology),
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� the loop nest leads to a computable system of equations for the integral bit width (i.e., bit
width �

& � � � does not depend on itself as for auto-adaptive filters),

� the strongly connected cycles of the reduced dependence graph do not contain multiplication,

we can automatically find the bit width of each signal by keeping unknown the size of the array. The
fact of having a parameterized bit selection is essential in a high level design process as well as for
the re-usability of the design.

5.3 Solving the example

We illustrate how to use this technique on the very simple example of the FIR. In our example, we
had to solve equation (4): � � � � � � ��
�� ��� � � � � � � �0� 6 /�� # � (for � � � ) where � # is the initial
integral bit width of the input signals � and � . Expressed in the ����
�� 6��,� formalism, it leads to:
� � � � � � � � � � � � � � � � � /�� # � where � � � � � . The graph whose adjacency matrix is �
is composed of only one node and one arc (cycling on the node) labeled with the value 1. Hence,
the maximal geometrical mean of elementary cycles on the graph is 1 and �"� � � (the cyclicity of
matrix � is also 1).

As the system extracted from equation (4) is not linear but affine, we will have to perform a
classical change in the specification. The constant will be considered as a variable: C(p), and we
will manage to ensure that the value of C(p) is always 0. The new equation in ����
�� 6��,� is (with
� � � � � � � � and

� � � ��� � � :�
� � � ���� � � ��� �0� � � � � � � � ������ � � ������� � � � /�� #� � � � � � � � � � � �� � � �������

The new matrix � � is not reducible anymore but, as the spectral ray of � is positive, the result of
theorem 5.1 still holds with � � (intuitively, as � � is strictly positive, � � � � � is increasing with � ,
hence, taking the maximum with a constant can change the behavior for small values of � but not
asymptotically). Now, using theorem 5.1, we know that there exists � such that

� � � & � � � � � ��� � � � � � � � � � � � � � ����� � � �
This is the result that we had if � # � � (with corresponding � being equal to -1). In the general
case, � can be bounded[2]. However, as we deal with small matrices and small integer values this
bound is usually small in practice. Hence the most efficient way to find it is to compute by hand the
first values of � � � ��� until we reach a � # such that � � � � # � ��� � � � # ����� � � � . For instance, if we
take � ! ��� , we compute by hand the initial values of � � : � � � � � � � � , � � � � � ��� � , � � � ��� �� � ���	�"� � � � � � � � � � � � � � . Hence we immediately get that: � � � � � � � � � � � � � � ��� � � .

6 Conclusion

We have presented a method for the integral bit width determination of signals for loop nest programs
which are implemented on one-dimensional linear arrays. The main originality of the paper lies in
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the fact that we use results of the � ��
���6 �,� algebra theory to solve the problem for parameterized
loop nests (i.e., loop nests for which the bounds of loop indices depend on parameters which are not
necessarily statically known). The fact of having a parameterized bit selection is essential in a high
level design process as well as for the re-usability of the design. We have demonstrated the method
on a classical signal processing treatment: the FIR filter. To be complete the method presented here
should be used in conjunction of the result of [12] for the determination of fractional bit width of
linear signal processing systems.

Although our concept is presented in the context of high level design methodology of Alpha,
the work presented in this paper can be used in any high level design environment using a different
modeling for operators. However, its application requires an equational description of the behavior
of the architecture. Once this description is obtained, the generation and the resolution of the bit
width equations are similar to the one presented here.
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