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Un théoréme central limite fonctionnel dégénéré pour des réseaux
avec perte

Résumé : Des réseaux avec perte saturés sont étudiés en utilisant la renormalisation de
Kelly. Dans le cas un seul lien et R type de connexions, un théoréme central limite dégénéré
dans un hyperplan de dimension R — 1 est démontré.

Mots-clés : Réseaux avec perte. Approximation aux diffusions.



A degenerate central limit theorem 3

1. INTRODUCTION

Loss networks can be described as sets of queues (or links) with limited capacity submitted
to arrivals of jobs (calls). Each arrival (a call on a route) requires several links at the same
time. A call is accepted only if there is enough room to accommodate it. These networks
are described by Markov processes on a finite state space. They are reversible and their
invariant measure is explicitly known.

This satisfactory picture of loss networks hides some important difficulties: First, because
of the geometry of the state space, the invariant measure is expressed via a rather compli-
cated combinatorial expression. It is then difficult to use it in practice to get estimations
of simple characteristics of the network like the loss probability of a given call, or the load
of the network. Second, the transient behavior of these networks is largely unknown. Kelly
introduced a scaling parameter to get simple asymptotic expressions for the invariant mea-
sures. The rate of the arrivals is increased by some factor IV as well as the capacity of the
links. When N tends to infinity, it is then possible to get the asymptotic loss probabilities
and some limit theorems for the invariant probabilities. (See Kelly [8]). Hunt and Kurtz [7]
investigated the transient behavior of these networks. Despite these advances, many aspects
of the behavior of these networks remain largely unknown, even in simple cases. The present
paper establishes a non standard functional central limit result for a simple model in heavy
traffic.

The loss model studied in this paper has one link with the following characteristics.

— The capacity of the link (or a maximal number of circuits) is | NC|, where N € N
is the scaling parameter (introduced by Kelly [8]) and C' € Ry is the renormalized
capacity of the link. (|z] is the integer part of z € R).

— There are R types of calls (or classes of customers).

— The arrival process of class r customers is Poisson with parameter NA,. Their
residence time in the network is exponential with parameter p,.

The quantity Ly (t) denotes the number of class r customers in the system at time ¢. The
free circuit process (mp(t)) is defined by,

R
my(t) = [INC| =" Ly, (1),

my(t) is the number of empty places at time ¢.
It is known (Hunt and Kurtz [7]) that the sequence of processes

Ev0) = (2% < r)

converges to a deterministic limit, called fluid limit, for the Skorohod topology in the space
of Rf-valued right continuous functions with left limits (provided that the sequence of the
initial conditions (Ly(0)) converges).

An important feature of these systems, remarked by Kelly [8] and shown by Hunt and
Kurtz [7], is the averaging property. See Freidlin and Wentzel [4] and Kurtz [10]. The free
circuit process moves much more rapidly than the process (Ln(t)), as a consequence its local
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4 C. Fricker, Ph. Robert and D. Tibi

equilibrium determines the short term behavior of (Lx(t)). It can be roughly described as
follows: If at some time ¢,

(Ln(t) =z = (zr;7 < R),
at the time scale 1/N, the process (my(s)) is a N U {+oo}-valued Markov jump process
(m(s)) whose transitions are given by, for m € NU {400},

(1) m— m+1 at rate p,x,,
m—1 at rate \rlip>1y.

Notice that the dynamic of the process is discontinuous when m = 0.

In this paper the perturbation around this fluid limit (which is a R-dimensional process)
is investigated. When the initial point of the fluid limit is in the interior of the domain,
it is easily shown that the components of the diffusion around the fluid limit are locally
independent and related to Ornstein-Uhlenbeck processes (see Borovkov [2] and Kelly’s
survey [9]).

The interesting case is when the fluid limit is on the boundary of the domain and stays
on it for a while (otherwise it is similar to the previous case). In this situation, a diffusion
approximation picture turns out to be much more delicate to obtain because of the reflection
on the boundary of the process at the normal scale, even for the simple model considered in
this paper. It is interesting to note that one does not get a reflected diffusion process in the
limit as one might think at first sight. The perturbation around this fluid limit is shown to be
a degenerate R—1-dimensional diffusion related to an Ornstein-Uhlenbeck process. One of
the main ingredients for the proof of the convergence is Proposition 2. Note that this is not
the only one, a central limit theorem for the time spent on the boundary is also necessary,
although somewhat hidden in our setting. An attempt to show an analogous result in the
case where the calls require several links reveals that such a central limit theorem has to be
shown. For the moment, we cannot prove such a result.

2. A DEGENERATE CENTRAL LIMIT THEOREM

Notations and assumptions. It is assumed that, for z > 0, N, is a Poisson process with
parameter x, N (dy) is the infinitesimal increment of the associated counting measure and
N;(]0,t]) denotes the number of points of this process in the interval ]0,¢]. With an upper
index (/\/wk), it denotes an i.i.d. sequence of Poisson processes with parameter z. The
renormalized capacity C can be assumed to be 1 without any loss of generality.

Heavy traffic is assumed: that is, if p, = A/, for r < R,

R
2) S o>l

This hypothesis implies that the saturation of the queue occurs with probability 1.
For 1 <r < Randt > 0, Ly,(t) is the number of class r customers at time ¢ in the
system. The initial conditions satisfy

(3) Jim Tna(0) =,

INRIA



A degenerate central limit theorem 5

forr=1,...,Rwith (I,) ERE, l; +---+1g < 1.

The equations of evolution. It is easily seen that the process (Ly .(t)) has the same distri-
bution as the solution of the following stochastic differential equation,

t
(4) Ly, (t) =Ly, (0)+ /0 1{2?:1 LN’q(S—)<N}NNA7‘ (ds)

+OO t
- / Lik<r .. (s—) 3N (ds).
k=170

For r =1,..., R, the martingales associated to (Ly .(t)) are defined by

t
MP(1) = /0 L nyato yen} W, (d8) = N, ds),

+oo
My, (t) = - Z/O Lik<in, ()} (N, (ds) = pr ds) ;
k=1
and their increasing processes (see Ethier and Kurtz [3]) are given by

t
(5) (M) (t) = N, /0 L5 R | Ly g(s)<v) 45

t

(6) (Y (€)= e [ Livolo) d:
0

Equation (4) can be written as

(1) Ly (t) = L (0) + M, (8) + My (1)

t
* N’\T/O USm, Daato)<n} 48 = b /0 Lo p(s) ds.

2.1. The fluid limits. If (Xx(t)) is a sequence of processes on Ry, one defines the renor-
malized sequence of processes of (Xn(t)) by Xn(t) = Xn(t)/N, for t > 0.
It is well known (See Hunt and Kurtz [7]) that the process (Ln,(t); r = 1,...,R) con-

verges in the Skorohod topology to the fluid limit (I(¢)) = (I(¢); r = 1,..., R) which is the
unique solution of the ordinary differential equation

R
% (i I®) A A) =l (), it S Ie(t) = 13

(8) 1/ (t) = R
Ar = pirln(2), if Y I(t) < 1;

1

with 1.(0) = 1,; A = Zf’ Ary 0= (), a Ab = min(a, b) and (-,-) is the usual scalar product
in RE. The dynamical system (I,.(t); 7 = 1,..., R) lives in the region

D={yeR}:y+---+yr <1}.

RR n° 4445



6 C. Fricker, Ph. Robert and D. Tibi

It is easily seen that Condition (2) implies that,

9) lim (7,(t)) %< Z(oo)=( br )

t—+4oco Z? Pk

therefore I(c0) is the stable point of (I,.(t); » = 1,..., R), it lies on the boundary of D. See
Zachary [13] for a general result on the stable points of fluid limits of loss networks.
Denote by
A={yeD:p+---+yr=1}, AT ={yelA:(ny) <A},

AT is the set of points of the boundary of D at which the dynamical system is not pushed
into the interior of D: if (I,) € AT, Equations (8) give

ZZTI(O) = ZMT‘ZT - Z/J/rzr =0.

14
0.8 AT
0.6

Fi4rz (P1P2)
0.4+
D

0.2-

0 02 04 06 038 1

FI1GURE 1. The fluid limits of a loss system with R = 2

2.2. A central limit theorem on At. From now on, it is assumed that Condition (3) is
satisfied and

(10) lim VN (I, (0)—1,) = v,

N—+oco
with (v,) € RE,
(11) 1(0)=(l,) e AT and wvi+---+vg=0,

INRIA



A degenerate central limit theorem 7

i.e. the process (Ln,-(t); r = 1,...,R) is very close to saturation at the origin when N is
sufficiently large. )

Since 1(0) € AT, it is easily seen that there exists some T such that I(s) € AT for all
s €1[0,T], i.e.
(12) er(s) =1land sup (u,I(s)) <A.

- 0<s<T

Notice that in the case R = 2, one can take T = +oo (See Figure 1). This is not the
case in general, for R = 3 for example, but there is a region of AT containing I(o0) (see
Equation (9)) such that if [(0) is in this region, then T can be taken as infinity (see Bean et
al. [1]).

In the following the statements concerning the convergence in distribution of processes
will refer to the Skorohod topology on the space of real valued functions on [0, T[ which are
right continuous with left limits.

Proposition 1. When N goes to infinity the martingale
((\/Nﬂfjr(t); r= 1,...,R) : (mmp@; r= 1,...,R))
converges in distribution to (B1,(11,-(t)); 1 < r < R),Ba,(72,(t)); 1 < r < R)), where

Bi,, By,, r =1,...,R are independent standard Brownian motions on R and for r =
1,..., R,

t (s
Y, (t) = Ar/] W ds
Yo,r(t) = ur/o 1,(s) ds.

Proof. The increasing processes of (\/N H?T(t)) and <\/N H?T(t)) are given by

t

(13) (VNIL,) ()= A, /0 Liser 1y (e} 5
(14 (VNTT) 0 = e [ Tvote) s

According to Hunt and Kurtz [7], when N goes to infinity, the right hand side of Equa-
tion (13) converges in distribution to

P {u,1(s))
A /0 L ds,

and the right hand side of Equation (14) to

¢
/,LT/ 1,(s) ds.
0

RR n°® 4445



8 C. Fricker, Ph. Robert and D. Tibi

For g, r € {1,..., R}, q¢ # r, the processes
(10 72) ©) s (00 72r) 9)
(302, 7)) ana (2,72, ),

are identically 0 since the martingales (M{",.(t)) and (M3",(t)) are stochastic integrals with
respect to martingales associated with independent Poisson processes.

To conclude, a classical result is applied (see Theorem 1.4 page 339 of Ethier and Kurtz [3]
for example). The proposition is therefore proved. O

For t < T, if Zn(t) denotes the empty space in the queue at time ¢, i.e.
Zn(t) = N — (Lyna(t) + -+ Ln,gr(?)),
from Relation (7) one gets the identity

R
(15) Zn(t) = Zw(0) = Y (M0, (5) + M, (1)

r=1

— A/Ot L Zy(s)>0) 45 + /Ot (u,Ln(s)) ds.

Condition (12) implies that
(Zn(t); t <T) =50,
as N goes to infinity; the following proposition shows that Condition (11) entails a stronger
statement.
Proposition 2. The process
(\/NZv(t); 0<t< T) = (N — LN’I(t)\;Nm — LN’R(t); 0<t< T)

converges in distribution to 0 as N goes to infinity.

Proof. Since the limit (I(t)) of the process (Ln (t); r = 1,..., R) is continuous, for ¢ > 0
and 7 > 0 there exists Ny € N such that for N > Ny,
P ( sup (1 Tn(0) - (1) > 1) <=
0<t<T

Condition (12) implies that there exists 7 > 0 such that for € > 0, there is Ny € N satisfying
the following inequality: for N > N,

(16) if Hy = { sup (u, Ln(t)) <A— 17} then P(Hy) > 1—e.
0<t<T
The process (Zn(t)) satisfies the stochastic integral equation
R t R +oo Lt
Zn(t) = Zn(0) - Z/O Lz (s—)>03 N2, (ds) + ZZ/O Lik<rn (s=)} Nk, (ds),
r=1 r=1 k=1

INRIA



A degenerate central limit theorem 9

it has the same distribution as the solution of the equation (with the same notation Zy)

R t
(a7) Zn(t) = Zn(0) = 3 / Lizm (o 50 N, v (d5)

+ N (]O,N/Ot (1, In(s)) dsD .

The process (Zn(t)) can be viewed as the number of customers of an M (t)/M/1 queue
with the service rate AN and N <u, L N(t)> as the instantaneous arrival rate at time ¢. The

process (Zy(t)) is constructed with a coupling : Zy(0) = Zx(0) and

18 Zn) = Zn0 = X [ 1z s Naon(ds) + 43 Q0N (A=)t

the Poisson processes Ny.n, 7 = 1,..., R and A; in the above equation are the same as in
Identity (17).

The Markov process (Xn(t)) = (Zv(t/N )) has the same distribution as the number
of customers in an M/M/1 queue with arrival rate A — 5 and service rate A. If H(K)
denotes the hitting time of the level K starting from 0 by this process, it is well known
that if &K = (A — n)/A, the variable kK H(K) converges in distribution to an exponentially
distributed random variable with parameter /A as K goes to infinity.

Equations (17) and (18) show that on the event Hy defined by Relation (16), the in-
equality Zx(t) < Zn(t) holds for all ¢ < T, thus for a > 0 and & > 0,

P ( sup VN Zn(t) > a) =P ( sup Zn(t) > m/ﬁ)

0<t<T 0<t<T

<e+P ( sup Zn(t) > aﬁ)

0<t<T

= 5+]PZN(0) ( sup Xn(t) > ax/N) ,
0<{<NT

where P is the conditional probability P(-|X(0) = b), hence using the strong Markov
property of (Xn(t)), one gets

]P’( sup \/NZN(t) > a) <e+Pzy(o) (H([a\/NJ) SNT)
<

0<t<T

(19) <e+ Py (H (|avN|) < HO) +Po (H (|aVF]) < NT).

The classical ruin probability formula (or the fact that (1 JNEONHE (La‘/ﬁj)) is a martin-
gale) gives that

P (1 (|o¥]) < H0) = 202

RR n°® 4445



10 C. Fricker, Ph. Robert and D. Tibi

this term converges to 0 as N goes to infinity since Zx(0)/v/N — 0 (see Condition (11)).
The convergence in distribution of (k¥ H (K)) implies that

Po (H (|aVN|) < NT) =Po (sl*VMH (1avN]) < NslVIT)
converges to 0 as N gets large. Inequality (19) shows that the variable
sup {\/NZN(t) :0<t< T}
converges in distribution to 0 as N goes to infinity. The proposition is proved. d
Define )
Exvalt) = VI (B () = o(0) = 2200,

According to Relation (7) the renormalized process satisfies the following identity, for r =
1,...,Rand t >0,

— — —N -
(20) Ly r(t) = L (0) + My () + M ()
t t
+ AT/O Lisr Tyns)<1} ds —uT/O Ly, (s)ds.
Equation (8) for the fluid limits and the assumptions on the initial state give that, for t < T,
21) Eny(t) = Do (0) + VNI () + VNI, (1)

¢ “{m,1(s)) =
+ )\T\/N/O 1{E§=lfw,k(8)<1} ds — )\T\/N/O 1 ds — MT~/0 Ly r(s)ds,

using Relation (15), one gets

(22) L. (t) = Ln.(0) + MN(t)

_ _ t (A (1, Ln(s) .
- VNEN D -Zx ) + [ (# - urLN,r(s)> s,

where (MY (t)) = (MN(t)) is the martingale defined by
R
(03) MYt = VN (V10 + 73,0) - SOV (W10 + TT30)

Lemma 3. The sequence of martingales (M™ (t)) converges in distribution to a degenerate
R-dimensional Gaussian process (G(t)) of rank R — 1 such that

(24) G(t) =T+ (B (1,r() + 72, () s 1 ST < R),

INRIA



A degenerate central limit theorem 11

where (71,.(t)) and (v2,.(t)) are given in Proposition 1, (B,(t)) is a standard R-dimensional
Brownian motion and T is a R x R matriz of rank R — 1, with

Ar A
K; Frq - A’

forq#re{l,...,R}. The range of T is {y e RE :y; +--- + yg = 0}.

r,=1-

Proof. The convergence is a straightforward application of Proposition 1 and the Continuous
Mapping Theorem. d

Proposition 4. Under the conditions

lim Ly,(0)/N=1,, lim (Ln,(0)—NI)/VN =u,,
N—+o0

N—+o0

where the vectors | = (1) and v = (v,) are such that1(0) = (I,) € At and v, +---4+vg =0,
if T > 0 is such that the fluid limit (I.(t)) belongs to At for 0 < t < T, then the vector
(EN,T(t), r=1,...,R; 0 <t <T) converges in distribution to the process (E(t)), solution
of the following stochastic differential equation

(25) dL(t) = dG(t) + A - L(t) dt,
or, equivalently, defined by

¢
(26) L(t) = / e =944G (s) + etv,
0

where (G(t)) is the Gaussian process defined by Equation (24), v = (v,) and A is the Rx R
matriz

A, = (% — 1) Uy and A,q = %uq,
forq#r.

Proof. For aprocess X with values in R and § > 0, wx (§) denotes the modulus of continuity
of (X,(t)) on the interval [0, T],

wx (0) = 1311512 sup{|XT(t) — X, (s)]: 0<s<t<T,t—s< 6}.

The sequence of process

is tight and any of its limiting points is continuous. To prove that assertion, it is sufficient
to show that for any £, n > 0 there exist § and Ny such that the inequality

P (wEN((S) > s) <n

holds for N > Ny (see Ethier and Kurtz [3]).
Let t € [0,T], if
def. >
Gn(t) =" sup sup {‘LN,T(S)‘ :0<s< t} ;
1<r<R

RR n° 4445



12 C. Fricker, Ph. Robert and D. Tibi

then Equation (22) gives the relation

t
Gn(t) < Kn +2Ru*/ Gn(s)ds
0
with

Ky = sup sup (‘EN,T(O)‘ +VNZn(s)+ |Mﬁv(s)|) and g, = max fi,.
1<r<R 0<s<T 1<r<R

From Gronwall’s Inequality one gets the bound
(27) Gn(t) < Kye?Brst,
for 0 <t <T. Using again Equation (22), the following inequality is derived

(28) P (wg, (8) > &) <Pwyn () >e/3)

+P (2 sup (\/N?N(t)) > e/3> +P (ZR,u*GN(T)é > 5/3) .

0<t<T
Since the sequence of processes (M¥ (t)) converges and its limit is continuous (Lemma 3),
there exist some Ny and dp such that the relation

P (wn~ (d0) 2 €/3) <n/3

holds for N > Njy.
From Proposition 2 one gets that there exists N; so that if N > N, then

P (2 sup (x/N?N(t)) > 5/3) <n/3.
0<t<T
Condition (10) and Propositions 1 and 2 show that the sequence of random variables (Ky)
is tight, thus there exists some constant Cy > 0 such that for N > 1 the inequality P(Ky >
Co) < n/3 holds.
Now if N2 = NO VN1 and

£ P
5= 6o A ~2RpT
" 6CoRp ’

then for N > N,, Inequality (28) gives the relation
P (wiN (0) > E) <.

Thus the sequence of processes (EN(t)) is tight and any of its limits is continuous.
)

If (L(t)) is a limit of (Ln(t)), using Relation (22), one gets that (L(t)) satisfies the
stochastic integral equation

t R
(29) Lr(t)zvr+Gr(t)+/ ZAquq(s)ds, r=1,...,R,
0 =

Equation (25) is therefore satisfied. The range of A is
S={yeR¥:y1+---+yr =0},

INRIA



A degenerate central limit theorem 13

since (G(t)) is a Gaussian process in S, the above equation can be rewritten as a classical
non degenerate linear stochastic differential equation in S. In particular, there is a unique
strong solution (see Ethier and Kurtz [3] or Rogers and Williams [11]). It is easy to check

that the process (L(t)) defined by Equation (26) verifies Relation (29). The proposition is
proved. a

2.3. Stationary behavior. We conclude with some remarks on the invariant distribution
of (Ln(t)). If Ly(oo) denotes some random variable whose distribution is stationary with
respect to (L (t)) then

Ly (00) & ((ZN,17 s ZNR) |ZNa+ -+ ZNR < N) ;

where Zn1,...,ZnN,g are independent Poisson random variables whose parameters are re-
spectively Np1,..., Npg. It is elementary to prove that, as N tends to infinity, Ly (c0)/N
converges in distribution to /(cc), the stable point of the fluid limits, defined by Equation (9).
By using the central limit theorem and the fact that the empty space in the link converges,
as N tends to infinity, toward a geometrically distributed random variable (see Kelly [8]), it
is easily seen that (Ly(o0) — Nl(c0))/v/N converges in distribution to a Gaussian random
1< 4,5 < R) defined by

variable L(co) with zero mean and covariance matrix K = (Kj;;

(30) EKi=" (1 - &> and  Kij = _pigj’
p p p

for 1 <i,j<R,i# jand p=p1+---+ pgr. For central limit theorems of the stationary
distributions of loss networks, see Kelly [8], Hunt and Kelly [6], Hunt [5] and Whitt [12].

The matrix K is clearly singular (K -1 = 0), with rank R — 1. Since the matrix K is
symmetrical and non-negative, it is easily seen that there exists some R x (R — 1) matrix
H such that K = H - H! (H! is the adjoint of H) and the range of H is the hyperplane
H={x:21+---+2r = 0}. The variable L(o0) can then be expressed as H - W where W
is a standard (R—1)-dimensional Gaussian vector.

Proposition 5. The diagram
- i too -
(ﬁ (LN(t) - Nl(t))) toboo, (ﬁ (LN(oo) - Nl(oo)))
(31) N—H—ool N—H—ool
(E(t)) - (o).
commutes, i.e. the invariant distribution of (L(t)) is a Gaussian distribution with zero mean
and covariance matriz K defined by Equation (30).

Proof. Tt is not difficult to see that one can assume that the fluid limit is already at equi-
librium, i.e. 1(0) = I(c0), so that I(t) = l(o0) for any ¢t > 0. In this situation, the stochastic
differential Equation (25) becomes

dL(t) =T-D-dB(t) + A- L(t) dt,

RR n° 4445



14 C. Fricker, Ph. Robert and D. Tibi

where D is the R x R diagonal matrix such that D;; = \/2\;/p, I and A are the matrices
defined in Lemma 3 and Proposition 4, and (B(t)) is a standard R-dimensional Brownian
motion. (For ¢ =1, 2 and r € {1,..., R}, the quantity ~; »(t) defined in Proposition 1 is
Art/p)- R

The infinitesimal generator of the Markov process (L(t)) is given by the second order
differential operator

(52) AN =3 Y Szt (@) +A-2.f@).

ijai
;02 ;
1<i,j<R R

for a twice differentiable function f on RE with compact support, the diffusion coefficient
¥ =(%;1<4,j <R)=T-D?-T"is given by

2); i C2A
2“_7<1_X> and E”__p A ;

for 1 < i # j < R. To prove that the distribution of z(oo) is indeed the invariant distri-

~

bution of (L(¢)), it is sufficient to prove the identity E(Q( f)(z(oo)) = 0 holds for any twice
differentiable function f with compact support, or that

(33) E(Qf)(H-W)) =0

holds. (See Ethier and Kurtz [3] page 290). For w € RE~1 define ¢(w) = f (H - w), the
following identities are easily checked

s (swirsisr-1)=(glawase<r)on

®  (jopwiisii<h -1

Bwiawj

=H'. 62f(H-)-1<e <R)-H
- 0x0%m, wh L= 5m= ’

Since the range of matrix A is also hyperplane #, there exists some square matrix ¥ of
dimension R — 1 such that A- H = H - ¥. Trite calculations show the relation

Y=-24.-K=-24-H-H'=-2H-¥.-H.
which implies, together with relation A- H = H - ¥ (again) and Equations (34) and (35),
that
AN w) == Y Bzt () + (Tow), 6 -u.
6wk6wg ’

1<k <R—1

INRIA
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Identity (33) to check becomes then

*¢ o¢
Z \I’kl /RR—I (6wk6wl (U)) a wla—wk(w)>

1<kJ<R—1
1 Bt
X exp 3 ; w? dwy ... dwg 1 =0,
which is trivial to verify. The proposition is proved. O

10.

11.

12.

13.
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