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Abstract: The non-preemptive priority queueing with a finite buffer is considered.
We introduce a randomized push-out buffer management mechanism which allows
to control very efficiently the loss probability of priority packets. The packet loss
probabilities for priority and non-priority traffic are calculated using the generating
function approach. For the particular case of the standard non-randomized push-out
scheme we obtain explicit analytic expressions. The theoretical results are illustrated
by a numerical example.
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La file d’attente prioritaire & capacité limitée avec
push-out stochastique

Résumé : Nous étudions la file d’attente prioritaire (non-preemptive) a capacité
limitée. Nous introduisons un mécanisme de push-out stochastique. Avec ce mé-
canisme la perte de paquets prioritaires peut étre contr6lée de maniére simple et
efficace. Pour résoudre le modéle, nous utilisons la méthode de la fonction géné-
ratrice. En cas particulier du mécanisme de push-out non-stochastique nous avons
réussi & obtenir des formules analytiques explicites. Les résultats théoriques sont
illustrés par un exemple numérique.

Mots-clés : file d’attente prioritaire, capacité limitée, push-out stochastique
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1 Introduction

Priority queueing discipline has a number of important applications in telecommu-
nications and computer networks, e.g., Differentiated Services architecture for the
Internet [7].

Here we consider the non-preemptive priority queueing system with two classes of
packets. Class 1 packets have priority over class 2 packets. The packets of class 1 (2)
arrive into the buffer according to the Poisson process with rate A; (Mg, resp.). The
service time has the exponential distribution with the same rate u for each class.
The service times are independent of the arrival processes. The buffer has a finite
size N and it is shared by both types of customers. If the buffer is full, a new
coming customer of class 1 can push out of the buffer a customer of class 2 with the
probability a. Note that if @ = 1 we retrieve the standard non-randomized push-out
mechanism.

The infinite buffer priority queueing has been studied thoroughly in the past
[4, 8, 9]. The case of finite buffer priority queueing received considerably less atten-
tion. Kapadia et al [5, 6] analyzed the M/M/s/K type finite buffer non-preemptive
priority queueing with non-randomized push-out mechanism. Bondi [1] analyzed
the M/M/1/K type preemptive and non-preemptive priority queueing with the fol-
lowing buffer management schemes: complete partitioning, complete sharing and
sharing with minimum allocation. Wagner and Krieger [10] analyzed the M/M/1/K
type non-preemptive priority queueing with the complete sharing buffer management
scheme and with the class-dependent service rates. In [2] Cheng and Akyildiz con-
sidered the priority queueing with general service time distributions and a general
service discipline function. They analyzed the push-out with threshold as the buffer
management scheme.

Most of the above works use recursive relations to solve steady state Kolmogorov
equations. We use the generating function based approach, which only requires the
solution of a linear system of N equations. To our best knowledge, the randomized
push-out mechanism is analyzed for the first time. In particular, we show that with
the randomized push-out scheme it is easy to control the loss probability of priority
packets in a very large range. Furthermore, in the particular case of non-randomized
push-out we obtain an explicit analytic expressions for the loss probabilities that are
simpler than expressions in Kapadia et al [5, 6]. Finally we conclude the paper with
a numerical example.

RR n°® 4434



4 Avrachenkov, Vilcheusky & Shevlyakov

2 Main results

Let us denote by p(i,n) the stationary probability of the event that there are n pack-
ets in the queue including ¢ packets of class 1. We also denote by po the stationary
probability of the event that there are no packets in the system. These probabilities
satisfy the following stationary Kolmogorov equations:

(A1 + A2)po = pp(0,0);

en=0>0
(M + A2 + 1)p(0,0) = pp(1,1) + pp(0,1) + (A1 + A2)po;

e 0<n<N
(M1 + A2+ p)p(0,n) = pp(l,n+1) +up(0,n +1) +A2p(0,n — 1),
(A1 + A2 +p)p(i,n) = pp(i+1,n+1) +Ap(i —1,n = 1)  +Aep(i,n — 1),
M+ A+ p)p@Ei,n) = pp(n+1,n+1) +A1p(n —1,n — 1);

e N = N

(@M1 + p)p(0,N) = Aop(0, N — 1),

(ad1 +u)p(i, N) = Mp(i—1,N—=1) +Xop(i, N —=1) Halp(i—1,N),

pup(N,N) = Xp(N —1,N —1) +aAip(N - 1,N).

Next we introduce the generating function for p(i,n) by the index i

F,(z)= Zp(i, n)zt.
i=0

Using the above given Kolmogorov equations, we obtain relations for the gener-
ating functions F,(z),n =0,1,..., N:

en=0
(A1 4 e+ ) Fo() = = [Fi(@) = p(0, D] + p(0,1) + (1 + Ao )po,
e 0<n<N

(A + Ao + p)Fu(z) = % [Frt1(z) = p(0,n+ 1] + pp(0,n + 1) + (Az + Ag) Fra (2)-

In particular, we get the following boundary condition

INRIA



Priority queueing with finite buffer and randomized push-out 5

en=N

(a1 4+p) Fy (2)—ap(N, Nz = (A4 ) Fn_1(z)+arzFy(z)—ar 2V Tp(N, N).
1)

Let us now introduce the generating function for F,,(z) by the index n

N-1
= Z Fo(x)y
n=0
The generating function ®(z,y) satisfies equation (2) given in Lemma 1 below.
Lemma 1 The generating function ®(x,y) satisfies the following equation
[(p+ Dy —ay*(prz+ p2) = 1@ (2, y) = —y" Ha(prz+ p2) Fy-1(x) +y" Fy(x) (2)
+y(z - 1)A(y) + (zy — 1)ppo,
where p; = i/, p = p1 + p2 and A(y) = 00 p(0,n + 1)y"
In the next theorem we determine the generating function ®(x,y).
Theorem 1 The generating function ®(x,y) is given by

[1—zy+apay(z — D]yVVy_1(z) + y(z — 1) A(y)

P(x, =
(=.9) (p+ Dzy — zy*(pr1z + p2) — 1
[1 — zylzNy"p(N, N) + plzy — 1]po
(p+ Dzy — zy*(pr1z + p2) — 1
where
N-1
Vn_1(z) = :ckp(k N)
k=0
Aly) = —apyN ~'p(0, N)
U, () k1 U(?) k1 Uk—1(t)
—kVYEk—-1 N—k—-1%Yk N—k—1
+ Z[ 2y (k+1 - Rz T @ (kq)/z]p(k N)
P P
UN 1(t)
o vanP ()

witht = (p+1— pgy)/(Qpl/z) and where probabilities p(k,N),k = 0,..., N can be
obtained as a solution to the following system of linear equations

RR n°® 4434



6 Avrachenkov, Vilcheusky & Shevlyakov

e s=0

ap1 Ol (to)p(N =1, N)+ [ pCh i (to) — p1 /2T (t0)| (N, N} V+1/2pg = 0,
e 0<s<N

Cy- ks 1 to)ﬂl Cy k. (to)pr*

— p*(1+ ap)

>

~ )T (—p)T
Cy- k+11( 0)p1 Cn—s-1(to)
+ aS— N —1—Fk,N)+ apsT1 D=1 N—-1-s,N
Py | A S )
+ [pcfvﬂs—l(tO) - P13/20}9€L—ls(t0)] p(N,N) =0,
o s=N

N-— cN-
F(to)p1*
3/21+ap2 % RPN =1k N) = G )N N) = 0
k=

with Up(z) and CY(x) denoting the Chebyshev polynomials of the second kind and
the Gegenbauer polynomials [3|, respectively, and

po=(1—-p)/1=p"*2),  t9=(p+1)/2n"").

PROOF: given in Appendix.
Once we know the value of p(N, N), we can calculate the loss probabilities of
class 1 and class 2 packets.

Theorem 2 The loss probabilities of class 1 and class 2 packets are given by the
following formulae

P{) = p(N,N) + (1 — a)[Py — p(N, N)], 3)
Pk, = Py + o2 [Py~ p(N. )] (4)
where 1= p .
Py = et

INRIA



Priority queueing with finite buffer and randomized push-out 7

PROOF: A priority packet can be lost either when the whole buffer is filled only with
priority packets or when there are some packets of class 2 but with probability 1 — «
the push-out mechanism is not enabled. The probability of the first event is p(N, N)
and the probability of the second event is chvz_ol p(k,N) = Py —p(N,N). Thus, we
obtain formula (3).

The stream of lost packets of class 2 consists of the stream of packets with rate
A2 Py lost when the buffer is full and the stream of packets with rate a\; (P, —
p(N, N)) pushed out by packets of class 1. Since the system is ergodic, we obtain
formula (4).

a

We note that if & = 0 (no push-out), the loss probabilities for two classes coincide
and are equal to Py. We also would like to note that due to the fact that the service
time distribution is the same for the two classes, the expressions for pg, Fn(1) and
®(1,1) could be obtained immediately by elementary considerations.

In the particular case of the non-randomized push-out mechanism, that is, when
a =1, we are able to calculate the loss probabilities explicitly.

Theorem 3 The loss probabilities of class 1 and class 2 packets in the case of non-
randomized push-out mechanism are given by

1—p1)(1 - pVH)
p _ N (1—p1 , 5
toss = PP (1 NI (1 — pN+2) ®)
Floss = Py + [Py = ) ©)

PROOF: In the case of non-randomized push-out mechanism (a = 1), the equation
for the generating function (2) takes the form

[(p+ Doy —ay®(pra + p2) = 1 ®(z,y) = y" [ — 2y + pra(z — 1)y Fn(z)  (7)
+y(z = DA(y) + p1(1 — )z YV Hp(N, N) + (zy — 1)ppo.
Setting x = 1 in (7), and then reducing it by the term (y — 1), we get
(1= py)®(1,y) = ppo — " Fn (1),
Then in the above equation we take subsequently y = 1 and y = 1/p to obtain

(1=p)®(1,1) = ppo — Fn(1) (8)

RR n°® 4434



8 Avrachenkov, Vilcheusky & Shevlyakov

and 1
0= ppo — p_NFN(l)- 9)

Solving equations (8) and (9) together with the normalization condition
®(1,1) +po+ Fn(1) =1,

we obtain the following expressions for py, Fny (1) and &(1,1):
N+1

__1-pr __1=r Nt _1-p
o= TN Fy(1) = TNl ®(1,1) = 1= Nl

Next we take y = 1 in equation (7) and then reduce it by the term (z — 1)
(1= p12)®(z,1) = —(1 — p12) Fn(x) + A(1) = prz™'p(N, N) + ppo.

We now set subsequently x = 1 and = 1/p; in the above equation. This results in
the following two equations:

(1= p)®(1,1) = (1 — p1)Fw(1) + A(1) — pip(N, N) + ppo,  (10)
0=A(1) - pinuv, N) + ppo. (11)
1

Solving equations (10) and (11), we obtain

(1—p1)@ - o)
(1= P2 H(A = pN+2)
The loss probability of class 1 packets ‘F)l(ols)s is given by p(N,N). Then, we note
that the stream of lost packets of class 2 consists of the stream of packets with rate
A2 Fn (1) lost when the buffer is full and the stream of packets with rate A (Fn (1) —
p(N, N)) pushed out by packets of class 1. Hence, using the ergodicity property of

p(N,N) = ppy -

the system, we obtain formula (6) for P

loss®

a

3 Numerical Example and Conclusions

In order to calculate the coefficients of the linear system for p(i, N),i = 0,..., N in
Theorem 1, we need to compute the Gegenbauer polynomials. We suggest to use the
recursive formulae

(n+1)CE 1 (t) = 2(n + k)tCE(t) — (n + 2k — 1)CF_, (¢),

n

INRIA



Priority queueing with finite buffer and randomized push-out 9

with C§(t) = 1 and CF = 2kt [3, v.2, p.175]. We note that the coefficient matrix has
the following form

0 0 * =x
: *

0 =
_* e . e *_

This nearly triangular structure simplifies the solution of the linear system for p(i, N), i =
0,...,N. To improve the conditioning of the linear system, we propose to use the
normalization condition

N
Zp(kaN) = Py
k=0

in place of the last equation. As an example, we take the following values for the
system parameters: p; = 0.2, po = 0.9 and N = 30. We consider a typical scenario
when the intensity of arrival of higher priority packets is smaller than the intensity
of arrival of lower priority packets. Once the system for p(i,N),i = 0,...,N is
solved, we can calculate packet loss probabilities by the formulae given in Theorem 2.
In Figure 1 we plot the packet loss probabilities for two classes as a function of
parameter «. In the particular cases, @ = 0 and a = 1, we can calculate the
loss probabilities using the explicit analytic formulae (the formula for Py and the
formulae in Theorem 3). As one can see, the numerical solutions for « = 0 and @ =1
coincide with the explicit analytical solutions.

There are at least two important conclusions that we can draw from Figure 1.
First, by changing parameter a we tune the loss probability of the priority packets
in a very large range, that is from 0.0954 down to 8.54 x 10722, Then, we note that
with the increase of « the loss of non-priority packets does not deteriorate as quickly
as the acceptance of priority packets improves. Namely, the loss probability of the
non-priority packets only changes by 22%. Second, we note that the dependence
of the packet loss probabilities for both classes on the parameter « is very close
to linear. Thus, the randomized push-out mechanism can easily be applied for the
engineering of the priority queueing systems.

RR n°® 4434
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0.12

0.1 _---" 1

0.06 - b

packet loss probability

0.04 -

—— Priority class 1

— — Non-priority class 2
0.02 | & No push-out =
<& Non-randomized push—out: Class 1
O Non-randomized push-out: Class 2

0 I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha

Figure 1: Numerical example with p; = 0.2, po = 0.9 and N = 30.

Appendix. The proof of Theorem 1

By substituting boundary condition (1) into equation (2) for the generating function
B(z,y), we get

[(p + Dy — zy*(p17 + p2) — 1|®(z,y) = [1 — 2y + aprzy(z — D]y Vy_1(x)

+ (1= 2yl yVp(N,N) + y(z — 1) A(y) + p[zy — 1]po, (12)

where Vy_1(z) = Zij\gl 2'p(i, N), and hence the expression for ®(z,y).

Next, we set z := xy and rewrite equation (12) as follows:
2 _ 2
[(p1+p2+1)2—p12° — poyz — 1] (; y) = [(1=2)y+palz—y)2ly" Vo (;)

+(z —9)A(y) + (1 = 2)2"p(N,N) + p(z — 1)po.

Let us now consider the analyticity condition for the generating function ®(z/y,y).
Namely, the following two conditions have to be satisfied simultaneously

(pr+ p2+ 1)z — p12° — payz — 1 =0,

INRIA
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_ V4
(1=)y+pralz—y)y" Haf1(5)44z—y»uyrul—zVNf«N;N>+mz—npo=o.
The first condition can be rewritten as

p2(y — 2)z = (1 = 2)(pz — 1),

which gives
1—-2)(pz—1
N )
P2z
We substitute the above expression for y — z into the first two terms of the second

analyticity condition and then reduce it by 1 — z, to get

_ z z—1
(y - %O‘(ﬂz — 1)> y" VN (5) — P2 Ay) + 2Np(N,N) = (p1 + p2)po = 0.

P2z
(13)
Next we denote by a and b the roots of the following quadratic equation with respect
to the variable z
(pr+ p2+ 1)z — p12° — payz — 1 =0.

Now we substitute subsequently the roots a and b into (13), which allows us to
eliminate A(y)

b—1 a a—1 b
25 (o= Braton =)o e (5)=2 1 (5= St -0 i ()
) y a P2 y

-1 -1 -1 -1
+(—pb NPT bN)p(N,N)—p<pb —paa )pozﬂ-

b a b

Taking into account the properties of roots of the quadratic equation
P2
ab=1/p1, (pa—1)(pb—1)= E(py - 1),
we have

((p=p1a)y—a(py—1)pra)y™ Vi1 (g) ~((p=p1b)y=a(py—1)p16)y™ " Viv 1 (%)

+(p(a" =) = pr (@™ =M H))p(N, N) + ppi(a — b)po = 0,

o s )b () s ot (5) s ()

RR n°® 4434
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+(p(a™ = ") = pr (@™ = BTN, N) + pp1(a — b)po =0,

N—1
pyzvz yN = oy + a(py — 1)) sz ("t — )y N

+ (p(a™ =) = p1 (@ = DN TY))p(N, N) + pp1(a — b)po = 0. (14)

By denoting cos ¢ = (p+ 1 — pay)/(2p1'/?), the roots a and b can be written in the
form ) .
_explip) . exp(—ip)
p1t/? 7 p11/?

Then equation (14) can be rewritten as

Nl N1 N—1 N
Py 2_; Uz‘Ui—l(t)W —pi(y +aq(py — 1)) Z; UiUZ-(t)W
1 1 y
i pUN_l(t)W Bl plUN(t)pl(NT)/z p(N,N) + pp1*/?po = 0, (15)

where t := cos p = (p+ 1 — pay)/(2p1'/?) and U,(t) are the Chebyshev polynomials
of the second kind [3]
i 1
Us(cos ) = M
sin @
The Taylor series for the function U(t) with respect to y, being actually a polynomial
in this case, has the following form

(Z) 2,0

Us’ (to) i P2Y

Us(t = - —1)'—==
( (y)) pours 'L! ( ) 21p12/2

with ¢ = (p + 1)(2p1'/?). By changing the order of summation in the expressions

N-1 N—-1—1 N-2 l U(l k) (t )(_ Ik
Y ! N—k—2(t0)(—=p2)
viUi1(t)——— = Y UN_1_k ’
zz_; p1i/? ; ;:0 (1 — k)12k p (N—1-2k+1)/2
N1 N—1—i N-1 l k) (to)(—pa)—F
Y l N—k—1(t0)(=p2)
vUi(t)———= = y UN—1—k ’
=0 p1(+1)/2 12_% kZ_O (I — k)2i—Fkp, (N—2k+1)/2

INRIA
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we rewrite equation (15) as follows:

s— U(s—k—l)(t )(_ )s,k,1
N—k—2 0 P2
pz Z”N Lk k= 1)l (N2 ks
s=1
N (s—k-1) s—k—1
s UN k1 (to)(—p2)
—p1(1+ ap) ;y Z:UN 1— k — 1)!25 k—lpl(N—Zk—i—s—l)/Q

Ufs 2 (to)(—pa)*
—l—ﬂlaz ZUN 1— k: ),23 kpl(N 2k+s)/2

N-1 (s) N (s) \
SUnZ1(to)(— U (t0)(—p2)
' (pz v (s)12°p1 (N+s /2 12 $)125 o1 (N+s+1)/z P(N,N) + pp1'*py = 0.

s=

Next we use the relation between the derivatives of the Chebyshev polynomials and
Gegenbauer polynomials [3, v.2, p.186]

U™ (@) = 2" miC A ()

to get
N-1 s—1 s—k k1
¢ (to)(—p2)
s N—s—1
p Z Yy ZUN*P’C 1 (N=2-2k+5)/2
O, (to) (=p2)* !
—n(l+ap 2;?1 ZUN Lk (N=2k+s—1)/2
S =
ON 5 (to) (=p2)**
s N—s—1
+/’10‘Zy ZUNA b (N=2k+5)/2
N-1 s+1 N s—|—1
SONT( SOV (to)(=p2)°
(’0 Z (N—|—s)/2 P1 Z (N+s—|—1)/2 p(N, N)+pp11/2p0 =0.
Collectlng the terms with the same power of y, we obtain the required system of
equations:
e s=10

ap1Cy_y(to)on—1 + ['0011\/71@0) - 011/2011\/(750)] P(N,N) + pp; NI/ 2py = 0,

RR n° 4434



14 Avrachenkov, Vilcheusky & Shevlyakov

e 0<s< N
s—1 ~s—k k+1 s—1 ~s—k k
CRs_1(to)p 3/2 CR 5 (to)p1
Z UN—1—k — P17 " (1 + ap) Z — 27 UN-1—k
—\k+1 — k1
= (=p2) = (=p)
Cs k+1 k
+apy Z N = 1( ——————UN-1-%
+ | PORE () - pfﬂc;vi(to)] p(N,N) =0
e s=N
N-1  N—k k
C t
p* (1 +ap) Y %UN—l—k — p1'PCYH (t)p(N, N) = 0,
k=0

or, equivalently,

e s=0

ap1Ch_i (to)on-1 + [pCh_(to) = p1'2Ch(t0)] (N, N) + ppr VD72 =,
e 0<s<N

Cfv ks 1 to)ﬂl CyE (to)pr*

. 3/2 TN—s\"V/L
Zo e T e
Cx ks+11 (to)p C_s_1(t0)pr**

+ [pO3 (1) = 12 O3 (t0)] (N, N) =0,

INRIA



Priority queueing with finite buffer and randomized push-out 15

Nl CN_k(to)Plk 1/2 ~N+1
—P13/2(1 + ap) Z WUN—I—I@ —m/ Cy' " (to)p(N,N) =0
k=0

Finally, to obtain an expression for A(y) in terms of p(k,N),k = 0,..., N and
Chebyshev polynomials, we again substitute subsequently the roots a and b into
(13) and subtract one equation from another

N-1 g k N-1 k41 k+1
a®—b a’m = bt b
y" —(k,N) — —apyN ! p(k, N)

=0 Y k=0
p = kb p1
L B _

+=ayN ! —p(k, N) + (™ = b")p(N,N) — = A(y)(a —b) =0

2 =0 Yy P2

As above, taking into account that

ak - bk . Uk_l(t)
a—b  (k=1)/2°
P1

we can express A(y) in terms of p(k, N),k =0, ..., N and the Chebyshev polynomials
of the second type.
O
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