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L’Etude du Probléme de Norton-Hoff Thermique
Dans le Cas Quasi-Statique

Résumé : On s’interesse dans ce papier a I’étude d’un fluide visco-plastique dans le
cas quasi-static en tenant compte des effets thermiques. L’écoulement est gouverné
par le modéle de Norton-Hoff incompressible couplé avec 1’équation de chaleur
dynamique dont la puissance mécanique dissipée est le second terme. La viscosité
est modélisée par la loi d’Arrhenius.

Le but pricipal de ce papier est de montrer un résultat d’existence du probléme
consideré et la compacité de ’ensemble des solutions.

Mots-clés : Fluide visco-plastic, loi d’Arrhenius, Schauder opérateur, méthode
de Galerkin, interpolation des Sobolev
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1 Introduction

In this paper, we are interested in the study of a quasistatic Norton-Hoff flow with
thermal effects. The fluid motion is governed by the incompressible Norton-Hoff
model (see |7],[8] [19]) coupled with the dynamic heat equation whose the dissipa-
tion mecanichal power is the source term. The viscosity of the fluid is modeled by
the Arrhenuis law (see [19], [21]).

One of the principal aims of this chapter is to prove an existence result to the con-
sidered problem.

The main idea, in this context, is to adapt the schauder fixed point result (see [22])
which requires, withal, an extention of a compact operator defined in a particular
convex subset of a Banach-space.

There are many several steps in this study. Notably the optimum space-regularity
of the heat equation source term is rather L'(D), as far as we know this case was
never studied. That’s why, as a first principal step, we investigate the dynamic heat
equation, with the conduction term, with non-smooth datum (the considered space-
regularity of the source terms is only H~!). In order to prove the corresponding
existence and uniqueness result we use the Galerkin method (see [16]) via a mere
change of functions. Then we establish an abstract result providing the optimal reg-
ularity of the heat equation, without the conduction term, with L! space-regularity
of the source term. For this, we treat the problem with more regularity data (L?
space-regularity) and there after we use the Sobolev interpolation (see [1]) in order
to recover the hopened optimal regularity.

As for the conduction term, since its space-regularity is at least L' it builds with
the source term a L' space-regularity data. Hence the boostraping method pro-
vides the same optimal regularity result recovered in the case without conduction
term. Indeed, this optimal regularity of the heat solution has to involve the uniform
regularity which is needed when dealing with the continuity and compacity of the
Schauder operator where the scale factor has to have an uniform behavor.

The second important difficulty is generated by the fact that the scale factor asso-
ciated to the Norton-Hoff law has to be uniformly bounded in space and in time. In
a fisrt time, we prove that the heat solution is a non-negative function. For this we
supply an implicit schema in time and we consider the associated problem to which
the maximum principle provides a positivity result to each solution via a inductive
proof. Therefore, we introduce a parameter family of interpolated functions (see
[16]) linked to each solution of the discretized problem. Then, due to an a priori
estimate we prove a convergence result to the family of the interpolated functions
with respect to the parameter and via the Banach-Zucks theorem (see [6]) we check
that the limit function is non negative and fulfills the heat equation. Hence, unique-
ness result provides that the solution of the heat equation is non-negative.

Thus, we come to the last several step which deals with the main result of this chap-
ter: the existence at least of one solution to the Norton-Hoff heat problem. The
main idea consists to adapt the Schauder fixed-point.
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We begin by establishing an iteratif process undertaking the existing coupling be-
tween the temperature and the velocity of the fluid. While, the hopened fixed-point
of a such process will depends on the continuity and the compacity of the extended
mapping. The continuity result is recovered in two substeps, the first one concerns
the velocity of the fluid in which we give an a priori estimate and with the fact
that the set of admissible velocities is a Banach-space uniformly convex (see [3]) we
get the continuity with respect to the velocity. The second one is devoted to the
continuity with respect to the temperatue, indeed we proceed as above with the fact
that the set of admissible temperatures is an Hilbert-space (see [3]).

As for the compacity result, its proof is basicly supplied by a priori estimates through
the uniform convexity and the reflexivity properties of the corresponding spaces (see
3)).

Thus, we recover the expected existence result.

Finally, we end by proving that the set of solutions to Norton-Hoff heat problem is
strongly compact. The proof is mainly based on the technical reults established in
the study of the Schauder operator.
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2 Notations and Hypothesis

2.1 Notations

D: regular domain,

I: a time interval of IR

0D =T, Ul

i=1xT;

o: Cauchy stress tensor,

e(u) =1/2(D(u) + D(u)*): linearized strain velocity tensor,
Du: the differential of the velocity u.

K viscosity of the material,

K_: consistence of the material,

v: thermodependence coefficient,

fy: strict non-negative function,

p: exponent of the material; 1 < p < 2: it is the sensibility coefficient of the

material to the strain velocity tensor,
P: hydrostatic pression,
Id: identity tensor,

f: the density of the gravitation acting on the fluid,

o - -e: dissipation mecanichal power issu from the Joule effect,

A: diffusion coefficient,
k: conductivity coefficient,

¢;: heat flux.
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2.2 Hypothesis

i)The domain D is locally in one side of its boundary 0D which is twicely
continuously differentiable.

ii)Assume that A\ belongs to L®°(I, W*°(D)) and minA(t,x) = p > 0 for all
(t,z) € I x D.

2.3 The Arrhenius Law

The viscosity of the fluid is modeled by the Arrhenius law (see [19], [21]). A such
law, issu of the metallurgy, has a phenomenologic and describing fundamenttally
the plastic-behavors of the materials.

(1) K=K(t,x) = Kcexp(ejeo)

The coefficient K (0(t,x)) is linked to the viscosity of the fluid at the instant ¢ on
the position z with temperature 6(t, ).

3 Norton-Hoff Heat Monophasic Problem

We consider a regular domain D occupied by a viscoplastic fluid. The fluid motion
is governed by the quasistatic incompressible Norton-Hoff model coupled with the
dynamic heat equation taking in account the conduction term within the time
dependant dissipation mecanichal power as a volume source term. The viscosity
of the fluid is modeled by the Arrhenius law. We impose a boundary homogeneous
Dirichlet condition to the velocity for all ¢ in I. Asfor the heat conditions, we impose
a heat flux on a part of the boundary and on the rest the rate of heat is adiabatic.
The corresponding initial conditions given are enough-regular.

The flow problem consists to look for a velocity field and a temperature function
defined on D and fullfil the hereafter equations.

K(0(t,x))|e(u)|P2%(u) + PId = o in IxD
—div(o) = f in I'xD
@ P div(u) = 0 in IxD
0 + kuVO — div(A\VO) = o(u)--e(u) in IxD
with the boundary conditions:
u = 0 on I xdD
06
(3) B! — = 0 on X
% = —q on X
an - g 2

and let consider the following initial conditions:

u(0, . = up(- in D
(4) IC{ 950,3 = 0() in D
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Functional Setting We denote
W =W,?(D)={ve WD) st v=0 on D}

and
Wyiw ={v €W st divv=0 in D}

which are the natural spaces involved in the study of static Norton-Hoff problem
(see also [9]). The following proposition provides a Banach space structure to the
above spaces.

Proposition 3.1 The mapping ||.|| defined from W to IR by

Ioll = ([ ey
D
is a norm on W, equivalent to the one induced by the canonical one of W1P(D).

For this norm W, is closed in W so also it is a Banach space for the induced norm,
still denoted ||.|| for shortness (see also [12]).

Remark 3.1 We shall notice that the optimum reqularity of the heat equation source
term 1s rather L*(I, L*(D)), as far as we know this case was never studied. That’s
why we will investigate the heat equation with non-smooth datum.

In a first principal step, we investigate the dynamic heat equation, with the
conduction term, with non-smooth datum (with as H ! space-regularity of the
source terms). In order to prove the corresponding existence and uniqueness result
we use the Galerkin method via a mere change of functions.

4 Heat Equation With L' Source Term

We consider a bounded smooth domain D with boundary 0D = (T'); U (T'), a
time interval I =0, 7[ and the evolution problem

)
% + ku.VO —div(A\VO) = g in IxD
(5) ) ag = 0 on El =1x Fl
-_— = —q; on 22 =] x FQ
on _
{ 6(0) = ¢ in D
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4.1 Non-Smooth Datum

Let us consider the hereafter database
(6) g € L*(0,7,L*(D)) and ¢; € L*(0,7, L' (%,)).

In the sequel we shall assume that the open set ¥; in 9D may be empty. So that
we are never able to use the term (/ (V6|%dz)'/? as a norm. We will proceed as

D
follows. Let us consider the following mere change of functions, for each constant
a> 0.

Y(t,z) = e ™ 0(t,x)

then the problem (5) can be rewritten as follows:

( %¢ +oay + kuVy — div(AVY) = g¢* in ]0,7[xD
(7) < aw = 0 on 21
S = —¢f on X
\ $0) = % m D

(8) g* = e "ge L*0,7,L1(D)) and ¢ = e ¢, € L*(0, 7, L*(%,)).

We will use the Galerkin method in order to get an existence and uniqueness result
to the last system.

4.2 Galerkin Method

We start with assuming that both g* and ¢ are in L?(0, 7, E) where E is a Banach
space of distributions, respectively E = H (D) and E = H *(X,). We consider
the problem (7) with such datum. We use now the usual Galerkin approximation
method. Let ey, .., €y, -... be a dense family in H'(D) with e; = 0 on ¥; and each e;
being a smooth function. We look for approximation in form of expansions in the
following classical form

(9) (L, x) = XL, 9 () ei(z)

the function ¥™(t) = (Y7*(t), ..., (t))* in C?([0,7], IR™) being the solution of
the following ordinary linear differential system , 1 < j<m, V t € (0,7),

0
(lﬁ)(a@/}mej-l-awmej+k(u.V¢m)ej+)\ VY™ Ve; Jdr = / g“ejdx—i-/ gl e;ds
D D (aD)z
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from which we derive these a priori estimates:

(11) / at¢mwm a(@™? + k.Y + AVY™|?)dzdt

< (Hg lazirwy + Oy |02,y ) 0™ [y dt
(32)

where the constant Cy, is related to the continuity of the trace operator on X,.
Then setting

a=pU

we get

m 1 !
12) [l < 5 Qg g + s ez, dt
0

And then, assuming for shortness that ¢y = ¢7*(0) = 0,
1 m||2 1 ! H M 2
(13) G iworaewy < o [ g iz O et lparses,y ) de

4.3 Existence and Uniqueness Result

We deduce the following result

Proposition 4.1 For any g",q!" verifying the previous H '-assumptions we get a
unique solution v in E = L®(0,7, L*(D)) N L*(0,7, H'(D)) to problem (7), (we
refer to Lions [16]).

From the equation itself we get
0 .
adj = —p + div(AVY) + ¢* — ku.Vy™
so that if A € L>*(0, 7, L>(D)) as assuming, it yields
Y € HY(0,7,H (D))
As a consequence we get an isomorphism
¢: (g% d) — v
From F = H5'(RV) x Heo''*(3,) onto @ = H'(0,7, H (D)) N L2(0, 7, H'(D)).
Then the transpose (* is also an isomorphism between the dual spaces.

Thus, we recover the existence and uniqueness result to the dynamic heat equation
with less-regular data.

10
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In the sequel we establish an abstruct result providing the optimal regularity of
the heat equation, without the conduction term, with L' space-regularity of the
source term. For this, we treat the problem with more regularity data (L* space-
regularity) and there after we use the Sobolev interpolation (see [1]) in order to
recover the hopened optimal regularity.

As for the conduction term, since its space-regularity is at least L! it builds with
the source term a L' space-regularity data. Hence the boostraping method provides
the same optimal regularity result recovered in the case without conduction term.

4.4 Optimal Regularity of the Heat Equation with L' Source
Term

4.4.1 An Abstract Result

First, We establish the expected optimal regularity result of the considered heat
equation in an abstract framework.

Theorem 4.1 Let 0 be the solution of the heat equation whose the second term f
belongs to L*(D) for all t in I with nitial condition 0(x) belongs to H'(D):

(0,0 — div(A\VE) = f in I xD
00
— = —q¢ on X,
(14 < 4
— =0 on Xy
on .
\ 6(0,z) = 6Oy(zr) in D

Then, 6 lays in L*(I, L>(D)).

Basically the proof is made up of two steps. The first one consists to treat the
problem with more regular source data, as for the second one is devoted to the
Sobolev interpolation.

We start by dealing with the regularity of # with second term f belongs to L?(D)
for all ¢ in 1.

Being given R any standing of 6 fulfilling the following equation

( —div(\VR) = f in D
OR
— = —¢ on Yy
(15) < o
— =0 on X
on _
\ R(0,z) = 6(0,z) in D

lemma 4.1 [t is easy to see that at least O,R lays in L*(D) for all t in I.

11
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Let ® = 6 — R, then ® fulfills the hereafter problem:

0® — div(AV®) = —-0,R in D
0P o
(16) — =0 on L=5,U%,
on
®0,z) = 0 in D

lemma 4.2 The solution ® belongs to L*(I, H*(D)).

Proof of lemma 4.2

Under the domain’s regularity, since ® belongs to L?(D) and by referring to [17], it
will be enough to prove that A® lays in L*(D).
Let us multiply the two terms of the problem (16) by (—A®), it follows for all ¢ in

1.
1 T T T T

(17) —/ /at\wp\?dmdt + / /A|A<I>|2dacdt = / /BtRAtbd:cdt - / /(VAV@)A(I)dmdt
2Jo Jp o Jp o Jp 0o Jp

hence, the regularity of A and the Cauchy-Schwartz inequality (see [3]) recover the
hopened estimate. It exists a constant ¢ such that

||A(D||L2(D) S C

which involve the result.

4.4.2 Sobolev Interpolation

We have seen, in the previous subsection, that if the second term of the heat equa-
tion belongs to H~'(D) (respect in L?(D)) the corresponding solution is in H'(D)
(respect in H%(D)). This allows us to use the linear Sobolev-spaces interpolation
(see [1] )in order to get the proof of theorem 4.1.

Proof of theorem 4.1

In a general setting, the second term belongs to L'(D) so also in any Sobolev space
H~¢(D) for any non-negative parameter ¢ such that H>~¢(D) is a linear interpolated
Sobolev-space of (H', H?). Whereas H*™¢(D) = W?™%?(D) is embedding in
We(D) for all s <1/2 — ¢, so also in W% (D)

Thus, the announced result is supplied.

4.4.3 Boostraping Method

Theorem 4.2 Let 6 be solution of the heat equation (with conduction term) coupled
with the Norton-Hoff one. Then 6 belongs to L*(I, L>=(D)).

12
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Proof of theorem 4.2
Mainly, the proof will be given by boostraping the abstract result in the considered
case. Since the conduction term ku.V6 belongs to L' (D), hence the data g — ku.V6
belongs also to L'(D). Hence the abstract theorem (4.1) provides the result and
thus we comeover the first main difficulty.

n

The second important difficulty in this study is generated by the fact that the scale
factor associated to the Norton-Hoff law has to be uniformly bounded in space and in
time. In a fisrt time, we prove that the heat solution is a non-negative function. For
this we supply an implicit schema in time and we consider the associated problem to
which the maximum principle (see [3]|) provides a positivity result to each solution
via a recurent reasoning. Therefore, we introduce a parameter family of interpolated
functions linked to each solution of the discretized problem. Then, due to an a priori
estimate we prove a convergence result to the family of the interpolated functions
with respect to the parameter and via the Banach-Zucks theorem (see [19]) we
check that the limit function is non negative and fulfills the heat equation. Hence,
uniqueness result provides that the solution of the heat equation is non-negative.

5 Regularity of The Arrhenius Law

Theorem 5.1 Let K = K, exp(ﬁ) being the scale factor associated to the
Norton-Hoff law, where K. is the consistency of the material, 0 is the solution of
the heat equation and 6y is a strict non-negative function. Then

K belongs to L*(0,7; L>=(D))
The following technical result will be needed for the proof.

5.1 The Implicit Schema

We consider the following implicit-schema:
Let p,, = = being a subdivision of the time interval [0, 7], so

0,7] = Uilo[npm, (n+1)pm]

let
Vm € IN, 0™ = (65,07, ....,6™)* € H'(D)™*! so also

( Hm _ gm

”“p "4 kYO, — div(A\VOT,) = g  in D
" Dy
ar;;rl = —q on (0D),
\ n=1,..m

where g is equal to o(u) - -e(u).

13
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5.2 The Maximum Principle

lemma 5.1 Via the marimum principle and a recurrent reasoning, we get

if 0, >0 then 0", >0

Proof of lemma 5.1
In fact, 0" satisfies the hereafter optimization problem:

®(0741) = mingem®(p)
where ® is a convex lci mapping and Gateaux differentiable given by

1

1
3e) = [ 56"+ 3onAVol =070 = pmo = )

since ¢; > 0 and g > 0, then if 6" > 0 we come to
Q(0741) = (0740
accordingly, by the uniqueness of the minimum;

em

n+l — |9':Ln+l

5.3 The Interpolation Method

Let 8 being a piecewise interpolated of ™ in L*([0,7], H'(D)) fulfilling the below
assumption (see [16]):

for all instant t € [np,, (n+ Vpn[; 01 = 6
so, it yields that

lemma 5.2

0" >0; Vm
and
( —~m nm
0 (t m) — 0 (t Fm . o
<+ﬂp> O s kT4 pn) — OV + ) = o)
00"
) ?@h = 0
0  _
n = q;
Vt € [0, 7]
\
(19)

14

in D
on (0D),

on (0D),
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5.4 A Priori Estimate

lemma 5.3 There exists a constant ¢ such that
||§m||L2(O,T;H1(D)) <c

Proof of lemma 5.3
Let us assume that (6}, 07" )220 = 0
by Green’s formula we come to

/ 67 + prm / AV = pr / 90" 1 + P / o,
D D D (oD)

one can check easily
m 1
10" 2oy < maz(—, T{Iflz-1p) + cllall 51}
luJ HOO
otherwise

||9m||L2(0,T;H1(D)) = Pm||9m||H1(D)

by compacity argument we recover a weakly convergent subsequence towards 7 in
L?(0,7; HY(D)) and it converges strongly in L%(0,7;L?(D)). Let us denote the
subsequence by 8 itself.

]

In order to have an idea about the sign of the limit function 7, we may use the
Banach-Zucks theorem (see [6] ).

Theorem 5.2 (convez-subsequence, see [6] ) Let H be a Hilbert space and e, a
sequence which converges weakly towards e in H.
Then it exists a family of constant \]* such that

0< A", 1<i<n,, SiAm=1

and also
h™ =¥ \"e,, —> e, strongly in H

lemma 5.4 As a consequence,
since 0 > 0 then h,, > 0 hence m > 0.

Hereafter, we will try to show up that m = 0 solution of the heat equation.
Proposition 5.1 The limit function 7 is solution of the heat equation, furthermore

T = 6

15
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Proof of proposition 5.1
We have, for all ¢ in C°(D)

/OT/Dﬁm(t—kp;n?z—?m(t)(p(t) _ /OT/Dém(t)@(t_P;j—w(t)

it follows
—m t— m
[ [ref =m0 [ [ o imtos

/()T/D)\Vﬁm(t)VSO(t—pm) _>/(]T/D_dw()\vg0)7r “m 1 0o
/OT/D[ku.vém(t)]w(t—pm) —)/OT/D[ku.Vﬂ']gp .m 1 oo

Hence one can easily check that 7 is solution of the heat equation with the same
limit and initial conditions recovered bu Green formula, so also by uniqueness = = 6.
Thus, the solution of the heat equation is non-negative, i.e.

while

and

0(t, ) > 0; forall (t, ) € (0, 7) x D

n
5.5 Proof of theorem 5.1
Proof of theorem 5.1
Indeed, since K, lays in L>°(D) and 6 > 0 with 6, > 0, the proof is obvious.
n

6 Existence Result

In order to get the existence result of the monophasic Norton-Hoff heat problem,
the main idea consists to adapt the Schauder fixed-point theorem which requires,
withal, an extention of a compact operator defined in a particular convex subset of
a Banach-space. A such result allows us to prove that an established iteratif process
undertaking the stand coupling has at least a fixed point.

6.1 Process

Let ¢™ be a given temperature then the Arrhenius law provides the viscosity
K¢" = K™l While, by resolving the Norton-Hoff equation we recover the fluid’s
velocity u¥" = u™*!. Hence by the Joule effect we get the dissapation mecanichal

16
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power which allows us to resolve the heat equation and to get the temperature ..,
and the process continue.
QOn given Viscosity K(pn _ Kn+1 Norton—Hof f U‘pn _ U,n+1
Jouleef fects

!

e (T A )

The couple (u™™!, §™t1) fulfills the hereafter problem with the same boundary and
initial conditions (3), (4).

—div(K" T e(u )P 2e(u™tt) + PI) = f in IxD
P(u",0") div(u™t) = 0 in IxD

O™, + ku".Vortt — div(AVO"T) = o) --e@w"t) in IxD
(20)

Remark 6.1 We note here that the heat equation is linear with respect to "+1.

Theorem 6.1 The Norton-Hoff heat problem has at least a solution in W X Q:
there exists (V, ) such that

(w?,07) = (Vip)

6.2 The Schauder Fixed-Point Theorem

Theorem 6.2 Let M be a nonempty, closed, bounded, conver subset of a Banach-

space X, and suppose T : M — M 1is a compact operator. Then T has a fized point,
(see also [22]).

In the sequel, we denote Oy;;, the set of Lipschitz domains included in D.
With the previous results, we can extend the mapping

G: (Vi) — (w,07)

so it takes value into the closed, bounded, convex ball B included in W x Q. Let
B = B, x By, where B, and By are the closed balls of ¥V and Q whose radius are
given subsequently.

The fixed-point will depend on the continuity and the compacity of the extended

mapping.

6.3 Strong Continuity Result

Proposition 6.1 Let (2, on)nev be a sequence in W, X Q such that (V,,, @,)
converges strongly in Wy, X Q towards (Vi, ¢i). Then

(uf,0y") solution of P(Vy,pn) converges strongly in Way, X Q towards (uf*,07")
solution of P(Vi, ¢«).

17
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The proof of proposition (6.1) can be given in three steps. We begin by giving a
priori estimates linked to the velocity u solution of the Norton-Hoff equation and
to the temperature solution of the heat one. We also give the weak continuity of
the extended mapping in the second step. In the third one we derive the strong
continuity throught the continuity of the dissipation mecanichal power.

First Step: A Priori Estimate We have the following estimates.

lemma 6.1 There exists a constant ¢ such that if u is the solution of the Norton-
Hoff problem then:

||u||L2(0,’T;W) = ||f| Loo(OTLp
Let 3 ||f| L°°(0 Lo') be the radius of the above mentioned ball B,.

Proof of lemma 6.1

It is easy to derive via the Cauchy Schwartz inequality, (see [3])

/D Kle@) < 11l lullzo

else Poincare’s inequality (see [1]) provides

1
Kellullw < cllfll}, Vvtel

then
b < I, V€T

moreover

||U||L°°(0,T;W) = ||f| L°°(0 7;LP")
since L*° is continuously embedding in L2, it follows
||u||L2(O,T;W) = ||f||Loo(07—LP

and the proof is achived

As a consequence, one can easily deduce that
lemma 6.2
[ ot e < elfl
D
and so also
”g”HBl(RN < c||‘f||L°°(07'LP

18
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lemma 6.3 There exists a constant ¢ such that if 0 is the solution of the heat
equation, then we get

1
Wiy < ([ I+ O Naliis,) )0 = B

and then

2
(22D0||L°°(O’T:L2(D)) < (;/ (C||f||L°°(OTLP + C122 ||qi||Ho_ol/2(22) )2 dt)1/2 = Ry

Let the min(Ry, Rs) be the radius of the above mentioned ball By.

Second Step: Weak Continuity We denote
(Un,O0n) = (u,0y") and K, = K*

Under previous lemma (6.1 ) the sequence (u,)nev is bounded in the reflexif Banach
space Wy, and thus one can extract a subsequence (u,, )xery Which converges weakly
in Wy, Let u, this weak limit, and assume (uy ), v itself converges weakly towards
Uy

lemma 6.4 The vector u, is the solution of NH(K*%*), moreover u, = u?*.

Proof of lemma 6.4

Since Norton-Hoff is variational (i.e. the solution realize the minimum of the
associated Energy), it is easy to check the following inequality, for any n € IN:

[ Zrewar = [ o < [ Zrepr - [ o = ) voew,

where ®,, is a convex and Gateaux differentiable mapping.
Let K, = K%+, accordingly the sequence K, converges strongly towards K, in L?(D)
and so also in L¥' (D).

it yields
K, K,
lim inf { / Ko ()P — / fu,} < (v — / fo Vo€ Wi
nfeo Jp P D D P D
then
. K, o K,
lim inf | —|e(u,)|P +lim inf (— [ fu,) < —le()P— | fv Vv € Wy
nleo Jp P nfoo D D P D

which involves

lim inf(/ ﬁ\g(un)m—/fu* < K*\E(v)\p—/fv Vo € Wa
D P D D P D

nToo

19



20 J. Ferchichi, J.P. Zolésio

it arises that 1% K
—n\E(Un)\p = (=) Pe(ua)llopy
p
whereas the mapping v — ||( n)1/Pe(v)|| 1o(py is weakly lsc, convex onto W,
K, :
Indeed, the function £=|e(u,)|? is positive and sup, [ —|e(u,)[P < oo since
g p

D
K, < Kcexp(g) while; (I;")l/ps( n) — (%)1/”5(11*), n 1 oo in LP(D), whence
using Fatou’s lemma (see also [3]),

K,
/—\g w)P < lim 1nf/ Ko e )P
nToo D P
it follows

/Df;* ( )|p_/Dfu* < /Df; (v)|p—/va=<I>*(U) Vo € Wi

thus, u, realize the minimum of ®,, by uniqueness u, = u?* (see also [12]) and so
the lemma (6.4) is proved.

Third Step: Strong Continuity We begin by giving this fundamental lemma.

lemma 6.5 The sequence (o(uy) - -€(Un))nev converges towards o(u.) - -e(us) ,
strongly in L*(D) and so also in H '(D); when n 1 oo

Proof of lemma 6.5

In veru of Green’s formula, we have briefly.

[ K@)l = [ fu,

/Dfun—>/Dfu*, when n 1 oo

whereas,

while / fu is equal to / K, |e(u) P, whence
D D

/ K e ) — / K.Je(w); ntoo
D D

accordingly
lo(un) - e(un) — o(uy) - -e(us)|| 1(py — 0; n 100

thus the lemma is proved.

20



Study of the Quasi-Static Norton-Hoff Heat Problem 21

Corollary 6.1 Indeed, since the Banach space VWV is uniformly conver and moreover
imSuppios|[unllw < [t
we deduce the strong convergence of u, to u, in Wy, (see also [3]).

lemma 6.6 The limit function 0, is solution of the heat equation, further more
0. =07 .

Proof of lemma 6.6

Let us denote by g, the associated seuqnece of dissipation mecanichal power
o(un) - -e(ty).

since
I 2 1/2

10l 220,711 (D)) < ;( i (gnll 51 vy + Cos Nlaill gzrrzs,,y )" dt )

and then
2 T 9

100l o007, L2(0)) < ;( i (lgnll ezt vy + Cos aill =125, )™ dt )

else
/Da(un)..g(un) < Al g

then

||9n||H51(RN = C”f”Loo(oTLp

hence by compacity argument, one can extract a subsequence (6, , gn, )Jkery Which
converges weakly towards (6y,g.) in Q@ x L>*(0,7; H~'(D)). One can assume that
(On, gn)nern itself converges weakly towards (6, g.).

Let us apply the Green’s formula in order to get the weak formulation related to the
heat equation whose 6,, is solution.

/(]T/D%Gn)w + /()T/Dk(u.ven)w + /OT/DWenvw - /OT/Dgnw - /Equw Yyeo

under the previous compacity argument, we deduce

//(—B*d)-l-//k(uVB*w-l-//)\VG*Vw—//g*ll) —/ql VpeQ

moreover, it is relatively easy to check that:

0 0 .
an9 =0 on X, 8_719* = —q; on ¥y, and 0,(0,.)=0 in D

21



22 J. Ferchichi, J.P. Zolésio

whence 6, is solution of the heat equation, thanks to uniqueness argument 6, = 65".
On the other hand, we are able to prove that #,, converges strongly towards 6,, in
fact, Green’s formula yields to

T 8 T T
0 D 0 D 0 D 3o

while 6, converges weakly towards 6, in L*(I, H'(D)) and due to the theorem
supplied by [17] 6, converges strongly towards 6, in L*(I, L*(D)), it follows that

|0nll 221, L2(0)) — 1|0l 22(1, L2(p)) When n 1 oo

/ ¢:0, — [ g0, when nt oo
22 22

and since g, converges strongly to g, in L*(I, H~'(D)), then

//gnen—>/ /g*G*, when n 1 0o
o JbD o Jb

while 6, is solution of the heat equation, one can check

/ /)\|V9n|2—>/ /)\|V9*|2 when n 1 oo
o Jp o Jp

hence we get the norm’s convergence
||9n||L2(I, HY(D)) — ||0n||L2(I, H(D)) when n T o0
whence

0, converges strongly towords 6, in the Hilbert space L?(I, H'(D))

Thus, the strong continuity result is provided.

6.4 Strong Compactness Result

We will prove that the set G(B) is strongly relatively-compact in Wy;, x Q.

Proposition 6.2 For any integer n € IN we denote (Vii1,0n011)neiv = G(Vi, 01)
being a sequence of G(B) C Wa, X Q, then one can extract a subsequence
(Vi s Ony ) kern which converges strongly in G(B).

Proof of Proposition 6.2

22
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Indeed, (Vis1,0nt1)nemv @ ¢ — (u®,077). According lemmas (6.1) and (6.3), it
transpires that:

Va1, Ont1)llwxe < c¢; where cis independent on n.

Compacity argument, supplied by the considered Sobolev spaces, yields to an

extracted subsequence (V,,, , 0y, )kerv which converges weakly to (Vi, 6,) in W, x Q.

We result by proposition (6.1) that (ug’z’zvnk)ﬁg’:’zvnk)) converges strongly towards

(u®,0y;) in B C V x Q and accordingly (Vy.,, 0, )rerv converges strongly to (Vi, 6.).
Whereas
(V,, 0,) 1 t — (u®, 9“’}:)

furthermore, strong countinuity of the operator G yields that (Vi,6,.) belongs to
G(B).
Whence the strong compactness result of the operator G is supplied.

[ |

Thus, the Schauder fixed-point theorem provides an existence result for the
Monophasic Norton-Hoff heat problem.

7 Compacity of the Solutions Set

Theorem 7.1 Let S be the set of solutions to the Norton-Hoff heat problem.
S={(u,0) €V xQ; s,t (u,0) solution of P}

Then S is compact for the strong topology induced by V x Q.

Proof of Theorem 7.1

We use the same setting as before, let (u,, 6,) any subsequence belongs to S.
Then under the above lemmas 6.1 and 6.3, the couple (u,, 6,) belongs to the closed
bounded ball B C V x Q. Therefore, by compacity argument one can extract
a subsequence, also denoted (upn,0,), which converges weakly towards (u.,6,) in
VY x Q. Moreover, lemmas 6.4, 6.5, 6.6 and corollary 6.1 provide that, on one hand,
(tn, 0,) converges strongly to (u.,6,) and, on the other hand, (u.,#6,) is a solution
of the problem P. Accordingly, (u.,#,) belongs to S.

Thus, S is a compact subset of V x Q.

23
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