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Abstract: We propose a new approach to study the stability of the optimal filter w.r.t. its initial condition, by
introducing a “robust” filter, which is exponentially stable and which approximates the optimal filter uniformly
in time. The “robust” filter is obtained here by truncation of the likelihood function, and the robustification
result is proved under the assumption that the Markov transition kernel satisfies a pseudo—mixing condition
(weaker than the usual mixing condition), and that the observations are “sufficiently good”. This robustification
approach allows us to prove also the uniform convergence of several particle approximations to the optimal
filter, in some cases of nonergodic signals.
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Une approche par robustification
pour la stabilité et ’approximation particulaire uniforme
des filtres non-linéaires :
I’example des signaux pseudo—mélangeants

Résumé : Nous proposons une nouvelle approche pour étudier la stabilité du filtre optimal par rapport a sa
condition initiale, en introduisant un filtre “robuste”, exponentiellement stable et approchant le filtre optimal
uniformément en temps. Le filtre “robuste” est obtenu ici en tronquant la fonction de vraisemblance, et le résultat
de robustification est obtenu sous I’hypothése que le noyau de transition markovien vérifie une condition de
pseudo—meélange (plus faible que la condition de mélange habituelle), et que les observations soient “suffisament
précises”. Cette approche par robustification nous permet aussi de montrer la convergence uniforme en temps
de plusieurs approximations particulaires du filtre optimal, dans certains cas de signaux non ergodiques.

Mots-clé : filtre non linéaire, filtre particulaire, stabilité, métrique de Hilbert, mélange, pseudo—mélange,
robustification.



A Rooustification Approach to Stabulity and to Uniform Particle Approxrimation 1

1 Introduction

The stability of the optimal nonlinear filter has been recently the subject of many works. The first stability
result has been obtained by Ocone and Pardoux [14] who have used the approach of Stettner [17] and Kunita [10]
to prove that the optimal filter forgets its initial condition in the L? sense, when the signal itself is ergodic :
however, their method of proof cannot provide a rate of convergence. A new approach based on the Hilbert
projective metric has been recently introduced by Da Prato, Furhman and Malliavin [6, 7], and successfully
used by Atar and Zeitouni [2] to obtain some results on the exponential stability of the optimal filter w.r.t.
its initial condition. Independently, Del Moral and Guionnet [8] have developped another approach based on
semi—-group techniques and on the Dobrushin ergodic coefficient, to derive exponential stability results of the
optimal filter w.r.t. its initial condition, which they have used to prove uniform convergence of the approximate
interacting particle filters to the optimal filter, under some mixing condition on the Markov transition kernel.

However, the mixing condition is a rather strong condition, and the main objective of this paper is to relax it,
using a robustification approach. In full generality, the idea behind robustification is as follows : if a perturbed
sequence of probability distributions can be found,

e which is exponentially stable itself, e.g. because it satisfies some mixing condition,
e and which approximates the optimal filter in some sense, uniformly in time,

then the optimal filter is stable (but not exponentially stable). In this paper, the perturbed sequence of
probability distributions is obtained by truncation of the likelihood function, as in Oudjane and Rubenthaler [15],
and assuming that the Markov transition kernel satisfies a weaker pseudo—mixing condition, and that the
observations are “sufficiently good”, we show that the robustification approach can be implemented effectively.
The robustification result is proved in Theorem 5.6, where error bounds, averaged over observation sequences,
are obtained for the approximation of the optimal filter by the “robust” filter. This result has two important
consequences : (i) it allows us to obtain stability properties of the optimal filter w.r.t. its initial condition, see
Theorem 6.2 and Theorem 6.3 where an a.s. result is obtained, and (ii) it is used in Section 7 to build particle
filter approximations to the optimal filter, with error bounds, averaged over observation sequences, which are
uniform in time.

The paper is organized as follows : In the next two sections, we define the framework of the nonlinear filtering
problem, and we recall some notations and stability results obtained in LeGland and Oudjane [11] under the
mixing condition. In Section 4, we introduce the weaker pseudo—mixing condition, and we give some examples
of pseudo—mixing Markov kernels. A “robust” filter is introduced and studied in Section 5, for a model of a
pseudo—mixing signal observed in additive, not necessarily Gaussian, white noise. In Section 6, we obtain the
stability of the optimal filter w.r.t. its initial condition, as a consequence of the robustification result, and in
Section 7, we define two particle filters for which we prove convergence to the optimal filter, uniformly in time.

2 Signal and observation model

On the probability space (2, F,P), we consider two sequences of random variables : the signal sequence {X,,, n >
0} and the observation sequence {Y;,, n > 1}, taking values in E = R™ and in F' = R? respectively :

e The signal {X,,, n > 0} is an homogeneous Markov chain, with initial probability distribution pg, and
transition kernel @), i.e. for all n > 1

PX, € dz | Xoin-1 = Tomn—1] = P[Xn €dz | Xpn—1 = 2n_1] = Q(Zpn—1,dz) ,
where 2g.n—1 = (20, * ,Tn—1)-
e The observation sequence {Y,,, n > 1} is related to the signal {X,,, n > 0} by
Yo =h(Xy) + Vo,

for all n > 1, where {V,,, n > 1} is a sequence of i.i.d. random variables, not necessarily Gaussian, with
common probability density g w.r.t. the Lebesgue measure, independent of the signal {X,,, n > 0}. We
define the corresponding likelihood function by

Un(z) = g(Yn — h(z)) ,

for any = € E, which depends implicitly on the current observation Y,.
RR n-4431



2 F. Le Gland ¢ N. Oudjane

The nonlinear filtering problem is to compute at each time n the optimal filter, i.e. the conditional probability
distribution

pn(dz) = P[X,, € dz | Yi.n] ,

of the signal X,,, given a realization Y;., = (Y1,---,Y.,) of the observation sequence up to the current time n,
with the convention that Yi.0 = (). The transition from p,_; to g, involves the optimal prediction filter, i.e.
the conditional probability distribution

:u'n\n—l(dx) = I[D[)(Tz € dz | le:n—l] >

of the signal X,,, given a realization Y;.,—1 = (Y1,---,Y,_1) of the observation sequence up to the previous
time (n — 1). Whereas it is in general difficult to compute the optimal filter, its evolution is surprisingly easy
to describe, and consists of the following two steps :

e In the prediction step, the prior knowledge on the signal provided by the transition kernel @, is used to
€Xpress fin|p—1 in terms of p, 1 as follows

:u'n\n—l(dxl) = /E'U'n—l(dm) Q(xadm/) = (Q /"n—l)(dzl) .

Notice that the prediction step is linear w.r.t. pt,—1.

e In the correction step, the posterior information provided by the incoming observation Y,, through the
likelihood function ¥, is used via the Bayes formula to update pin,—1 into p, as follows

pn(dz) = ¥, (2) Hn|n—1 (dz)
[ 0l )

where - denotes the projective product. Notice that the correction step is nonlinear w.r.t. pi,n_1-

= (\IJn : Hn|n—1)(d$) ,

Overall, the evolution of the optimal filter is summarized by the following diagram

Bn—1 ———— [p|n—1 = Q;U'n—l —— pp =¥y - Hnn—1 -

prediction correction

This evolution can be described in terms of the nonnegative kernel
Rn(z,dz’) = Q(z, da’) ¥n(2')

and of the associated integral operator R, and normalized operator R,, both acting on the set M+ (E) of
nonnegative and finite measures on E, and defined respectively by

j(dz) Ro(z, da') = /E (dz) Q(ar da’) W (a') |

(R (s = |

E
and R,(p) = (Rop)/(Ro p)(E) if (R, u)(E) > 0, and R,(x) = 0 otherwise. Notice that R, depends on the
observation Y,, through the likelihood function ¥,,. With these definitions, the evolution of the optimal filter
on the set P(E) of probability distributions on E can be described by the single formula

Rn Hn—1

b = it s = Ballnos) = - (Qpnc) g

which by induction yields
Hn = Rn(/’fn—l) = Rn 0---0 Rm(;ufm—l) = Rn:m(,um—l) .

Equation (1) shows clearly that the nonlinearity in the evolution of the optimal filter is only due to the normal-
ization in the Bayes formula, occuring in the correction step. The Hilbert projective metric has been introduced
in [6, 7, 2] precisely to get rid of this normalization term, and to reduce the problem to the analysis of a linear
evolution on Mt (E).

INRIA



A Rooustification Approach to Stabulity and to Uniform Particle Approxrimation 3

3 Stability and robustification

In this section, we define the mixing property and the Hilbert metric, we describe roughly the robustification
approach, and we recall some stability results obtained in [11] under the mixing assumption, that will be useful
in the sequel.

Definition 3.1. Two nonnegative measures p, ' € MT(E) are comparable, if there exists positive constants
0<a<b< oo, such that

ap'(A) < p(A) <bp'(4),
for any Borel subset A C E.

Definition 3.2 (Mixing). A nonnegative kernel K defined on MT(E) is mixing, if there erists a positive
constant 0 < € < 1, and a nonnegative measure X € M+ (E), such that

EA() < K(@,4) € ZA(4)

for any z € E, and any Borel subset A C E. The constant € is called a mixing constant, and the measure X\ is
called a mixing measure associated with the mizing kernel K.

The mixing property is related to a kernel that is little dependent on the initial state z. A special and
extreme example of a mixing kernel is when K (x,dz') does not depend on z at all, in which case ¢ = 1.

Definition 3.3. The Hilbert metric on M*(E) is defined by

( n(A)
sup
log AL (A)>0 W (A) . ,
og E—T o VR if u and p' are comparable,
inf o

h(up') =4  Asw(A>0 p'(4)

0, ifp=p" =0,

( +00 , otherwise.

Notice that h is a projective metric, i.e. it is invariant under multiplication by positive constants, hence
!

h(p, p') = h(%, ’IZE))’ for any p and g/ € MT(E). In the nonlinear filtering context, this projective
W(E) p
property allows us to consider the linear transformation g — R, p instead of the nonlinear transformation

p— Ru(p) = (Rn 1)/ (R p)(E).
Lemma 3.4. If u and p' are comparable, then for any nonnegative kernels K and K’ it holds
(K p)(E) (K'p)(E)
(K w)(E) (K'p)(E)

PRrROOF OF LEMMA 3.4. By definition, if x4 and g’ are comparable, then there exist constants 0 < a < b < o
such that

< exp(h(p, ")) -

ap'(A) < p(4) <bp'(4),
for any Borel subset A C E. The optimal values for the constants a and b are

!
a = inf d—'u(m)zl/supdi(x) and b=Supd—u,($) )
zcE d/‘t

b
and it holds h(u, p') = log o For any nonnegative kernel K defined on E

ummmsmmm=/Kmmmm$ummm,
RR n 4431 o



4 F. Le Gland ¢ N. Oudjane

hence
(K p)(E) u (Kp)(E) 1
wo® ="' ™ ®p®E o
If K’ is another nonnegative kernel defined on E, then
(K p)(E) (K'pw)(E) b _ '
KW)B) EpE) <o PRl 0

The analysis of stability properties of the optimal filter is of great interest. Indeed, one has rarely access
in practice to the initial probability distribution of the signal, and it is important to know whether the filter
is sensitive or not to this condition. More generally, the parameters of the signal / observation model, such
as the densities of the observation noise and signal noise are usually not available, and it is crucial to know
whether the optimal filter is robust w.r.t. such model errors. Finally, to compute the optimal filter we usually
introduce errors in the transitions of the filter, because the true transitions are not practically computable.
Before entering into details, let us make precise what we mean here by stability.

Definition 3.5 (Stability). A sequence {Sn, n > 1} of nonlinear transformations on the metric space (P(E), d)
18

(i) stable, if for any two sequences {un,n > 0} and {p, , n > 0} defined on P(E) by the same recursion
fn = Sn(ttn—1) and pl, = Snp(pl,_1) for any n > 1, with possibly different initial conditions, it holds

lim d(pn, 1) =0, (2)

(i) stable w.r.t. local perturbations, if for any sequence {p,,n > 0} defined on P(E) by the recursion
Ln = Sn(ftn—1), and for any sequence {p), , n > 0} defined on P(E), such that the local error is uniformly
controlled, i.e. such that for anyn >1

d(lj"ln:Sn(p’ln—l)) S 6 <00 )
it holds

limsup d(pin, iy,) < C6 . 3)

n—oo

A sufficient condition for stability can be formulated in terms of contraction coefficients : indeed, if the
sequence {S, , n > 1} is uniformly contracting, in the sense that

IR CADRAT),

<7t<1,
w,p' EP(E) : pAp’ d(/‘a N,)

for any n > 1, then (%) can be replaced by

d(pin, i) < 7" d(po, o)

which implies (exponential) stability, and (xx) can be replaced by

)
d(fin, pi,) < 1=7 + 7" d(po, o)
which implies stability w.r.t. local perturbations.
If the sequence {S,,, n > 1} is not uniformly contracting, stability can still hold, and can be proved sometimes
using a robustification approach. Assume that a perturbed sequence {S", n > 1} of nonlinear transformations
can be found, which is uniformly contracting itself, i.e. such that for any n > 1

I C AR S),

<m<l,
p,u' €P(E) : pFp’ d(p,,p/)

and such that the local error is uniformly controlled, in the sense that for any n > 1

sup  d(Sn(p), Sy (1)) < 0p < 00 .

HEP(E) INRIA



A Rooustification Approach to Stabulity and to Uniform Particle Approxrimation d

(In general dp 2 0 and 7, & 1, otherwise the sequence {Sy, n > 1} would be uniformly contracting). Then
the approximation is uniform : for any two sequences {u,, n > 0} and {u, n > 0} defined on P(E) by the
recursion i, = Sp(itn—1) and p? = S (ul_|) respectively for any n > 1, it holds

On n
d(pns ) < 1. T d(po, 1)

and moreover the original sequence {S,,, n > 1} is stable (but not exponentially stable) : for any two sequences
{pn, n > 0} and {p,, , n > 0} defined on P(E) by the same recursion p, = Sy, (pn—1) and pl, = S, (pl,_;) for
any n > 1, with possibly different initial conditions, it holds

24 n
Apins ) < dlpin, 1) + gy, i) + Al ) < 5=+ 73 o, 1)

1

where the two sequences {u?,n > 0} and {u/, n > 0} are defined on P(E) by the same recursion p? =
Sh(uh_)) and ph = St(p'l ) for any n > 1, with initial conditions uf = po and py® = uf, hence

lim sup d(pn, .
m sup (kn, 1) < T

Since the left hand side does not depend on the perturbation parameter h, it holds
im d(pn, pr,) =0,
n—oo

provided that

)
AN
1—Th

In [11, Section 4] we have proved some results of stability of the optimal filter w.r.t. its initial condition and
w.r.t. local perturbations, under the mixing assumption, using the Hilbert metric. We summarize here the main
results that will be useful in the sequel.

Theorem 3.6. Let {u,, n > 0} be the optimal filter as defined in Section 2. Assume that for any k > 1, the
nonnegative kernel Ry, is mizing with € > 0.

(i) Let {p,, ,n >0} be a wrongly initialized filter, i.e. p, = Rp.1(pg) for any n > 1, then

n

2 1
! < = 1 _ 2 - !
llttn — || < Tog3 k|:|2( €k) 2 lo — woll

where || - || denotes the total variation norm on the space of signed measures on E.
(ii) Let {p,, , n > 0} be a sequence of probability measures such that uy = po, and
E[F(uy) | Yien] = B[F (uy) | V1]

for any bounded measurable function F defined on P(E). If the local error in the total variation sense is
controlled for any k > 1 by

Bl [k — Rie(ph—n)Il | Vi ] < 65

then

TV 2 & - 2 5"

El|lpn — pull | Yiin] < 0y, +—Z[ H (1_‘5()] 2
log 3 €
k=1 f=k+2 k+1
If the local error in the weak sense is controlled for any k > 1 by
sup ]E[|(/J’;c _Rk(p’;c—l)7¢>| | )/ik] S6ls:VV ’
é:l¢ll=1

then

w0 4 = p Y

sup B[ (ttn — il @) | Yin] <0 +2250 4 (1—eh)] ook
o: loll=1 " ez log3 kz:: :1;[ 2 €i+z 41

RR n " 4431



6 F. Le Gland ¢ N. Oudjane

A convenient way to approximate numerically the optimal filter is to use a particle method that provides
a sequence of random empirical probability distributions {u!, , n > 0} whose evolution is both close to the
evolution of the optimal filter and computable. The results of Theorem 3.6 show that, if we are able to control
uniformly in time the local errors committed at each time step by using the wrong evolution p)_, — p}, instead
of the true evolution pf_, — Ry (p},_,), then we are also able to control uniformly in time the resulting global
error between {u,,n > 0} and {u, , n > 0}, provided that the signal is mixing. Unfortunatly the mixing
condition implies in general a strong ergodicity assumption on the signal, which practically requires that the
state space is compact. The aim of this paper is precisely to relax this assumption, using the robustification
approach, and still obtain results similar to those of Theorem 3.6. In this sense, numerical approximation of
the optimal filter, e.g. using particle methods, provides another motivation for the robustification approach,
see Section 7 below or [11, Section 6]. Indeed, it is sometimes a good idea to approximate rather the “robust”
filter, defined by a perturbed wrong evolution, especially when it enjoys some additional regularity property :
usually in such cases, the local errors can be estimated more precisely, and their propagation under the perturbed
evolution is better controlled. This results in better convergence properties, which of course need to be balanced
with the residual error resulting from the approximation of the optimal filter by the “robust” filter.

4 Pseudo—mixing signals

Our objective in this paper is to present an extension of the stability results recalled above, and in this section
we introduce the pseudo—mixing assumption, which will allow us to relax the mixing assumption and still obtain
stability properties for the optimal filter. There are already some results available in the literature, which prove
the stability of the filter without assuming ergodicity of the signal : Budhiraja and Ocone [4, 5] have proved that
the optimal filter forgets its initial condition with a rate which is asymptotically exponential in some special
cases where the signal is not necessarily ergodic but the observations are “sufficiently good”. The interest of our
result is that it provides a bound for the rate of convergence which is nonasymptotic, i.e. valid at each time
instant. This fact will be used in Section 7 to provide uniform particle approximations to the optimal filter.

Definition 4.1 (Pseudo—mixing). A nonnegative kernel K defined on E is pseudo—mixing, if for any compact
set C in E with diameter D large enough, there exist a positive constant 0 < e(D) < 1, depending only on the
diameter D, and a nonnegative measure Ac € MY (E), such that

e(D) Ac(4) € K(2,4) € —— Ao (4) , (4)

1
(D)
for any z € C, and any Borel subset A C E. A Markov chain with a pseudo—mizing transition kernel is called

a pseudo—mixing signal.

Remark 4.2. If the nonnegative kernel K is Markov on C, i.e. if K(z, E) = 1 for any z € C, then without loss
of generality the pseudo—mixing measure Ac can be taken as a probability distribution. Indeed, taking A = FE
in the pseudo-mixing equation (4) yields

(D) Ao(E) < K(r,B) = 1< 2 Ao(B)

(D)
hence
(D) < AelB) € s
and
2y Ac(A) 1 Ao(A)
(D) 3505 <K@ A) <€ i 3o

for any z € C, and any Borel subset A C E.

Example 4.3. To illustrate the pseudo—mixing property, we can for instance consider kernels () of the form

Q(z,dz’') = q(z' — z) dz’ = €(|z' — z|)dx ,

INRIA



A Rooustification Approach to Stabulity and to Uniform Particle Approxrimation 7

where £ is a bounded positive function defined on [0, 00). If there exists a constant M > 0 large enough such
that

14
M2a>0, for any v > M and any v > M,
£(u) £(v) (5)
and £ is decreasing to zero on [M, o)
then @ is a pseudo—mixing kernel. Precisely, for any compact set C with diameter D > M large enough
1
for any z € C and any ' € E, with pseudo-mixing constant €(D) = af(D + M) and absolutely continuous

pseudo—mixing measure
Ac(dz') = [l(d(rﬂ',C) <M+ l(d(a:’,C) > M) q(z' — 2)]ds’
for any 2’ € E, where z is an arbitrary element of C. Indeed, if d(z’,C) > M, then for any z, z € C it holds
M<|lz-2|<|z—z2|+|z—-2'|<D+]|z-2|,
and
M<|z-2|<|z—z|+ |z -2 |<D+|z—2,
hence, since (D) > £(D + M)
a(z’ —z) 2 (D + |z — 2'|) > al(D + M) q(z’ - 2) ,
and
q(@' —2) > (D + |z —2'|) > al(D + M) q(z' —z) .

It follows that

1

al(D+ M)q(a' —2) < q(z’ —z) < mq(xl—z) ; (7)

for any z,z € C and any 2’ € E such that d(z',C) > M. On the other hand, if d(z',C) < M, then for any
z € C it holds

hence

inf L) <qglz —z)< su (u) ,
e (0 Sale ) S s 6w

and for D large enough

inf  f(u) =min( inf £L(u),l(D+ M))=4LD+ M),

0<u<D+M 0<u<M
and
() () < -
su u) = su S
0§u§£+M 0<uEM “UD+ M)

Without loss of generality, we can assume that @ < 1 in (5) (otherwise, take min(a, 1) instead), and it follows
that

1

af(D-FM)Sq(.Z'I—.’E)Sm, (8)

RR n " 4431



8 F. Le Gland ¢ N. Oudjane

for any z € C and any 2’ € E such that d(z',C) < M. Combining (7) and (8) finally yields (6).
We can for example consider the following classical densities defined for any = € R by

p—1 |z| _ .
=— (14 —)"?, with p > 2,
@ =22 a+ 5
q(z) = § exp(—|z|) , (exponential density),
1 1 _— .
q(z) = 1 (logistic density),

2 + exp(|z[) + exp(—|z]) ’
which all satisfy (5).

As we can see, the property (5) requires some conditions on the tails of the densities, but unfortunately this
property is not satisfied by the Gaussian densities because of their too light tails.

Remark 4.4. Let @) be a pseudo—mixing kernel, and let f be a Lipschitz continuous function defined on E and
taking values in FE, i.e. there exists a positive constant a > 0 such that

|f(z) - (@) < alz - 2]

for any , ' € E. Then, the nonnegative kernel Q¢ defined by Qs (z, A) = Q(f(z), A) for any z € E, and any
Borel subset A C E, is also pseudo-mixing. Indeed, let C' be a compact set in E, with diameter D, and let
f(C)={2' € E : ' = f(z) for some z € C} denote the image of C by f. Then, the set f(C) is compact, with
diameter smaller than a D, and since @) satisfies the peudo—mixing property (4), it holds

1
e(a D)

e(@D) Ajoy(A4) < Qf(z, A) = Q(f(2), 4) < Are)(4),
for any z € C, and any Borel subset A C E. This remark allows us to extend the simple examples of pseudo—
mixing kernels given in Example 4.3 above to the case of signals with dynamics of the form

Xn+1 = f(Xn) + Wn )

where {W,,, n > 0} is a sequence of i.i.d. random variables with common probability density ¢ of the form given
in Example 4.3, and where f is a Lipschitz continuous function defined on E.

5 Approximation of the optimal filter by a “robust” filter

In this section, we show that if the transition kernel of the signal is pseudo—mixing, and the observations are
“sufficiently good”, then we can approximate the optimal filter uniformly in time by an exponentially stable
sequence of probability distributions. This exponentially stable sequence is called a “robust” filter because it
is an approximation to the optimal filter, which is much less sensitive to perturbations than the optimal filter
itself. This robustification approach is the main contribution of the paper : it will imply that the optimal filter
itself forgets its initial condition at a rate that will be precised in Section 6, and in Section 7, it will provide
particle filter approximations which converge uniformly in time to the optimal filter.

We consider the following state / observation model, where the signal {X,,, n > 0} is a Markov chain with
initial probability distribution g, and transition kernel ¢}, observed in additive noise, i.e.

for all n > 1, where {V,,, n > 1} is a sequence of i.i.d. random variables, not necessarily Gaussian, with common
probability density g w.r.t. the Lebesgue measure, independent of the signal {X,,, n > 0}. We introduce the
following assumptions.

Assumption A1 The transition kernel @) is pseudo—mixing, and for any compact C' with diameter D > D,
let €(D) denote the corresponding mixing constant.

INRIA



A Rooustification Approach to Stabulity and to Uniform Particle Approxrimation 9

Assumption A2 For any y € F and any A > 0, the sublevel set
Cly,A) ={z € E : [y — h(z)| < A}
is compact, and its diameter is bounded by a finite constant D(A) independent of y € F'.

Assumption A3 For any A > 0, the following quantity characterizes the tails of the observation noise density

a(A) = /F L(ju| > A)9(w)du
and satisfies

im 2B g

A—w e4(D(A))

Assumption A1l replaces the stronger mixing assumption, and can be satisfied by nonergodic signals. As-

sumption A2 is a relatively strong assumption, which in some sense requires that the signal is completely

observed, see Remark 5.1 below. Finally, Assumption A3 suggests that the tails of the observation noise are

light w.r.t. the tails of the signal noise : indeed in Section 4, we have seen some examples of signals with additive
noise, where the mixing constant (D) can be related to the tails of the signal noise.

Remark 5.1. If the function h is injective from E in F' with Lipschitz continuous inverse, i.e. if there exists a
positive constant b > 0 such that

|z — 2| <b|h(z) — A(z)]

for any z,2' € R™, then Assumption A2 holds with D(A) = 2bA. This is only a sufficient condition, which
obviously is not necessary, as the following two examples show, where £ = F' = R. In the first example, depicted
in Figure 1, the observation function A is noninjective, but it is “injective at infinity” in the sense that, outside
a compact interval of length L, it is injective and has a constant slope 1/b. Assumption A2 holds there with
D(A)=2bA+ L.

Figure 1: Noninjective observation function.

In the second example, depicted in Figure 2, the observation function A is injective, but its inverse is not
Lipschitz continuous : it is defined by h(z) = ¢(z) if z > 0, and h(z) = —¢(—=z) if z < 0, where the function ¢
defined on [0, c0) is continuous, strictly convex, monotonically increasing, and satifies ¢(0) = 0. Assumption A2
holds there with D(A) =2¢71(A).

RR n " 4431



10 F. Le Gland ¢ N. Oudjane

Figure 2: Injective observation function, with non Lispschitz inverse.

Let {gn, n > 0} denote the optimal filter associated with the above model. We recall that

Hn = Rn(ﬂn—l) = Rn:l(,ufO) ;
where for any n > 1,
Ry (z,d2’) = Q(z,dz") ¥n(z') = Q(z,da’) g(Yn — h(z)) ,

for any z,2' € E.
For any nondecreasing sequence A = {Ay, k > 1}, we introduce the following notations, under Assump-
tions Al and A2 : for any k£ > 1

o Cy = C(Yy,Ar) denotes the compact set
Cr={z€R™ : |V, — h(z)| < Ar},
with diameter Dy, < D(Ay),

o N, = A¢,_, and &(Dg_1) > e(D(Ag—1)) = €k denote the mixing probability measure and the mixing
constant respectively, associated with the pseudo—mixing kernel @) on the compact set Cy_1,

e U2 denotes the truncated likelihood function defined by
Vi (2') = 1o, (2') Tr(2')
for any 2’ € E,
. RkA denotes the nonnegative kernel defined by

Q(z,dz") V(') , if € Cy_1,
Ry (z,da’) =
A (dz') U (2 , ife & Cr_1.

Notice that RkA depends on two successive observations Y;_; and Y}, and since the kernel ) is pseudo—mixing,
the following mixing property is satisfied

ek U ) Me(dr') < R da’) < WP a') M ()
k

hence for any pu € P(E)

B (E) > o0 [ W6 M) = o0 [ W) Mlaa)

and we introduce the following additional assumption.
INRIA
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Assumption A4 For any k> 1
/ Ui (2') M (d2) > 0 .
Ch

Remark 5.2. Notice that

inf Uy(z')> inf g(u) and Ae(Cr) >er sup Q(z,Ch) ,
z'€Cy |u|<Ag z€CK-1

hence a sufficient condition for Assumption A4 to hold is

inf g(u) >0 and sup Q(z,Ck) > 0.
|u|<Ag z€CK,_1

Finally, for any two initial conditions po and ), let {5, n > 0} and {u/>, n > 0} denote the two sequences
of probability distributions defined by the following recursions
A RY pp Ag, A A A A
n n— D D ! D !
= =R 1) = R,. and =R,
Hn (RTAL Nﬁ_l)(E) n (:un 1) n.l(iu‘o) Hn n.l()u‘O)
where R, = R%o---0R2. Notice that for any k > 1, the supports of the nonnegative measures p5 ; and p}2,
are contained in the compact set Ci_1, hence the mixing probability measure \i, which is somehow arbitrary
in the definition of the nonnegative kernel RkA, is not really involved in the procedure.
It follows immediately from Theorem 3.6 that

n

2 1
A _ 1A < = 1 _ 2 - 0 g
I =220 < g 110 b o= ©
and
2 n—1 n 5k
I =l <0tz D[ I 0-ed)] (10)
Rt 1=k+2 k+1
where
Sk = || R (pk—1) — R (ur—1)Il ,
for any k£ > 1.

Proposition 5.3. For any k > 1
E[or] < 6a(Ak_1) ,
hence for k large enough

o < GM , a.s.
ag

where ay, is the general term of an arbitrary converging series.

The following result states that the sequence {uﬁ ,n > 0} is exponentially stable and approximates the
optimal filter {py, , n > 0} uniformly in time, provided that the observations are “sufficiently good”, i.e. provided
that Assumption A3 holds : this motivates the terminology “robust” filter used for the sequence {uﬁ ,n >0}

Theorem 5.4. If Assumptions A1 and A2 hold, and if Ay, = A for any k > 1, then

2 — 2] < 2 (1 (D(A))

1 /
log3 m”#o—uo” >

and

2

Ellg2 — pnl| <61+ —0——
llpn — pnll < 6( +54(D(A))log3

)a(A)

which converges to zero as A — 0o, under Assumption A3.
RR n~°4431



12 F. Le Gland ¢ N. Oudjane

Notice that Theorem 5.4 provides an estimate of the approximation error averaged over observation se-
quences. To obtain an a.s. convergence result, we will rely on the following easy property.

Lemma 5.5. If {y,,n > 1} and {u,, n > 1} are two sequences of nonnegative numbers such that

n

nh—{%o;% =0 and nh—vnéo u, =0,

then

n—1 n

nh—{lgoz [ H (1 —w)] Ye+1 Uk =0 .

k=1 €=k+2

PrOOF OF LEMMA 5.5. For any integer n > 1, define
n
F, = H(l - )
=1

which converges to zero, and notice that

n—1
Ve+1 Uk

Fppy

n—1

[ I =) ] e we = Fa
=k+2

Un =
k

=1 k=1

For any ¢ > 0, there exists an integer n. such that u; < ¢ for any integer k > n., hence

n—1 ~ u ne—1 5 u n—1 5 u neg—1 ~ u n—1 ~
/;1 k:Z 1;1 L 1;:-1 ks 1;:1 k+€ZFk+1'
i Fea i Pk =, LR i Pkt i Fk+1
Finally, notice that
1 1 1 Ve+1
- = 1— (1= 1)) = :
Fy1 Fr Frn =@ =7er2)] Fri1
hence
Ty L1, 111
o B e B B BT OB,
and
ne—1 u
vp < F, 7/;1 k +e
k=1 T kH1
Therefore lim sup v,, < &, and since € > 0 is arbitrary, then v,, converges to zero. O

n— oo

Theorem 5.6. If Assumptions A1 and A2 hold, and if the sequence {Ay , k > 1} is such that

n
in 3o
k=1
then
: A A
Jim [l — 7 =0
If in addition

lim 704(Ak_1)

=0 11
k—oo Qg Ei-ﬁ-l ’ ( )

where ay, is the general term of an arbitrary converging series, then almost surely

. O,
lim —
k—oco Ek—i-l

=0 hence lim [|ps — pnl| =0 .
n—oo

INRIA
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Remark 5.7. Notice that
a(Ak_l) _ OA(Ak_l) Ez
5%4—1 e'(D(Ak-1)) 5%4—1 ’

hence under Assumption A3, a sufficient condition for (11) to hold is

4

. €k

lim sup T <00.
k—oo QkEpyq

PROOF OF PROPOSITION 5.3. For any u, ' € MT and any nonnegative function A defined on E such that
(i, A) > 0, the following estimate holds

Az
Au—ae <2 [ 20

e <M’ A) |M _/"’ll(dw) . (12)

Using inequality (12) with A = ¥}, and
B= -1 = Q-1 = 1c, Q(le,_, pr—1) + 1o, Q@(cg_, pr—1) + 1o Q pre—1 5
/"’l = 1Ck Q(lck_1 Mk—l) + HE—1 (Clg—l) 1Ck )‘k b

yields the following bound of the local error

U, (2
o < 2 / _Wl) [1c, Q(loe_, pr-1) +1og Q pr—1 — pr—1(Ci—y1) 1c, Ax [(d2)
B (kjk—1, Ur)

(13)

IA

Uy (z') ) ) / /
2 /E m [1c,(2") Q(1ce_, pr—1)(dx’) + 1og (2) Q prg—1(dz’)

T 1(CEr) 1o, (@) Ae(da) ]
It follows from Remark 2.2 in [11] that for any test function ¢ defined on F'
(V) /
E Y;
[<#k|k 1, Ur) | Vi vl
In particular, if ¥(y) = g(y — h(z')), then ¥(Y}) = ¥k (z') and

W) [ e
H (tk|k—1, U) | Yika] = /Fg(y h(z')) dy = Fg( Ydu =1,
and if Y(y) = g(y — h(2)) 1 (ly — h(z")] > Ag)’ then ¥(Y3) = ¥y(z )lc,g(x') and

Wi(a!) s (') ,
<uk\k_1,w_k> | Yise] = /Ff’(y‘h(x DYy — h(a')| > Ag) W

= /Fg(u) L(ju| > Ay) Q= a(Bk)

for any 2’ € E. Notice that

/ Qo:_ pxr)(da') / / 1o: () i (d) Q(,d2') = p—1(CS_y)
E

and

U1 1ce (z
B g1 (C_y)] = ]E[/ (@)1 (@)

_1lk—2(dx
E (Mk—1|k—2,‘1’k—1) =12 ()]

‘I'k 1(z) 1og_ ()
= ]E[/ w T 1) | Yik—2] ptr—1jp—2(dz) ] = a(Ak_1)
——— k—1k—2> Tk—1
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Now we can bound each term in the right-hand side of (13). The first term is bounded as follows

¥ (z') 1c, (2') /
E[/E e, uyy Qe pem)de)]

B Uy () 1o, (') ) o
— /E By | Vi ] Qo a)(')

<E /Qlcc p1)(ds")] = oAy ) (14)

the second term is estimated as follows

\Ilk(x’) 10’«; (.’L‘/) ’
o /E —Wlk_h% e (d2)
o: (@)

= [ E| Vi _1(dz")] = a(Ar) , 15
[/ [ o 17\1%) | Yisk—1] prjp—1(dz’)] (Ag) (15)
and finally, the last term is bounded as follows

W) 106
E[/E (Mrik—1, Vi) 11 (Cier) di(dr)

- 4 (2') 1, (2/) . "
. /E B Sy | Yokt ] et (CE) M(da)]

< Elpr-1(Cio1) ] = a(Bg-1) - (16)
Inserting the bounds (14), (15) and (16) into inequality (13), finally yields
Eor] < 2a(Ag) +4a(Ak—1) < 6a(Ag_1) .
The second part of the proof follows immediately from the Borel-Cantelli lemma. O

Example 5.8. To illustrate the results of Theorems 5.4 and 5.6, we consider the following signal / observation
model, where £ = F = R and

Xn+1 = f(Xn)"FWn; XON,U(]a
Y, = h(Xn) +Va )

for all n > 1, where {W,,, n > 0} and {V,,, n > 1} are two independent sequences of i.i.d. random variables,
with exponential probability densities ¢ and g w.r.t. the Lebesgue measure, with standard deviations ¢ and s,
respectively. More precisely, assume that

e the noise probability densities are given by

dw) = 5oep(-10) and  gle) = pexp(-1),
for any w,v € R,
e the function f is Lipschitz continuous on R, i.e. there exists a positive constant a > 0 such that
[f(z) - f(@)| < alz -2,
for any z,2' € R,
e the function A is injective on R with Lipschitz inverse, i.e. there exists a positive constant b > 0 such that
|z — 2’| <blh(z) — h(z")],

for any z,2’ € R.
INRIA
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It follows from Example 4.3 and from Remarks 4.4 and 5.1, that Assumptions A1l and A2 are satisfied, and one
can easily check that e*(D(A)) > 1/(16 %) e=8254/7 and a(A) = 1 e=2/%, hence

a(A) 4 —(c/5—8ab)A/
< g/8s a g i
@) =57

If 6/s > 8ab, i.e. if the observation noise variance is small enough w.r.t. the signal noise variance, then
Assumption A3 is satisfied, and Theorem 5.4 provides an exponentially stable sequence that approximates the
optimal filter uniformly in time.

If Ak =o/(4ab) logk for any k > 1, then €2 > 1/(402)e~*2A+/7 = 1/(40? k) and the series with general
term 2 diverges. If in addition ¢ /s > 12ab, and ay = k~+") for any k > 1, with 0 < v < (¢/s—12ab)/(4ab),
then the series with general term a; converges, and

Ol(Ak_l) < 80‘4 (k + 1)2 kit

_ 1\3+v—0c/(4abs)
g€y (k—1)3t7 k=1 -0

since 3+v—o/(4dabs) =v—(o/s—12ab)/(4ab) < 0. Therefore, it follows from Theorem 5.6 that the “robust”
filter converges a.s. to the optimal filter, as time goes to infinity.

6 Stability of the optimal filter w.r.t. the initial condition

In this section, we use Theorems 5.4 and 5.6 to show that the optimal filter {u, , n > 1} inherits some of the
stability properties of the “robust” filter {y2 , n > 1}. The triangle inequality yields

litn = bl < et — il + iy — w21+ Dl = bl
and in addition to (9) and (10), it follows immediately from Theorem 3.6 that

2 "‘1 . 5
= gl < 87, + —3 H (1-¢3) ] 62’“ ,
k=1 (=k+2 k+1
where
8 = IRu(ki—1) — B (i)l
for any k£ > 1.

Proposition 6.1. If pg and u, are comparable, with co = h(po, pty) < 0o, then for any k > 1
E[d,.] < 6 exp(2co) a(Ag—1) ,
hence for k large enough

01, < 6 exp(2¢p) % ,  a.s.
k

where ay, is the general term of an arbitrary converging series.

The following result states that the optimal filter {p,, n > 0} is stable (but not exponentially stable)
provided that the observations are “sufficiently good”, i.e. provided that Assumption A3 holds.

Theorem 6.2. If Assumptions A1 and A2 hold, if A, = A for any k > 1, and if po and g are comparable,
with ¢o = h(po, py) < 00, then

2
Ellpn — p |l < 6(1+exp(2c)) (1+ =

S (D@))og3) ¥

(1= D)™ gy o=l

log 3
hence
JMim Bl — |l =0,
under Assumption AS.
RR n -~ 4431



16 F. Le Gland ¢ N. Oudjane

Theorem 6.3. If Assumptions A1 and A2 hold, if the sequence {Ay , k > 1} is such that

n
: 2
lim E €, =00,
n—oo
k=1
if po and pfy, are comparable, and if

lim 7Q(Ak_l)

1 =0,
k—oco Ak Epq1

where ay, is the general term of an arbitrary converging series, then almost surely

O 0y,
— =0 and lim
k—oo &) 14 k—oo Ek+1

=0 hence Jim lgon — ]| = 0 .
PrOOF OF PROPOSITION 6.1. Using inequality (12) yields the following bound for the local error

7 lI;k(x/) 2! . ! ! (2 / !
so<2f sy Les(@) QUL ) (d') 4 L5(!) Q s () .

+ 1 (CF) Lo (') A (dz")]

which we recognize to be inequality (13) where p,—; has been replaced by pj,_,. It is now sufficient to notice
the following bound

Uy () _ Up(z')  (rik—1, Yr) < Uy (2')
(Wope—1> V) (rin—15Yk) (1o Wr) ~ (-1, U

) exp(co) (19)

valid for any integer k£ > 1 : indeed, it follows from Lemma 3.4 that

(Bk|k—1> k) _ (@1, ) (Bia po)(B)  (Rr—12 o) (E)
</‘L;¢|k_]_a lI;li:) <Q /‘L;‘;_la ‘Ilk> (Rk—lzl Mo)(E) (szl ,UE))(E)

< exp(co) -

Notice that

B[ pt—1 (Ci—1)] < exp(co) a(Ap—1) -

Now, just as in the proof of Proposition 5.3, we can bound each term in the right—hand side of (18), making
use of the bound (19). The first term is bounded as follows

E[/ uklk llf‘kllk)) Qe | Wi—1)(dz")] < exp(2¢p) a(Ak—1) , (20)

the second term is bounded as follows
lcc ) / ’
E[ Hijk—1(dz") ] < exp(co) a(A) , (21)
'u’k\k 1° )
and finally, the last term is bounded as follows

V() 10, (2") ¢ /
E[/E T,y M G M) S expe0) alBe) (22)

Inserting the bounds (20), (21) and (22) into inequality (18), finally yields
E[6;,] <4 exp(2¢o) a(Ag—1) + 2 exp(co) a(Ar) < 6 exp(2cp) a(Ag—1) . O

Example 6.4. (Example 5.8 continued) Since A > 0 is arbitrary in (17), we can take A = ao/(4ab) logn
with 0 < @ < 1, hence e**?2/7 = n*_ If ¢/s > 8 ab, then introducing 8 = (0/s — 8ab)/(4ab) yields

a(A) (o /s— -
< (O'/S 8ab)A/o'< 4 4abﬂA/a< 4
764(D(A))_80€ < 8&c%e < 8o ~Fa
INRIA
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and
1 1
1— &2(D(A)))* ! < (1-— —4abA/o n—14 52 4abA/o
(1= 2@ s < (- gz ey agte
1 1 1
2 n—1 1+8)a __ 2
S 4o nﬁa( _402na) RO =40 nﬁ—O‘A" ’

where

log A, = (n—1) log(1 — )+ (1+8)alogn,

402 n>

can be bounded by a constant independent of n. Therefore, it follows from Theorem 6.2 that

A
!
]E“:u‘n - iu’n” S nﬁa )

for any 0 < a < 1, where A is a positive constant independent of n, hence if the observation noise variance is
small enough w.r.t. the signal noise variance, then the optimal filter forgets its initial condition at a rate which
increases with the precision of the observation.

If in addition o/s > 12 ab, then it follows immediately from the Borel-Cantelli lemma that

A
llttn — pll < — 5 as.

for any 0 <y < (o6/s —12ab)/(4ab), and for n large enough, where A is a positive constant independent of n.

This result confirms the idea that the optimal filter can have stability properties even when the signal is not
ergodic, provided that the observations are “sufficiently good”, just as in linear filtering, where detectability and
stabilizability of the system are sufficient conditions for the Kalman filter to be exponentially stable, see e.g.
Anderson and Moore [1, Chapter 4]. Another example is given in Budhiraja and Ocone [5], where the asymptotic
stability of the nonlinear filter is proved for a nonergodic signal : however their proof uses an ergodic sum to
control the propagation of the initial error, and it can only provide an asymptotic result, i.e. it cannot be used
to prove the stability of the optimal filter w.r.t. model errors committed at each time step in the evolution of
the filter (consider for instance the case of model misspecification). One interest of Theorem 5.6 is precisely to
allow such stability results, and another application of it is given in the next section.

7 Uniform particle approximations to the optimal filter

In this section, we use Theorems 5.4 and 5.6 to construct particle filters that converge uniformly in time to the
optimal filter, even though the mixing assumption does not hold. We shall use the notations of [11, Section 5] :
in particular SV (u) is a shorthand notation for the empirical probability distribution of an N-sample with
probability distribution p, i.e.

N
1 . .
SN () = N E Opi with (€, &Ny iid. ~p,
i=1

and we recall the following classical results.

Lemma 7.1. For any p € P(E)

sup E[(S™ (1) — p, )| <
o lIgll=1

2=

For any nonnegative bounded measurable function A defined on E, and for any § > 0, let T denote the stopping
time

N
T =inf{N : 6% > A(¢') > sup A(z)} with (€Y, &N ) did. ~
i=1 z€l

If (u, A) > 0, then T is a.s. finite, and

sup B (A-ST(1) —A- )| <2671+ .
¢:lgll=1

RR n " 4431
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Remark 7.2. Ifin addition ¢ and y are F-measurabler.v.’s, and if conditionally w.r.t. ¥ the r.v.’s (¢4, --- &V, .-
are i.i.d. with (conditional) probability distribution g, then the same estimates hold for conditional expectations
w.r.t. F, i.e.

E[| (SN (1) — - 9) | | ] < LN lell (23)
and
E[[(A-ST(n) —A-p,0) [ | F] <26V1+682 4] - (24)

We consider again the signal / observation model introduced in Section 5. We have already seen that the
“robust” filter {u4 , n > 0} approximates the optimal filter {,,n > 0} uniformly in time. We propose to
approximate the optimal filter by constructing a particle approximation {,uﬁ’N , n > 0} to the “robust” filter :
the idea is that the “robust” filter will be less sensitive than the optimal filter to the local errors induced by
the particle approximation. Implicitly, it is assumed that the particle approximation at time n is based on a
particle system of size N,,. The triangle inequality yields

¢.sllléﬁ71E[l<un—u$’N,¢>lIYlm]Sllun—uﬁlH sub 1E[|<u —p N | Vi)

and in addition to (10), it follows immediately from Theorem 3.6 that

5A,N 4 n—2 n JA’N
sup  El|(up — ™, 0) [ | Vi ] <0V 42250 + —— 3 Q-] 55—,
o:l9l=1 " en  log3 ,; e:llz €2 Ehat
where
SN = sup B[ (upN — R (), 8) | | Y]
¢:lgll=1
for any k > 1.

Consider first the robust version {5 | n > 0} of the interacting particle filter approximation to the optimal
filter {pn , n > 0}, which is implemented according to the usual interacting particle filter algorithm, with the
only difference that for any n > 1, the likelihood function ¥, is replaced by the truncated likelihood function
U2 =1¢, U,. Initially ,u@’N = 9, and the transition from ,uﬁff to u2+V is described by the following diagram

AN IIVA AN

A,N AN _ n A,N
fin2y % fi[ny = SV (Q p 7)) > pip, Hijne1 -

sampled correction

prediction

In practice, the particle approximation

is completely characterized by the particle system (f}Lln_l, cee leflg_l), and the transition from (571““_1, SR ﬁ:»—l
to ( 71L+1\n7 e jj;;ljb) consists of the following three steps.

(i) Correction : for all i =1,--- , N,,, compute the weight

A
wn:c_‘]? (n\n 1)7
n

where the normalization constant

Z‘I’ n|n 1 )

should be positive. Then set

AN A
)u‘n \I' :un|n 1 an(s i

nln—1
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(ii) Prediction : set

(Q Zw Q n|n 17 )

iii) Resampling : independently for all i =1, -+ , N1, generate a r.v. & ~ AN Then set
( ) ping Y y ) ) +1, & n+1|n M
n+1
AN N,
) j— S n+1 A
Fotin = (QN Npi1 ; €n+1|n

In the correction step, particles are weighted according to their likelihood, i.e. to their adequation with the
observation, and in the resampling step, particles with large weights are more likely to be selected than particles
with small weights, hence the particle system concentrates automatically in regions of interest of the state space.
To generate a sequence of independent r.v.’s according to the finite mixture probability distribution @Q u2" is
rather easy. This algorithm is not practical however, because the resampling mechanism is blind, i.e. does not
use the next observation Y,,4+1 : as a result it could very well happen that every individual particle in the newly
generated particle system (&L i € -47-L1+|1n) falls outside the compact set Cp4+1. To prevent this dramatic
situation to happen, two alternative algorithms are proposed below : a robust version of the adapted particle
filter, where the resampling mechanism takes the next observation into account, and a robust version of the
sequential particle filter introduced in [11], respectively.

O Robust adapted particle filter

Let {,uﬁ’N , n > 0} denote the robust version of the adapted particle filter approximation to the optimal filter
{pn , n > 0}. Initially /J,SA N = Lo, and the transition from ,uﬁff to 2N is described by the following diagram

AN AN Nn(gA . AN
Hn’y ? :U’n|n 1= Q:u’n 1 p’n =S (‘IJ "u’n|n—1) .
prediction sampled
correction
In practice, the particle approximation
Nn_1
pay =
" §n 1
is completely characterized by the particle system (£} _,,-- ,5 1) (which is contained in the compact set
Cpn—1 by construction), and the transition from (£._,,--- ,§N" 1) to (EL,--+,&Nn) consists of the following
three steps.
(i) Prediction : set
1 Np 1
AN i
i (d2) = @Qu)(de') = 57— 3 Q€ da)
n- i=1
(if) Correction : set
1 Np—1
A AN i A
(\Iln ) /J’n|n 1)(d.’L’) n Z Q(é-:l—hdx/) \IJn (‘Tl) ’
i=1
with the normalization constant
Np_1 Np-1

cn_/Zanl,dx ) U (a Z/Qﬁnl,dx) W)
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(iii) Resampling : independently for all s = 1,--- , N,,, generate a r.v. & ~ W5 - ,uﬁ"N which automatically

n—1’
falls inside the compact set C),. Then set

Z

1
AN

N=—— N6, .
Hn N, &

=1

AN
nin—1
probability distribution. To generate a sequence of independent (or dependent) r.v.’s accor‘ding to this probabil-
ity distribution can be done exactly (if not efficiently) using simple rejection, or approximately using importance
resampling or Metropolis—Hastings importance resampling [3]. More efficient algorithms have been proposed in
the literature for this purpose, using auxiliary variables [16] or local Monte Carlo methods [12], or introducing
a regularization step [9, 13].

Under Assumptions Al and A4, the normalization constant ¢, is positive, hence lllﬁ ) is a well-defined

Proposition 7.3. For any k> 1

AN = sup B[ (B — RAGAY), )| | Yik] € .

é:1gll=1 VN

The following result states that the robust adapted particle filter {5, n > 0} converges uniformly in time
to the optimal filter, when the parameter A grows to infinity.

Theorem 7.4. If Assumptions A1, A2 and A4 hold, if A, = A and < e(D(A)) a(A) for any k > 1,

1
VN,

then
su AN 2 a
¢:”¢|1|>:11E[|<n — )] §6(1+€4(D(A))10g3) (4A)
+(1+ = 2 + 4 )e2(D(A)) ()

2(D@)) © F (D)) log3
which converges to zero as A — oo, under Assumption AS3.

Theorem 7.5. If Assumptions A1, A2 and A4 hold, if the sequence {Ay,, k > 1} is such that

n
lim E €7 =00,
n—oo
k=1
and if

lim ————— 1 =0 and lim M

= 0
4 )
k=00 Nk €fys Ehpa koo Ak E)yy

where ay, is the general term of an arbitrary converging series, then almost surely

Him  sup E[|(un —p™,8) || Yin] =0
n—00 4. ||g]=1

PROOF OF PROPOSITION 7.3. Using estimate (23) with p = RkA(pkA_’Jf) and F = oY1, ,ukA_’Jf) yields

EH('u’k _RA('u‘k 1) )l |Yv1k7'u'kA_’]¥]
= E[[(S™ (BE (ui2))) — R (ue2Y), )| | Yaw, g2

O

1
< 7 Il
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O Robust sequential particle filter

The sequential particle filter {u5" , n > 0} associated with the “robust” filter is implemented according to the
sequential particle filter algorithm described in [11], with the only difference that for any n > 1, the likelihood
function ¥, is replaced by the truncated likelihood function lI’ﬁ = 1¢, ¥,,. The result is that in the robust
version, particles with small weights (i.e. particles that are located outside C,,) are systematically eliminated
because of the truncation of the likelihood function. At time n, the robust sequential particle filter 2" uses a
random number N,, of particles, and the sequential procedure insures that the number of particles in the region
of interest, i.e. in (), is not zero. Initially ,uOA’N = po, and the transition from ,uﬁ’_q to p2N is described by
the following diagram

Ny, A AN
— 3 . X
/J’n 1 - ? /J’n|n 1 =S5 (Q Nn 1) p’n =y l‘l’n|’n—1
sequential correction
sampled
prediction

In practice, the particle approximation

n|n 1= N 25 ’

n\n 1
is completely characterized by the particle system (Erlz|n—17 e ﬁ’;b_l), and the transition from (f}tln_l, e, ’I'Jl/\lr?’;b—l)
to ( 71L+1\n’ e ivlflln) consists of the following three steps.
(i) Correction : for all i =1,--- , N,,, compute the weight
i A
w:L:c_\I’ (n\n 1)7
n
with the normalization constant
A
Cn = Z IIJ n|n 1
Then set
AN _ gA
paN = Zw
n\n 1
(ii) Prediction : set
Ny,
(Quy™)(da') =" wh Q(Ehypyy da’) -
i=1
(iii) Sequential resampling : independently for all i = 1,--- | N, 41, generate a r.v. §n Hifn ™~ ~Q ,uﬁ’N , Where the

random number N, of particles is defined as the stopping time

Nn+1 1nf{N 5n+1 Z'I’n+1 n+1|n) > SuP ‘I'n-{—l( )} ’

i=1

and set

Nnt1

AN
'u‘n-f-l\n = SNH_H (Q ,LL

n+1 €n+1|n ’
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Remark 7.6. Notice that we could alternatively use
n+1
1C’n +1 )5
_A,N Z n( e ntljn

/j’n+1|n = N1 ’

Z Lo n+1|n)

i.e. discard immediately those particles which fall outside the compact set C), 41, because in the next step

A _A,N A,N
LR Fotijn = ‘I’n+1 Frtifn -

Proposition 7.7. If Assumptions A1 and A4 hold, then for any k > 1 the random number Ny, of particles is
a.s. finite, and

N = sup Bl (™ — R (i), ) | | Vi ] < 280 /1467 .
CHIEES!

The following result states that the robust sequential particle filter {u2+V, n > 0} converges uniformly in
time to the optimal filter, when the parameter A grows to infinity.

Theorem 7.8. If Assumptions A1, A2 and A4 hold, if Ay, = A and 26, \/1+ 6] < e*(D(A)) a(A) for any
k> 1, then

2

_ AN o
¢:T|1$f|):1EH<”" pn 5 8) ] S6(1+€—4(D(A))log3) (A)
2 4 ,
O om@) T EDn) s PEN A

which converges to zero as A — oo, under Assumption AS3.

Theorem 7.9. If Assumptions A1, A2 and A4 hold, if the sequence {Ay , k > 1} is such that

n
lim > e} = oo
n—oo
k=1
and if

. 6k . a Ak—l

lim — — =0 and lim #zO,
k=00 €} 40 €kt1 k—oo €&y g

where ay, is the general term of an arbitrary converging series, then almost surely

im  sup E[|(un — 5N, 8) || V1] = 0.
n=0%0 .| =1

PROOF OF PROPOSITION 7.7. Under Assumptions Al and A4

QAN W) > ¢ /C Wy (2') Mk(da') > 0
k

hence the number N, of particles at time k is a.s. finite. Using estimate (24) with A = 2, 4 = Q us and
F = oY, paY) yields

Bl (o™ — RE (e, 6y | | ik, g
= E[| (U5 - SM (Qpuio ) — U2 - Quio ), &) | | Vi, mi ]

< 268,41+ 6% . O
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