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Abstract:  This article introduces a probabilistic unfolding semantics for untimed Petri nets. No
structural or safety assumptions are made. We show that cluster semantics is an adequate framework
for the construction of probability measures for concurrent runs. The unfolding semantics is constructed
by local choices on each cluster, and a distributed scheduling mechanism (cluster net) authorizing cluster
actions.The probability measures for the choice of step in a cluster are obtained by constructing Markov
Fields on the conflict graph of transitions, from suitable Gibbs potentials. We introduce and characterize
stopping times for these models, and a strong Markov property.
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Dépliages probabilistes & Clusters des Réseaux de Pétri

Résumé : Cet article introduit une sémantique probabiliste pour les Réseaux de Pétri non temporisés.
Aucune hypothése n’est exigée concernant la structure ou la streté. Nous démontrons que la sémantique
des clusters donne un cadre adapté & la construction de mesures de probabilité pour les exécutions en
paralléle. Le dépliage est construit & partir des choix locaux sur chaque cluster, ainsi qu’un mécanisme
distribué (cluster net) qui donne l’autorisation d’action aux clusters. Les mesures de probabilité gou-
vernant le choix d’action dans un cluster sont obtenues en construisant, & partir de potentiels de Gibbs
adaptés, des champs de Markov sur le graphe de conflit des transitions. Pour ces modéles, nous intro-
duisons des temps d’arrét et donnons une caractérisation pour ceux-la, et démontrons une proprieté de
Markov forte.

Mots-clé : Probabilité, Parallélisme, Dépliages, sémantique de clusters, systémes repartis.
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4 Stefan Haar

Figure 1: Causal and stochastic independence

1 Introduction

The aim of this work is to make the first steps towards a general theory of concurrent Markov Processes
in partially ordered logical time. The original motivation for this approach is the diagnosis of distributed
systems (see [8, 9]): In such systems, as they are found in telecommunications networks, faults will trigger
alarms as well as other faults elsewhere in the system. The supervisors will then observe streams of alarm
events coming in from different locations, with no global temporal ordering: only alarms from the same
sensor will be totally ordered with respect to the local “logical clock” of that sensor. Events in different
locations are ordered only if there exists a known causal chain between them. Since only the alarms
are observable, these causalities are not directly observable but are part of the model used for diagnosis.
The diagnosis task is to deduce the likely causes of the alarms, that is, the faults: given a partial order
pattern of alarms, construct the possible scenarios, i.e. the partial order patterns of faults (a) that respect
the known causalities in the system, and (b) that explain the observations, i.e. whose actual occurrence
would have triggered the pattern of alarms received; then, find the most likely among these partial order
scenarios of faults. The measure for this likelihood has to be given by an a priori probability measure on
the different possible partially ordered runs.

The crucial point is that neither the global time nor the global state of the system are available; the
temporal stochastic processes treated in the literature generally require both. This is the case also for
models designed to reflect concurrency and non-determinism, such as (Generalized) Stochastic Petri Nets
(e.g. [1]), Stochastic Transition Systems (de Alfaro[5, 6]) and probabilistic automata (Rabin [33]; Segala
[35, 36, 37]), etc. Markov decision processes, see [13], arise from the asynchronous parallel composition of
(discrete time) Markov chains, yielding again a process with global state and time. The local transition
probabilities are chosen non-deterministically, according to some policy that may be randomized in its
turn. The model we develop here, is a distributed one; however, one encounters the above stratification
as well: in fact, there is an upper layer — the cluster net — controls the unfolding algorithm on the original
net N by selecting the partial order of probabilistic choices, and a lower layer, that of A itself, where
these choices are made, according to distributions given by the current local states.

Figure 1 shows a common Petri net situation, whose probabilistic treatment causes problems!. A
natural first approach to randomizing the possible behaviors on the left hand side is to assign probabilities
Pa,PB,Pc,Pp to each transition; p: denotes the probability that t will be the next transition to be
fired. Then we have to require that pa + ps + pc + Pp < 1; assume without loss of generality that
Pa +Ps + Pc + pPp = 1, and that all p’s are positive. This approach yields a probability for sequences
rather than for concurrent runs: consider the run with A and C, i.e. the equivalence class or trace formed
by the two interleavings AC and CA. Since both choices are made independently of one another (in the
terminology below, the two clusters are independent), one would hope that the order of A and C does
not matter: however, the probability that “A and then C” is

PA - Pc
pc+pp’

lthe example is also discussed in [4].
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Probabilistic Unfoldings 5

Figure 2: The limitations of the branching process semantics and the use of pre-selection (see [8])

whereas “C and then A” gives
PA - Pc
PA+ DB’

The quotient of these two probabilities is unbounded and can take any positive value; this model thus
neither respects, nor makes use of, the independence of the two components. When looking for a “truly
local model”, we have to beware, however, of non-local effects inevitable in Petri nets: on the right hand
side of Figure 1, a place ¢ is added, joining the two parts. Now, the dependence/independence of A and
C depends on the marking of ¢: if ¢ is empty, the discussion above remains valid; otherwise, there is an
influence of A on the possibilities (and hence probabilities) for C', and vice versa: given the occurrence of
A, the probability of C increases from p¢/[pc + pp] to pe. In the other direction, given the occurrence
of C, the probability of A is even 1! (Note: This is a probabilistic view on what is called confusion in
[38].

For modeling concurrent behavior, a natural framework is given by unfolding semantics using occur-
rence Petri net. In the literature, these are usually constructed using branching processes following [32];
see also [17, 20, 22, 30]. Examples for branching process are shown in the two parts of Figure 2: in both
parts, the behavior of the Petri net on the left hand side is represented by an acyclic net on the right; we
will comment on the mechanism of this construction below.

In [8], as well as [40], probabilistic unfoldings for 1-safe untimed Petri nets were introduced based on
routing measures. This works with no difficulty in the context of Free Choice Nets, where all choices lead-
ing to branching behavior are local to the places. For general nets, however, the need for re-normalizing
the routing probabilities for arbitrary net structures result in important restrictions to the approach of
[8]. To see some of the difficulties, consider the left hand side of Figure 2. It shows a small Petri net
N and a prefix of its branching process. Roughly speaking, every current or future token in the net is
represented by a circle in the branching process net, and different outgoing arcs represent the different
possibilities to consume that token. Now, branching of arcs in the unfolding may correspond to actual
choices; this is the case for the arcs leaving b, or for the choice between A and C seen from a. However,
there is no “choice” of a between the different A’s, since all of those represent the consummation of the
same token of a. So, assigning probabilities to the different branches of a creates technical as well as
conceptual difficulties. (In fact, the right hand side of Figure 2 shows an attempt to solve these problems,
see below). As a consequence, the approach remains limited to subclasses of Petri nets, outside of which
it is not applicable.

The present article shows that the difficulties and restrictions can be overcome if the branching pro-
cess semantics with its token-oriented view is replaced by a cluster view. Cluster processes were first
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6 Stefan Haar

proposed in [27]. The unfolding semantics obtained from it will here be used in constructing both the
net unfolding and the probability measures. There is no structural restriction on the form of the net, nor
any boundedness assumption; the approach applies to any Petri Net.

In studying the cluster semantics here, we will see below that cluster unfoldings need to be constructed
under some controlling policy, which will be given by the cluster net introduced below. The semantics
then leads in a natural way to a probabilistic model on the space of concurrent runs, with a variety of
possibilities for randomizing locally inside the clusters; for this, we will present two examples of Gibbs field
constructions that yield probabilities reflecting Petri net dynamics and locality. The final contributions
here will then be the introduction and structural characterization of logical stopping times, and the proof
of a strong Markov Property.

The paper is organized as follows. Section 2 reviews basic notations and definitions; in Section 3, we
discuss and develop Petri net unfoldings under cluster semantics. The distributed nature of the unfolding
algorithm leads us to introduce an auxiliary construction, the cluster net; it will schedule, from the top
layer, the order of inspection (policy) of the clusters in the lower layer net, and thus the order in which
those make their local choices. All policies for directing the unfolding process can be obtained as a "firing
sequence” of that virtual net; moreover, it allows to structure the space of policies with a probability
measure consistent with those used for the local choices. The probabilistic model is developed in Section
4; Section 5 introduces stopping times and proves the strong Markov Property, and Section 6 ends the
paper with some comments and outlooks.

2 Petri Nets

2.1 Basic Definitions

We begin with the basic definitions that will be used throughout. INy denotes the set of non-negative
integers, and IN that of the positive integers; Z is the set of (all) integers. For a set X, denote the set
of multi-sets M : X — INg over X as M(X). Let x € X. For M € IM(X), write x € M iff M(x) > 0; the

support of M is the set supp(M) & {x|x e M}
def

If K C X x X is a binary relation over X, let K™ = {(y,z) | Ky} and K|z] oo {y | zKy}; by

& U, ¢ , K[z]. For a binary relation K C X x X, denote as K* the

reflexive transitive closure of K and as K the irreflexive part K+ & K*\{(x,x) | x € X} of K*. A Petri
net (with arc weights) is a tuple of the form N = (P, T, W, M). Here, P = P(N) is a set of places and
T = T(N) a set of transitions such that P N7 = @, and PUT is finite?. As usual, the figures here show
places as circles and transitions as rectangles. Further, W: ((P x T) U (T x P)) — [Ny is the arc weight
function. The set F of arcs of N is given by F & WTL(IN); for a node x € (P UT), set *x & F~1[x],
xe & F[x], and °*x* U {x}Ux®. A net N =(P,T,W, M) such that W takes 0 and 1 as its only

values, is called ordinary; we will note ordinary nets as N' = (P, T,F,Mp). We write ©p and p® for the
def

multi-sets ©p, p® € M(T) of input/output weights for p, i.e. given, for t € T, by ©p(t) = W(t,p) and
p®(t) aef W(t,p). A marking of N is a multi-set M of places; if M(p) = k, we say there are k tokens on
place p; tokens are shown as black dots in the figures. My € 9U(P) is the initial marking of N.
Transitions may fire one by one, or in multi-sets; any transition multi-set § : 7 — [Np is called a step.
Denote as A the empty step, i.e. A(t) = 0 for all t € 7. The set of steps of A is denoted G(N). A step

0 is enabled in a marking M, denoted M i), iff M has enough tokens on all p € P to satisfy the sum of
demands from §, regarded as a vector in Z7, concerning p:

M(p) > (p%,9), (1)

where (-,-) :ZI7I xZ|7T' - Z is the inner product of Z!7'. Denote the set of steps enabled in a marking M
as Enabled(M) & {6| M i>} Of course, A € Enabled(M) for any marking M. Step ¢ transforms marking

2unfoldings for nets can be infinite net-like structures, see below.

extension, if u C X, write K[y]
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Probabilistic Unfoldings 7

M into marking M’ , denoted M M iff (i) M %, and (i) for all p € P:
M'(p) = [M(p) - (p,8)] +(®p, ). (2

Again, we trivially have M 25 M for any marking M. A marking M is reachable from My, denoted
Mo — M, iff: (i) M = Mo, or (ii) there exists a firing sequence Mg — My 2> ... 2% M4y = M.

Remark 1. W(z,y) indicates the number of tokens that pass through the arc (z,y) ot every firing; if y
is a transition, W(z,y) gives the number of tokens that need to be present on z to allow a firing of v,
and that will be removed from x by that firing. By contrast, is y is a place and thus x a transition, there
is no requirement on y for a firing of z; if x fires, it only depends on its input places (if any) for doing
so, and puts the indicated number of new tokens onto y, which cannot refuse them. This asymmetry,
reflecting the direction of time in the Petri net dynamics, leads us to consider arcs in T X P as passive,
as opposed to the active ones in P X T; if t F p but =(p F t), we say that p is passive w.r.t. transition t.
This distinction will play an important role in the unfolding semantics below.

2.2 Occurrence nets, Prefixes, Configurations, and Runs

Some further preparations before defining occurrence nets, the semantic domain for unfoldings. A tuple
of three sets N = (B,E,F) is called a net iff BNE = 0, and F C [(B x E) U (E x B)]. In particular,
forgetting arc weights and marking of a Petri net yields a net; but nets are more general than that
since finiteness is not required. N' = (B,E’,F ) is a subnet of N iff (i) B’ C B, (ii) E’ C E, and (iii)
F =Fn[(B' x E') U (E’ x B')]; for A C (BUE), the subnet of N spanned by A is denoted N[.A]. Write

ox ¥ Fx] and x° % Flx]; set <% F' and <=F". The conflict relations ic and # are given by:

1. For ej,e; € E, let e ic ey iff &9 75 es and °e; N °to ;'é 0.
2. For z,y € (BUE), let = # y iff there exist e1,e2 € E: (i) t1 ic ta, (i) t1 < z, and (iii) t2 < y.

For U C (BUE), write max< (i) and min. (i) for the set of maximal/minimal elements of & w.r.t. <,
respectively. Now, we are ready to define:

Definition 1. A net N = (B, E,F) is called a pre-occurrence net iff it satisfies:
1. no backward branching: |°b| < 1 for all b € B;
2. Acyclicity: With “<” obtained from F as above, —(x < x) for all x € (BUE);

3. Absence of auto-conflict: —=(z#z) for all x € (BU E);
4. N is condition-initialized, i.e. co % min.(BUE) C B.

The elements of b are called conditions, those of e the events of N. An occurrence net or ON is a
pre-occurrence net that, in addition, is

1. well-founded, i.e. there exists no infinitely <-decreasing sequence,
2. condition-bordered: max.(BUE) C B.
A causal net or CN is a pre-occurrence net such that |b°| < 1 for all b € B.

The place-bordered requirement is non-standard but means no loss of generality; any net meeting all
other requirements can be extended into a place-bordered one, without changing its other properties.

The following relations are useful in analyzing occurrence nets. The causal dependence relation is

i €< u <~1; with the identity relation id & {(z,z) : = € BUE}, define elementary concurrency as

0¥ (BUE)? — (liu# Uid). One obtains easily that (i) < is a partial order; (ii) li, co, ic and # are

symmetric and irreflexive; (iii) a pre-occurrence net N is a CN iff # = ().For a binary relation K, denote

RR n " 4426



8 Stefan Haar

as kens of K its maximal cliques w.r.t. set inclusion, and the set of K-kens as K(K). A co—clique X C B
of conditions is called a co-set. The maximal cliques of co (w.r.t. set inclusion) are called cuts; denote
the set of cuts as €(N) are called cuts. The cuts consisting only of conditions, i.e. maximal co-sets, will
be called condition-cuts; the set of condition-cuts is denoted €p(N). The condition-cuts are exactly the
maximal co-sets. In particular, cp = min<(E U B) = min<(B) is a condition-cut.

Now, let N be an occurrence net. For a node x, denote as x! & {y | y < x} and x* & {y |y <x}
the strict past and past of x, and similarly, the strict future and future of x as x' def {y | x < y} and
xfh & {y | x < y}. Further, denote the neighborhood of node x as °x° oy u {x}Ux°. For any set X
of nodes of N, call OH(X) Hxu 9U56(Xne) x°) the place-bordered or open hull of X. To compare sets
rather than individual nodes, we shall use the Egli-Milner order C: for X;, X5 C (BUE),

X1 C X, <d:e!f> [(X1€X1/\X2€X2):>X2 £ Xl]/\ [VX2€X23X1€X1: X1 < Xz]. (3)

Definition 2. A prefix of N = (B, E,F) is any set> U C (B UE) that is:
1. causally closed: If z € U, then x* C U;
2. condition-bordered: Y = OH(U); and
3. condition-initialized: co C U.

The set of prefizes of N is denoted Pref. A configuration is a conflict-free prefir C, i.e. such that
#N(C x C) = (. Denote the set of configurations of N as C(N). Let Q(N') be the set of mazimal cliques

of tg &f (co U li); the elements of Q(N) are called the runs of N.

Every configuration is a causal net. One has @ C C, and the runs are exactly the maximal configura-
tions ([26]). For any configuration C and node x, OH(C N x!) and OH(C — x!) are configurations;
so is the intersection of a configuration with a prefix, which includes the case of the intersection of two

configurations. Unions and intersections of prefixes yield again prefixes; in fact, (Pref,U,N) is a complete
lattice. Unions of configurations, however, do not yield configurations in general.

2.3 Unfoldings

Unfoldings reflects both concurrent and branching behavior of a general marked Petri net in the structure
of an occurrence net. There are different rules for these unfoldings (cf. [17, 25, 26, 27, 32, 41]). Every
unfolding is an occurrence net generated inductively by a net system, reflecting the initial marking by
the initial cut and representing subsequent firings of transitions by event nodes, and of subsequent place
markings by conditions.

2.3.1 Branching Processes

First, recall the most widely used occurrence net semantics, branching processes, shown as (I) in Figure-
fig:views ; the following definition is slightly more general than those given in [11, 17, 22, 32] since it
allows for arbitrary initial markings.

Definition 3. Let N' = (P, T,F,Mo) be an ordinary Petri net and N = (B,E,F) an occurrence net.
U = (N, co, ) is a branching process of N iff 7 : (BUE) = (P UT) satisfies :

(i) #(B) CP and n(E) C T;
(ii) for any e € E, 7 induces a graph isomorphism e between Ne &of N[°e°] and N, &of N[*n(e)®];
(iii) for all p € P, co represents the number of tokens on p under My, i.e. |7~1(p) Nco| = Mo(p); and

() Trreducibility: Ve;,es € E, °e; = °ey and w(e1) = w(e2) together imply that e; = es.

3By abuse of terminology, we will also call N[{] a prefix
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Probabilistic Unfoldings 9

Figure 3: A net (left) for which pre-selection falsifies the behavior (center, right; see [8])

Thus every condition b € B in N represents a token on the place p = 7(b), and different arcs leaving a
condition represent the different possibilities to consume that token. These different events can be firing
instances of different transitions, or different firing instances, events of the same transition, see (I) in
Figure 5. In [8], the probabilistic model is based on this semantics, and uses routing measures. These
measures assign, for a place p, probabilities to all transitions t € p*, indicating the probability that a
token in p is routed toward t; the successive choices and firings yield a configuration of the system. The
probability should then be given by the product of that of the individual choices. While this is natural
and simple if all probabilistic decisions are made in Free Choice conflicts — this is the case of [40] where
all other conflicts are non-randomized —, adjustments have to be made in more general nets: one has
to restrict the probability onto the coherent realizations, i.e. such that the choices of different routers
agree. To see the point, consider the left hand side of Fig. 4. Suppose a chooses B, b chooses D, and
¢ selects C (one can assume this has positive probability). Then the net is blocked, despite a wealth
of firing possibilities. Obviously, the probability mass lost due to such “runs” must be compensated by
renormalization.

This is solved in [8] by identifying substructures — layers — of the unfolding, on which the corrected
probability is determined; these layers then serve as building blocks in extending the probability to the
full space of system runs. There are several limitations to this approach (see [8]). For an illustration,
consider Figure 2: the branching of place a are not respected by the unfolding, new branches are added
that do not correspond to actual choices. We refer to this phenomenon as arc-scattering: two outgoing
arcs of place a, corresponding to options C and A in the net, become an infinity of arcs in the unfolding,
without giving actual new choices to a. In the unfolding, an infinite number of instances of A all use the
same condition, i.e. the same token on a, and are distinguished only by the number of times b chooses B
before selecting A. So the probabilistic choice of a is diffused over an infinite set of events, among which
a can not choose itself (we say that the unfolding is not choice-conformal), so the renormalization fails
in practice. The pre-selection method indicated on the right hand side of Figure 2 helps in this case: by
introducing dummy places that are not probabilized, one preserves the probabilistic choices of a without
introducing new behaviors. Note that there is, in fact, no need for a probabilization of the dummy place
since all choices are already determined by the router of b.

But if pre-selection helps avoid arc-scattering in some cases, it creates new difficulties in others.
Consider the net in Figure 3. Here, the three dummy places necessary to ensure choice-conformalness
give raise to a new possible system run which is blocked in a marking involving dummy places (indicated
in black), while the original system is live. There are still more difficulties, discussed in [8]; in our
view, these are intrinsic to the branching process semantics. Therefore, we shall be using an alternative
semantics, better adapted to probabilization.

RR n " 4426



10 Stefan Haar

______________________________________

Figure 4: Left: On coordination of routing; right: a cluster

2.3.2 Changing the View: Cluster Semantics

In fact, there is not ome but a multitude of possible unfolding semantics; the choice of a semantics is
the choice of a view on PN behavior. Recall that branching processes are driven, informally speaking,
by “token trajectories" and permit concurrency of events that do not compete for any individual token;
they reflect the individual token view. The collective token view leads to branching execution semantics
(Vogler [41], Esparza, Romer and Vogler [21], Haar [25]). It regards places as variables whose values
are given by the number of tokens; transitions then read from and write on these variables in mutually
exclusive access. As a result, auto-concurrency is excluded, i.e. no transition can fire more than once at
a time, even if the marking would allow several concurrent firings; also, transitions accessing the same
place may not fire jointly. This semantics does not reflect well enough the firing behavior to be a basis
for a probabilistic model, hence we will not be using that semantics, either.

In cluster semantics, shown in (IT) of Figure 5, we use the fact that A is naturally partitioned into
node sets that are “minimally closed under conflicts”, to construct unfoldings composed by local choices
of steps. These sets are the clusters of N according to the following definition (see [14]):

Definition 4. The cluster y(x) of x € (PUT) is the smallest set containing x that satisfies:
VtieT: tNyx) #0 = tey(x);
VpeP:  p'Nyx)#0 = perx

By extension, call cluster any set v C (P UT) for which there exist x € (P UT) such that v = y(z);
denote the set of clusters of N as T(N).

—~~

4)
5)

—~

See the right hand side of Figure 4 for an illustration. We will unfold N in such a way that the
events of the unfolding represent instances not necessarily of single transitions but of steps. So, joint
firing of concurrent transition instances will be reflected, in all of the above cases, by a single event.
However, using global steps would be unwise from a computational point of view, and also ignore the
actual independence of events at a great distance (in terms of causal influence) from one another. Hence,
rather than looking at all steps enabled in some global state of the net, examine the local steps within
each cluster; once enabled, they can be fired irrespective of the behavior of other clusters, and allow to
calculate the global steps, if desired, as their multi-set sums.

Definition 5. For v € I(NV), write P, “pn v and T, 7N v. A vy-step is a multi-set over T; let
G(v) be the set of y-steps, and Sr(N) & U{&(y) |y e T(N)}.

INRIA
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Figure 5: Engelfriet branching Process (I) and Cluster Process (II)

Thus, &r(N) C &(N), and the inclusion is proper in general. We will denote as

in()) €P, =% and out(y) & {pe (P\P,)|*pny # 0}

the sets of input and output places of a cluster v, respectively. Note that out(vy) is in general a proper
subset of 4*: in the cluster on the right hand side of Figure 4, place b belongs to v* but not to out(vy).
Clusters interact with one another by places; hence, call two clusters v, and 72 independent, written
Y1179, iff the set of shared places is empty:

sp (71,72) def (out(y1) UPy,) N(out(y2) UP,,) = 0;

otherwise they are dependent, written v;1D7,. Note that, by the definition of clusters, 74 # 7 implies
that for any x € sp(y1,72), x is a passive place for at least one of the two clusters v; and vo.

Definition 6. (Cluster processes) Let N = (P,T,W,My) be a Petri net, N = (B,E,F,co) an occur-

rence net, and let 1 : B - P, p: B — Ng and 8: E — & (N) be mappings. Then 11 & (N, 7,8, ) is a
cluster process of N iff

1. Irreducibility: for all e1,es € E, (°e1 = °eq) and (B(e1) = B(e2)) together imply e; = eq;
2. the initial cut reflects the initial marking: for all b € cq, p(b) = Mg (7 (b));
3. = is injective on co-sets: for all by,bs € B such that by co ba, one has w(by) # w(by);
4. Events represent steps: for alle € E,

(a) *B(e) = w(°e) (this condition is missing in [27]), and

(b) for any p € P such that *p® contains at, € § o B(e), there exist by, b,y € B such that:

i. *supp(d) N 7~ '({b}) = {bin} and supp(®)" N 77'({b}) = {bout},
i. p(bin) = (m(b)®, ), and
iii. p(bout) = ((bin) — (w(b)®,8)) + (®b, d).
IfI = (N,7,8,p) and II' = (Nl,w',ﬁ',,u’) are two processes of N' such that N’ is a subnet of N, and
', 8,1 are the restrictions of w, 3, p to N/, respectively, we call TI' a prefix of 1.
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Figure 6: A Cluster process (A-events omitted) for Fig. 3. Shaded areas show clusters (left) and tiles
(right).

The mappings 7 and 8 correspond to the structural unfolding, taking conditions to places and events
to cluster steps; since conditions represent states of places, we also need the mapping p to assign token
numbers to conditions. For Part 4b of Definition 6, compare the firability condition (1) and the firing
equation (2). We claim that to each condition-cut ¢ of the cluster unfolding corresponds a unique
reachable marking M(c) of A, such that for two cuts ¢1, ¢y and an event e, one has

=@\ Uue® = Mer) 28 M(cy). (6)
If the left hand side of (6) is satisfied, write c; ~5> ¢9; write ¢ ~» ¢’ iff there are cuts ¢ = ¢y, ... , ¢, = ¢’ and
events e, ... ,e,_1 such that ¢; ~> ¢;41 for i € {1,... ,n —1}. The following property is characteristic

of cluster semantics; no equivalent holds for branching processes.

Lemma 1. If all cuts are finite, every condition-cut c is in bijection via m with P.

Proof: Fix c; it suffices to show P C w(c). By definition, this holds for ¢ = ¢g. Since all cuts are
finite, cg ~ ¢ (see [11]), and the claim follows by induction using Definition 6. O

Now, letting be(p) be the unique condition in ¢ such that w(be) = p, and setting M(c)(p) &f 1(be(p)),
we obtain in fact (6), using 4b of Definition 6. As a consequence, every condition-cut ¢ and every finite
configuration C correspond to a unique marking, M and Mc = Myaxc(c), Tespectively; on the other
hand, the same M may be obtained from different configurations.

2.4 Tiles

A process net N is composed of basic pieces given by the clusters. In fact, let v be some cluster and e be
an event corresponding to a step & € &(v); then there is only one cluster v with this property, uniquely
determined by e, so we denote it by 7y(e). Moreover, °e contains a complete copy under 7—! of in(y(e)).
All events e’ that share at least one pre-condition from 7~!(in(vy(e))) with e and that belong to the same

INRIA



Probabilistic Unfoldings 13

cluster, i.e. y(e') = 7(e), will share with e all the pre-conditions corresponding to places of in(y(e)).
On the other hand, the corresponding steps of A have, in general, different output places or values, so
the corresponding events will differ in their presets by conditions that need not correspond to places in
in(y(e)). This motivates the following definition (see Figure 6):

Definition 7. The tile of e and its completion are defined as, respectively,

Ye) = ((enm'(in(1(e)) U{e' € E[y(e) =1(e) A in(y(e)) C m(°en °¢)}

vule) = d(e) (o).
A subnet ¢ (.) of N is called a tile (complete tile) iff there exists an event e € E such that 1 = 1(e)
(1 = ¥(e)); the set of (complete) tiles of N is denoted ¥ (¥,) .

All events of a tile are pairwise in conflict:
Lemma 2. For anye,e’ € E, if (i) e # € and (ii) 3" € E: e,& € 1p(e"), then e ic &' and hence e # €.

Proof: Suppose there exists a tile ¢ and events e,e’ € ¢ N E such that °e N °¢’ = §, and let
e” € E such that e,e’ € ¢(e’). By the definition of the unfolding, =—!(in(y(e))) N °e N °e” # 0
implies that 7=!(in(y(e))) N °e = 7~ !(in(y(e))) N °e”; by the same argument, 7~ (in(y(e))) N °e’ =
71 (in(y(e))) N °e”, from which the claim follows. O

Note that a tile is, in general, not a cluster of N: In Figure 6, condition dy does not belong to any of
the tiles 11, ¥ or Y7 containing post-events of dy; this is due to the fact that dy reflects an output place
of 1. In fact, do° is infinite; this does, however, not cause a problem for the probabilization since dy’s
outgoing arcs are passive, see below. However, a tile 9 represents all possible actions of the cluster (%)
given by «y(e) for any event e of ¢, under the local marking M obtained as

. def
Vp €in(y(¢)) : M(p) =

where b is the unique condition of v satisfying 7(b) = p.
The strong flow relation. Now, a further look at local causality between places and transitions.
Into the unfolding net, the cluster unfolding semantics puts arcs from condition b to event e if the

u(b),

corresponding place p o m(b)
(A) belongs to the same cluster v as S(e) and thus has an impact on its probability, or
(B) p is passive w.r.t. all transitions of v, i.e. p & -y, but receives tokens when § is fired.

Since passive places have no causal influence on the choice of steps, we consider as causal only those arcs
that do not belong to type 2.4 (B), and distinguish the corresponding arcs in the unfolding. Define the
strong flow relation of N as

F € F—{(be)e(BxE)|y(n(b) £}

in Figure 6, I is drawn in solid lines. The F-arcs are those that correspond either to a transition output
or to a proper transition input, i.e. one that actually removes tokens. Since F C F, one obtains a partial

order < by setting <% Ft; obviously, F* C F'. Observe that all tiles are oblong w.r.t. <: onehasb < b’
for any b € °¢ and b’ € F[yp)]. We cannot extend this statement to “<” (adding dotted in-arcs to the
tiles) since, as Figure 6 shows, the oblong property would otherwise be lost: Condition f0 precedes the
C-event of 5, but not the A in 5. Together with Lemma 2, the fact that tiles are oblong immediately
implies the following property, which will help characterize stopping times below:

Lemma 3. For any cut c € €&(N) and 1 € ¥(N), one has [(cN ) # 0] = [(c NFR]) = 0].

That is, ¢ may contain either entry or exit conditions of a tile, but not both.
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Y2 before V1

Figure 7: The non-determinism between clusters

3 Policy Directed Unfoldings

3.1 Ambiguity in Tiles and Non-Determinism Between Clusters

Clusters are pairwise disjoint by construction; this is not the case for tiles in general, as Figure 7 shows.
There, cluster v, has two different local markings in which it can fire transitions: the initial one shown
in the figure, and the one after a firing of B and with a token on b. These two situations are reflected by
two different tiles, 4% and 35, both of which contain the condition ¢;. In fact, the selection between 9
and v} is done not by a choice within a cluster but rather by the order in which the two clusters v; and
72 take their turns: if v, is considered first, the process will contain ¥¢ and 95 (Part (C) of Figure 7); if
the possibilities of 42 are explored first, and then 71, the process consists of 4% and )¢, as shown in Part
(D) of Figure 7. Note that choosing the event labeled “A+” in (C) leads to the initial situation in (D),
and vice versa; so under both orderings, the (essentially) same runs remain possible provided the “right”
choices are made; however, in general, the probabilities will change.

So the fact that the tiles in (B) are not disjoint is only one aspect of a more fundamental problem:
different clusters access the same place p in a non-deterministic order. Since only one cluster takes tokens
from p, the other clusters have no direct influence, so we may assume no two accesses are simultaneous;
the execution of a -step may also change the marking of one of its input places p, but since + is the only
cluster to which p belongs, no other cluster’s choice depends on p.

INRIA
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3.2 ND-unfolding

We will start by a non-deterministic unfolding algorithm that constructs processes as defined in Definition
6. Intuitively, the procedure is the following: The initial marking is represented by a set of conditions b,
such that w(b) is a place and u(b) the number of tokens present. Now, proceed inductively as follows:
Choose a cluster v and determine the set of y-steps enabled under «’s current local marking (i.e., the
global marking M restricted to the places p of 7). For each of these steps d, create an event e (i.e.
B(e) = 6); draw an F-arc to e from all b in the initial cut such that w(b) belongs to v or is an output
place of &; put a copy b’ of each pre-condition b of e behind e, i.e. with an F-arc from e to b’; and set
u(b') equal to p(b) plus/minus the effect of §. Further, for all post-places p of 3(e), draw an F-arc from
the condition b that represents p in the current cut c to e, and a F-arc from e to a new condition b’ with
m(b) = p; again, pu(b’) is determined by adding the effect of & (which can only be positive here) to u(b).
Repeat the above for the newly obtained C-maximal cuts. More formally:

Definition 8. (ND-unfolding) Let N' = (P,T,F,Mo) a Petri Net, with P = {p; | i € I}, and By =
{b; | i € I} a copy of P.

1. Let co = By; for i € I, set mo(b;) def pi and po(b;) def Mo(p;). Denote as No the occurrence net

No def (Bo,0,0), and as Bo the “mapping” Bo : 0 — Sr(N).

2. Let n € IN, and let N,, = (Bn,En,Fn) be given, as well as 7y, pn, and B,. Choose any cluster
v €T(N). To N, append a tile corresponding to the cluster vy, in the following way:
(a) Denote the set of co-sets a C By, such that m, : a — in(vy) U out(vy) is bijective, as A, and
set A, & maxr (Ay,) (a new y-tile will be appended to every set in 2As,.)
(b) For every coset a, let M, be the associated marking, i.e. Mqom = p- 14. For a € A, define

a & (an7~tin(y)) and a %f a\a; that is, @ contains the conditions corresponding to active

pre-places in v, and a the passive conditions reflecting the output of those steps. Let

Enabled(a) & {6 € 6(7) My -5} and Es % {es | 6 € Enabled(a)}.

Eztend B, to Enableda, i.e. Bni1g, = Bn, and Bnii(es) =) for all § € Enableda. Now, set

Ent+1 ®E, U (Uaeat, Ea)- For every & € Enableda, let a5 be the coset of conditions from a

affected by §:

as % (bed|Tteds: n(b)e*t).

Of course, every as contains a but not necessarily all of a. Let By s be a set disjoint from
B, U E,, such that there exists a bijection kqs5 : a5 — Bgs, and such that § # &' implies
Ba,s N Bas = 0. Extend B, to

def
Bayi = B, U (J l U BM].
ac?A, LI€Enableda

Accordingly, extend F as follows: set

F. U [as x {es}) U ({es} X Bays)] fora€Un, and Fryp “F, U Fe
d€Enableda acd,

Let mpy1 : Buy1 = P and piny : Bpyr — Ng be the following extensions of m, and py:

¢ [ m() : b eB,
ot # {0 bem
o = | ® F e
Pt )= [ (0) = (ma®)°,8E)] + (Cma®),B(e) s (b) =b €By
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Set

B.Y¥ UBnE¥ UE. R ® | Fa
nelN nelN nelN

Let mi : B — P, pi: By — INg, and Bx : Bx — S (N) be the colimits, i.e. tﬁe unique mappings
such that Ty, = Tn, Pxig, = Hn, and ﬂ*an = Bp for all n. Then Iy = (Nu, T, Bas fire) 18 an
ND-unfolding of NV.

We remark that the construction extends, in each round, every branch of the process by a tile associated
to the cluster «y selected there . In fact, every maximal configuration after the nth round contains exactly
one event per cluster of A added during the n-th round, since even the choice of inactivity in a cluster
results in an event, labeled A. The crucial step is number 2: Because of the non-determinism in the
choice of v in the above, the ND-unfolding is not unique. In fact, note first that stuttering is possible:
suppose that in Step 2 of Definition 8 the same cluster + is selected consistently in each round, and that
only the empty step of v is firable in My. Then the algorithm of Definition 8 yields an infinite branch
of copies of the same tile, corresponding to v under My, and all events labeled A, and no other branch
will be developed. The same effect occurs for any loop: Suppose transition t is only connected to place
p,ie. *t={p} =1t°, and p is sufficiently marked under Mg. Then t can fire an infinite number of times
without changing the marking. So, even to exclude the empty step would not be sufficient. The clusters
of N act as local players, and the rules according to which they take their turns crucially influence the
results, see below.

Full unfolding. First, we note that the unique maximal ND-unfolding can be obtained by forcing
the algorithm to consider, in Step 2, first all clusters simultaneously, compute the corresponding tiles,
and append them together; compare (B) in Figure 7. In fact, let II,, be the process thus obtained by
fully exploring all clusters in each round up to and including round n; then II,,, is a prefix* of II,,, for

all ny < ny. The family (IT,),, .y then yields, as n — oo, a limit process Il =(N,#,8,7), N=(B,E,F);
call II the full unfolding of A/. By construction, I is unique up to an isomorphism of labeled graphs.

Remark 1. Recall that the processes considered here all evolve in logical time, with no external clock to
measure the evolution. However, it will be useful to have a set of temporal constants; we will use for this
the n-th prefizes I1,, used above in introducing I1.

The full unfolding — more precisely, the space of its configurations — will be used, in the “probabilistic
part” of this paper, as the space of all behaviors under any control. Now, as we saw in the context
of Figure 7, selecting the clusters to be explored in the n-th round rather than exploring all clusters
simultaneously, yields interesting subnets of the full unfolding.

3.3 Designs

Assume that clusters are inspected in the order given by some infinite sequence d = d;,ds,ds, ..., where
every d; stands for the choice of some cluster v of V. Following the control theoretic terminology (e.g.
[7]), we will speak of designs for such sequences. In the n-th action, the cluster v, given by d,, chooses
one 7,-step d enabled in the current local marking on +,, and fires 4, thus possibly (note that & can be
A) changing the marking on 7, and its neighboring clusters. Then, 7,1 will take its turn, in the new
situation after v,’s action, and so forth; call the resulting partial directed unfolding II5. We note that
for fized d, tiles in IIg are pairwise disjoint.

Intuitively, the order of two independent clusters neighboring one another in d may be interchanged in
the unfolding process without changing I14. To formalize this, consider (Mazurkiewicz) traces of designs:
denote the set of infinite (arbitrary) words over alphabet C as C* (C¥); and, for d,d’ € T¥,

d = dyyd
A d = dyd |-
4by abuse of terminology, we use the term prefiz both for processes and the corresponding sets that span occurrence
(sub)nets.

d=d <% FJmeN,derl” derv, 7,7 €T : Iy A
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Write d ~ d' iff (i) d = d’, or (i) there exist d1,...,dy € I suchthat d =d; = ... =d, =d".
Obviously, ~(—) is an equivalence relation; denote the ~(_)-class (the trace) of d as [d].

Theorem 1. d ~_) d' implies that the unfoldings Ila and II); that are obtained choosing d and d',
respectively, are identical processes up to an isomorphism of labeled graphs.

Proof: It suffices to consider the case d = d’. Let n be the unique index such that d, = d;,,

and d!, = d,41. The processes II,,_; and II,_; obtained under the common prefix of d and d’ have
isomorphic occurrence nets N,_; and Nln—l’ and the isomorphism commutes, with m,_1, pp—1, and

Bn—1 in both versions. The extensions added for the the clusters y ' d,, and 5 4 d/, are strictly
disjoint since vIv’, hence the nets N,,+1 obtained under d and d’ are isomorphic, and the isomorphism
commutes with the respective versions of mn 41, fint1, and Bnyi1. Since d = dj, for all k > n + 2, the

claim follows by induction. a

So, it is possible to “parallelize” the construction of the unfolding using independence of distant clusters;
for the branching process semantics, parallelization has been studied by Heljanko, Khomenko and Koutny
in the forthcoming paper [29], using a different idea. Reviewing the proof of Theorem 1, we conclude that
for any I-clique X C T, all clusters of X may be considered simultaneously in Step 2 of the algorithm in
Definition 8, yielding the same unfolding (up to an isomorphism of labeled graphs) as any ordering of X.
This leads to the idea behind cluster nets, which we introduce next.

3.4 Cluster Net: Distributed Control for the Unfolding Algorithm

Theorem 1 tells us that the unfolding depends on d only via its Mazurkiewicz trace [d]. Thus far we
considered d as given; this implies the existence, at least in theory, of a global scheduler ordering the
actions of all clusters of /. This assumption is generally made in the literature on control for Petri
nets (see for example [28, 39]); compare the scheduler-luck games (Dolev, Israeli and Moran [16]; see also
[40]). We will show here that the scheduling itself can be done in a distributed way with a maximum of
parallelization, using an abstract Petri Net. This cluster net N7 is not itself included in the structure
of N, which remains unchanged; rather, it provides a formal model producing all parallelized policies
possible on NV. Thus, we can use a unifying model on several levels; in particular, the probability measures
we will introduce below for the local choice inside a cluster can also be used on the higher level to schedule
the global order in which clusters act. For this, we define:

Definition 9. Let ' be a Petri net with cluster set T = T(\), PL < P, and

ef
F' S {(1,p),(p) |pEY A Jtey: tFp}.

With W' (x,x) = 1 ry(x,x'), call NT © (P, T, WL, MF) the cluster net of A

In words, NT has one transition t, for every cluster
v of N, and one copy p, of every place p from N; p, is
a . — either (i) connected to t, by an two-way arc with weight
y(D)<—>(®) ’e/((@HV(E) one if E))E (vU out(fy))jor (ii) no arc at all otherwigse.
\ Every p, contains one token, implementing mutual ex-
\Caﬂ V(A) c clusion for actions of more than one neighboring cluster
d \@ (including ~(p)). Since all arcs of N1 go in both di-

f

'

rections, all transitions are individually enabled initially,
and MT is reproduced by every firing, so M is the only
reachable marking in A'T. One also deduces immediately
v(F) that, if AV is connected, N'T consists of a single cluster;
in non-connected nets, we may simply treat each con-
nected component separately, so assume without loss of
generality that AT is a single cluster.

Figure 8: Cluster net for Fig. 3 and 6; two-
sided arrows indicate the symmetric arc rela-
tion FT'
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Any design over N is a single transition firing sequence of NT. The enabled steps § of NT correspond
1-1 to the I-cliques of clusters of A; denote the set of these cliques as D = D(N). Call every sequence
A= (AE)nEN of cluster sets from N such that A represents a step firing sequence of AT a policy for
N; policies thus generalize designs.

Definition 10. (Policy-directed unfolding) Let N = (P, T,F,Mo) a Petri Net, and let A = (A}), (N

a policy for N'. Apply the construction of Definition 8, but with the following modification: in the n-th

round, append one tile for each cluster v € AL(y). Set Ba «f U,eN Bns Ea o U,eN En, and

Fa def UneNF”’ and let tA : Ba — P, pa : BA — INg, and Ba : BA — Grp(N) be the respective

colimit mappings as above. Then IIn = (Na,7A,Ba,pa) is the A-unfolding of N.

A prefix of the unfolding, for the net from Fig. 3, corresponding to ({v1}{v2,7s,7v4})*, is shown in
Figure 6, omitting all (-labeled events for clarity of the drawing.
We have now completed the non-probabilistic part of the model.

4 The Probabilistic Model

Using the unfolding studied above, we will now construct the measurable space for runs and probability
measures on it; the presentation uses standard terminology of probability theory, as used, e.g., in [12].

4.1 The Probability Space

Our probabilistic model needs to measure sets of runs. As we saw in the last section, the run realized by
N is determined by a policy A and the subsequent choices of steps in the clusters selected by A.

The Policy Space: Let (); be the set of possible policies, and P! a probability on the I-cliques of
NT (see below for examples); let A, be i.i.d., and for X C T, let P1{X} be the probability that A; = X’
So we identify w; with the unique policy A it generates; the associated filtration is (}'}l)neN, where F}!
is the o-algebra generated by the random variables Ay, ..., A,,.

As we saw above, every policy A is associated to a unique unfolding IT = IIA by virtue of Definition 10.
Now, consider the set of clusters A, = A, (w;) CT'; by assumption, A is a clique of I. Thus all v € A,
can choose their step independently of one another, given the local marking that has been reached after
all decisions in Aq,...,A,_1.

The Choice Space: While the first component ; of the joint probability space is thus associated
to the selection of a policy, identify Qs with the sample space of the subsequent choices of the clusters.
Every choice of v is a vector §(?") = ((5,&’ ’n))Mem(‘p,y) of random variables taking values in the set of steps
of v; that is, a random vector whose components are indexed by the possible markings that v may find
on P, when making its n-th choice. Further, (6(7’")) el nelN is a doubly indexed field of independent
varlables i.e. the choices on different clusters, and the different choices on the same cluster, are made
independently of one another.

Starting from cp, one obtains a unique run w using a fixed (w1, ws) € Q1 X Q9; so we will identify w
with (wl,wz) and Q with Ql X Qz.

Cluster measures. For v € I'(NV) and a local marking My € M(P,,), write Enabled(M,v) for the set
of y-steps enabled under M,. A choice measure family or CMF for  is a transition probability function
IP" = (IP}))mem(in(y)) Such that, for a given M € 9M(in(y)), IP}, is a probability on Enabled(M, 7). A
cluster measure family is a family (IP7),cr(ny of CMFs. Two important examples for construction of
cluster measures will be given in Subsection 4.2 below.

Tile measures. Now, any cluster measure family induces a family of tile measures: for e € E and

¥ =1v(e), let v v(8(e)), and set M(e) & - 1o, and P¥(e) & P (8)-

Filtrations. The following construction of filtrations (F;)pres) for © follows the one introduced in
[8], with a probability space containing all runs and filtered by increasing prefizes; compare Volzer’s [40]
cones.
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Let N = (P,T,W,M) be a Petri Net, and [l = (N, #,3,d) the full cluster unfolding of N'; here,

A~

N = (B, E, F), with initial cut co. Recall that all processes are prefizes of f[; we denote a prefix generically
as U, and the set of prefixes of N is Pref(N). For a run w € Q and a prefix U, define the U-segment of

w as the configuration wy, & wNU. For every fixed U, the relation ~y given by
/ def /
W~y W — Wy =Wy, (7)

is an equivalence on (2; its extension to C is an equivalence as well. Let F;; be the o-algebra given by:

W'~y w

AeF, <= K we'A):m/eA] ®)

Thus (Fu)uepret is a filtration over Q. For a node x, set Ay &f {w | x € w}; by extension, for a set X

of nodes, write Ax &of {w | X C w}. If no confusion can occur, we just write x (X) for the set Ax (Ax).
For ¢ € €(N), let 7. be the mapping that associates to every place p its unique representative in c, i.e.

T ({ph) ne = {m()}

For a fixed prefix U, define (w € Q): Cy(w) © . Now, if Cy, is finite, ¢y (w) & max(Cy (w)) exists and
is a cut; in that case, the marking at time U is the random variable My (w) def B0 Ty (w)-

Joint Probability. We construct inductively a probability IP on €2, adapted to (Fu/),,cqN- Initialize
with Po(c € w) = 1. Forn € N, let C, = C,(w), ¢, = ¢c,(w) and M,, as above. That is, in the
section n{w;) of prefix n given by A;(wy),... ,Ap(w1), the cluster choices governed by wy have let to the
configuration C,,, ending in condition cut c,, which represents marking M,,. Further, let ¢ be a tile such
that in(¢)) C ¢,, and e an event from 1; denote as § the step 3(e), and as -y the cluster corresponding to
1. Then, define inductively a family C,, of configuration- valued random variables, and the associated
probability measures IP,,, such that Py and Cq satisfy Po(Cy = ¢¢) = 1, and

Pri1(e € Cnta [Cr) = P! (v € Anta) - IP?y (0n | Mn) 9)
= Pl(’YEAl)'P;\YAn(GECn_i_l).

Remark 2. The above definitions have important consequences.

1. The recursion (9) yields a limit probability that we denote by IP; P is unique. To see this, we
use the Kolmogorov Extension Theorem (see for example [12]) with essentially the same argument
as in [8]: Take the increasing sequence (n), N of finite prefizes, given by Definition 10. Now,

setting [P o(co) %' 1 one obtains inductively from (9) a consistent family of marginal probability
measures P, ; by Kolmogorov’s Extension Theorem, the projective limit for this family exists (on
Qpn = UneIN n), and is unique. We denote this probability as P.

2. Further, one obtains a “random prefiz” U, = U(A1,...,A,) in the following way: set Uy o Co;
inductively add to U, all events corresponding to a step enabled in cluster A, under a marking
M(Un (w)), and the post-conditions of that event. For all n, the configuration C,, is finite and thus

yields a unigue marking M,, def Mc, as above. So M,, is a random variable in (0, F,,P,).

3. From the recursive construction of IP via (9), it comes as no surprise to see that the resulting process
is Markov; below, we will introduce the appropriate notion of stopping time and prove even a strong
Markov property.

4.2 Cluster measures

Consider a single cluster y of A and the y-steps enabled under the restriction M., of a marking M to .
We postulate that, to be coherent with Petri net dynamics, a probability measure for the choice of the
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step to be fired should depend in a functional way on M. As we saw earlier, there is no choice involved
in the creation of tokens: a step that fires is assured to produce its tokens on its post-places. By contrast,
it is at the beginning of a step that choices are made, i.e. the enabled steps compete for the incoming
tokens. Therefore, we have to equip with probabilities the input, and not the output of tokens: given the

choice of a step, the number and places of tokens to be created is fully determined. In what follows, let

0y &(7), let § be the random element of S(7y) to be selected, and F the o-algebra generated by the

sets Xin def {w € Q] 4(t) < n}, where t runs over 7, and n over INg.

In a cluster, all transitions influence one another by a direct conflict, or indirectly through a chain of
conflicts. However, suppose two transitions ti, ts € 7T, are structurally independent, i.e. (*t;Ut;*)N°ty = 0
and (*ta Uta®) N *t; = 0; denote this as “t; ind ty”. Then the number of times t; fires should not depend
on ty, given the the behavior of the other transitions of 7. Of course, there will be some influence of ty
on the possibilities of t;’s opponents; what we mean is that once the behavior of the rest of  is fixed and
known, the conditional laws for t; and ty are independent. To formalize this, we have to make a short
excursion in Markov Field theory, see [15, 24, 31]. For the local marking M on +, write (t1 depy t2) if (i)
t # to, (i) M = and M =25, and (4ii) *ty N *t; # 0; then G = Gm & ((T7),depy,) is an undirected
graph, in which two transitions are connected by an edge iff they are actively competing for tokens on
some place. Note that a change of M changes the topology of G: an edge from t; to ty is destroyed if
one of the two transition is no longer enabled under the new marking; and edges are created from newly

enabled transitions to their opponents. We are interested in the random vector £9 «f (&(t))ter, , where
£ is some observable®; each component of £ takes values in some common state space Z. Here, £ will be
related to the y-step to be selected; £ can be identified with the step in the second example below, and
will be converted into the step in the first example.

Now, for a subset & C 7, define the boundary of X as

def

ox = {t|3te(T,\X): tdept'}.
&9 is called (see [31]) a Markov field iff for all X C 75,
P (x| &rna) = P(Ex | &ox)- (10)

This requirement is natural in the light of Petri net semantics: the behaviors of two (sets of) transitions
that are not close neighbors are independent, once the behavior of their close neighbors is known. So,
Markov fields are a natural and important class of measures for cluster choices. It is well known (see [31])
that the following construction based on potentials yields Markov fields.

A Gibbs potential is a mapping D that associates to each subset X of 7, and observable state £ a
number Dy (€) = D(§x), such that Dx(§) = 0 unless X' is a clique of G)j. The energy U of £ is

def
uE) = - Dx(9); (11)
xcT,
obviously, the sum needs only be taken over the cliques of G;. The partition function is
Zy € N e, (12)
¢es
if Z, is finite, the Gibbs measure associated to the potential D is given by
def e U(EO)

For Petri nets, the variable we want to describe is the step J selected by ; d is assumed to depend in a
functional way on &, where the exact form of this dependency will change with the approach taken; see

5In the usual terminology of the literature on random and, in particular, Markov fields, the elements of the compound
state space are called configurations; we do not follow this tradition here to avoid confusion with the configurations of
concurrent processes.

INRIA



Probabilistic Unfoldings 21

the two examples below. What we are really interested in is the conditional probability that &g is selected
under the condition that some admissible step, i.e. enabled under M, is selected; that is, the probability

Py (6 = 0o | Xenabled(m)) 5 (14)

where Xgnapled(m) denotes the event that the random § is such that M O In fact, no other outcomes for
0 are admissible in the Petri net dynamics. Now, whenever

Pum(Xenablea(my) > 0, (15)
the probability (14) is simply

P (do)

P (6 = 8o | Xenabled(m)) m;

(16)
the non-degeneracy assumption (15) will be satisfied in both examples below.

4.2.1 Token Routing

Routing probabilities were used, e.g., in [8] and, as coin flips, in [40]. For every place p € P, introduce
M(p) i.i.d. random variables taking values in p* C 7,; that is, an i.i.d. router assigns every token on p
under M to a post-transition of p.

First, however, we modify the structure of v to account for idling: since we do not assume maximal
step firing in general, we do not force £ to assign every token for consumption. Formally, we add, for every
place p of v, a new transition t, ‘looped around p”, i.e. *t, = t,* = {p}, and W(p,t,) = W(t,,p) = 1,.
These t,’s model idling, i.e. if a step § € &(y) leaves k tokens on place p, we regard J as containing k
firings of t,. In this way, we only need to consider steps that use all tokens on in(v); set

def

7A:r = T,U{t,[p€Py}.

Then, fix routing probabilities 7, i.i.d. on the postset p* of p in 7'; that is, any token on p is routed
to t € p* with probability m,(t) independently of other tokens and other nodes. In the vector family
(&)ieT,, each vector (&:(p))pe++ indicates, component by component, the random number of tokens on
place p thus assigned to t. So, we will condition on the set where offer equals demand:

Enabled® % {5 €M(T;) | ¥p € in(y), tep: &(p) =W (p,t) -8 (1)}. (17)

Clearly, for a fixed ¢ € E, the set Enabled® is either empty or a singleton; in the latter case, § = §(¢).
Moreover, the definition (17) is local in the following sense: If Eqabledg is empty, then there exists a
transition t of G, such that &(p) # W(p,t). For every clique X C 7, of G,, set

AX) E {¢eZ|TkeN: MeX,p € *t: &) =k-W(p,0)]};
note that all cliques of G, corresponds to transition sets having (at least) one common pre-place. Define
the conditional (on Enabled®) potential as:

DY) E am (©)- lz 5(t)-In(vp (1) + Lzyay) (§) - 0.

Pe*t

In fact, the only non-vanishing summands contributing to Z; are those coming from enabled steps. The
Gibbs measure IP};, associated to DM, is exactly the conditional probability (14), since

Pu (X ) = 2 6€Enabled(M) e~V
Enabled(M)) = -
ravle S seonizy e 00
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In the example on the left hand side of Figure 4, with one token on each a, b and ¢, one has

B}, (5= 104) = Va(A) - [vo(ts) - ve(te) + 1(C) - ve(C) + v (D) - ve(D)]
M s va(A) - [w(te) - ve(te) +v6(C) - ve(C) + v4(D) - ve(D)]
+vo(B) [vs(B) - ve(te)]
+va(ts) e (ts) - ve(te) + vp(C) - ve(C) + vp(D) - ve(D)]

That is, probability of agreement of all routers on the step 1;4; divided by the probability of agreement
on some enabled step: offer equals demand.

4.2.2 Transition Coin Toss

In the second strategy, it is not the tokens that choose but the transitions: Assume every transition t €
chooses its firing degree §(t) by a “coin toss” decision & € INy; then, discard the choices combinations
that do not yield an enabled step. Here, we have no idling transitions, and we can identify § = £. For
t € 7, and k € N, denote as (k) the probability that & = k. For every clique X C 7%, of G, set

déf {§|Vp€'2\,’ Z nt/ _k W(pa)}a

tep*nNk

A(X)

then,
Dx(8) E (€ )Y €@ - Infm (E®)] + Lac) (€)oo
telX
In the context of Figure 4, this leads to
P, (104,) = na(1) - s (1) - 1c(0) + 15(0) - nc (1) +15(0) - nc(0)]
i ( na() - [s(1) -0 (0) + s (0) -ne(1) +15(0) - no(0)] )
0

+14(0) - [nB(1)-nc(0) +15(0) - nc(1) +n8(0) - nc(0)]

4.2.3 ... and more ?

The above list of possible cluster firing policies cannot be complete; it is meant only to give an idea of the
variety of models that will fit into the framework we present here. Some of the above have been considered
in the literature, although in less generality; in [1, 2], conflicts between individual transitions in GSPN
are randomized using static priorities and transition weights: the probability of firing t is the weight of t,
divided by the sum of the weights of all transitions in the conflict set. These conflict sets coincide with
the clusters here, in the class of Petri Nets where both definitions are applicable (in particular, where
all transitions have equal priority). There, single firing of transitions is required; so, steps of transitions
with a common pre-place are not considered as enabled, and auto-concurrency of transitions is excluded.
With the obvious generalization of the weight approach to steps, this randomization can be included in
our list. However, the framework of [2] is in a global time setting, and the non-determinism between
clusters is not resolved; so we can integrate only the idea of local weight randomization in our model,
and inside clusters only.

Note further that the enabling rule used here, known as step firing rule, is not the only one used in
the literature; two important other rules:

e The single transition firing rule allows only steps of the form &(t) oy (i (t) for some t € 7.

e Call a step § € Enabled(M) mazimal for M iff no further firing instance of any t can be added to §
without rendering (1) false for some p € *t:

VteT Ipet: M(p) < (p®,68) + W(p,t). (18)
Allowing only maximal steps yields the mazimal firing rule.

A change of the firing rule e.g. to single transition firing, can be implemented by setting the probabilities
of unwanted steps to zero; this will in general destroy the Markov field property since the constraints
imposed by firing rules like the above are global for the cluster.
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5 Stopping Times and Markov Property

The probability obtained from a choice measure family according to (9) randomizes the local choices only;
however, the randomness of a non-sequential process is brought about not by the local choices alone, but
also the ordering of the actions, see above.

5.1 Definition and Properties of Stopping Times

Let us have a closer look at the role of time. The standard notion of stopping times does not extend
in a straightforward way to the processes here, since their defining propertyrequires a set T of temporal
constants ezxternal to the evolution of the process. These constants will be the prefixes n, n € IN, intro-
duced above; recall that n contains all configurations possible under any policy and any choices up to and
including the nth round.

Definition 11. Let N and n as above. Then a stopping time of N is a prefiz T satisfying
VnelN: {w|w- Cn} € Fa (19)
Denote the set of stopping times as ¥; we will often write T(w) for w;.

Of course, if AV is an S-set, the stopping times as defined coincide with the usual ones in linear times.
We now give a structural characterization of stopping times: stopping times are exactly those prefixes
that respect tiles, in the following sense:

Definition 12. A prefix U is tile-respecting iff for any tile 1, [p N U N E] # 0 impliesp C U.

In words, the tile-respecting prefixes are those that contain all tiles with which they share an event;
consequently, tile-respecting prefixes are composed of tiles.

Theorem 2. A prefix 7 of the full unfolding is a stopping time iff it is tile-respecting.

Proof: Note first that all n are tile-respecting by construction. Suppose first that 7 is a stopping time
such that ¥, # (), where ¥, is the set

. E {p|E@) EENTNY) £D A E@W) E (E\1)Ny) £ 0}

Let U, & {ti | i € I}, and let n € IN be maximal such that no v¢; from ¥, is contained in n; let

1, ..., be the only tiles from ¥, that touch n. Then A &f {w | 7(w) C n} is the set of runs w such
that, for all 4 € {1,... ,k}, w N4 is either empty or contains an event from E'(v;); clearly, A & Fy,
contradicting the assumption 7 € €. — For the converse, we have to show that
wr C Wn / !
= C
W~y W } = w; Cwy (20)
holds for all n € IN and w € Q; but (20) follows since configurations are causally closed. O

The simplest examples of stopping times are constants, i.e. prefixes of the form n. A less trivial class,
and arguably the most important one, is formed by hitting times. For this, we first need some definitions:

Definition 13. Let i be a set of markings for N, and €y C €(N) be the set of the corresponding cuts:
¢ ¥ {ceC|IMced: ge=Mcomc}.

For w € Q(N), define the cut chir, s Chit, (W) &« ming (C(w) N €y), if the set of cuts on the right hand
side is not empty, and let the random variable Chi, be the configuration

) def (Chity W)* if Chir, 15 defined, and 21
Chiry (0) = { w otherwise. (21)
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Then the (first) hitting time for i1 is the prefiz

def
P = U Chitu (w) .
weN

The following lemma ensures that, in our setting, chir, and py are well-defined; here, an occurrence
net N is said to be of finite width iff |¢| € N for all ¢ € €(N).

Lemma 4. [11, 23] Let N be an occurrence net of finite width. Then, for all w € Q, €(w) is well-ordered
by C, and is a conditionally complete lattice.

We can thus proceed to show:

Theorem 3. For any set 1 of markings, the hitting time Thir, is ¢ stopping time.
Proof: For all n € IN, one has {w | wr, Cn} ={w]|Cpi,(w) Cn} € Fu. O
We close our investigation of properties of ¥ with the following:

Theorem 4. ¥ is a complete sub-lattice (see Lemma 4) of Pref.

Proof: Follows directly from Theorem 2 since the tile-respecting property is preserved by arbitrary
unions and intersections. O

5.2 Markov Property

The Markov Property for stochastic processes means, informally, that the future behavior may depend
on the current state, but not on past behavior, i.e. not on any aspect of how the current state has
been reached; if any stopping time can be taken as the present instant with this property, the process
is said to satisfy a strong Markov Property. Since the behavior of a Petri Net is intuitively memoryless,
it is an important test for our model whether it preserves that property. We will show here how the
Markov property carries over to the filtration here, and is satisfied by our model, no matter which cluster
measures are chosen. This question is of interest in two respects. Firstly, it shows that the probabilistic
cluster unfolding respects the absence of memory intrinsic in Petri nets: remember that the firing rule
and, consequently, the entire behavior of a Petri Net is determined by its current marking, independently
of the way taken to arrive in that marking. A Petri net A that started in My, reached M and continues
from marking M afterwards, is indiscernible from the net A obtained by replacing Mgy by M; its evolution
can be re-started from M without loss of information. Now, re-starting a stochastic process without loss of
information it exactly what is expressed by the Markov property. Secondly, the class of Markov Processes
is among those classes of stochastic processes whose asymptotic behavior can best be analyzed.

To reason about the future evolution, we need another family of o-algebras that abstracts in an
appropriate way from the “pre-history” of the process.

Definition 14. Fiz 7 € ¥. For £ C (BUE) and w,w’ € Q, let w ~¢ W' iff wNE and w'NE are isomorphic
as labeled graphs (i.e. the isomorphism commutes with 7, p and 3); note the weakening of “~” compared
to (7). We obtain a o-algebra Fg on Q by letting X € Fg iff:

weA

W ~gw

} = weuU

so the construction is analogous to (8) but based on a weaker equivalence.

Note that, if £ is a prefix, both definitions for F¢ are equivalent. Let the future of 7 be the subnet
3, of N spanned by OH([B UE]\7), and the o-algebra F3_ is defined according to Definition 14. Let the
slice of T be the set

s, € U .

Y. €W, (T)
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where U, (1) & {tx € U,in(yp) C T A € 7} is the set of complete tiles at the front of 7. For notational

convenience, write 6,7 U S;, and define inductively 6,17 def 00, for n € IN. By virtue of Theorem
2, {0, 7| ne N} C%.

Theorem 5. (Strong Markov Property) For all 7 € ¥ and A € F5_,
PA|F) = PAIM). (22)
Proof: For n € Ny, set S, def So,r- 3+ can be represented as
3 = OH( |J Sa) (23)
nelNg

3, can in fact be seen as the merger of all unfoldings obtained from the different markings M, (w), where

w varies over Q2. The OH(-) operator is necessary here, as below, since slices are not condition-bordered.
Define

K
3O L oH(| ) Sa) and 3ED L OH(| Sn)
n=0 n>K

thus 3, = 35 )y 3F (K+) By (23), there exists K € IN such that A € }' () - Hence we will be able to
prove (22) by induction over K once we will have established that, for w w e,

w ~g w’
(/\w N;((K+) o ) = W ~306) w'. (24)

Suppose w ~s, w' and w ~ ) w'. Then there is an isomorphism ¢ of labeled graphs (LGI) from

Wsy to wg, . By the definition of the cluster process, this implies w NOH(SK) w', and that there is an
LGI ¢* from OH(ws, ) to OH(ws, ) that extends ¢. Since w ~ ) w', one thus obtains inductively

a unique LGI ¢, from Wi (K+) to wﬁ(K+) such that ¢, extends ¢; hence (24) follows.
For K =1, we have A € Fs,. By definition of Fs,, it suffices to consider A of the following form: there
exists wg € 2 such that

A = {w|w~s wo}. (25)
Note that ~g, determines wN'S; only up to an isomorphism of labeled graphs; however, the set

Vi ¥ (Nwn$]|we A

of different subnets spanned by intersections of runs with S; is finite. For each v € V 4, choose some
wy € Q such that v is Njwy N'S;]. For a tile ¢ and a run w with ¢ Nw # @, let ey (w) be the unique
event of ¥ Nw # (. With these preparations, define a random variable X by

Xw € S | II PYesw))]|, (26)

VEV.A d)eqjv

where for v € V4, Uy, &f {t € ¥ |in(¥) C e, (wyv) A wyNep # O}; PY is the tile measure for ¢, and we
use the convention that [P¥ (ey(wy)) = 0 whenever ¢ Nw = (; this entails that the only non-vanishing
summands in (26) are those representing a probabilistic choice in favor of w. Now, X is Fs, -measurable

by construction; to show (22), it thus suffices to show

X = P(A|F). (27)
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In other words, we have to show that for any A’ € F,,
E[ty-X] = PANA), (28)

where E[1 4 - X] is the expectation under P. Again, it suffices to consider the case where A’ is of the
form A" = {w | w ~s, wy} for some fixed w) € Q. By virtue of (25),

XdP = P(A)- Y | I] P¥(eslwn)| =PUNA),

Al VEV_An_AI Yev,

so we are done; the induction K — K + 1 follows analogously. O

Remark 2. Note that a strong Markov property was also shown in [8], for branching process semantics;
the cluster semantics makes the result here more general and simplifies the technical parts of the proof.
Theorem 5 states a loss of memory of the evolution that led to the marking M. ; that is, the present
state sufficient to determine the law of the future is M. The strong Markov Property in [8] is based on
a different notion of “present”, requiring only partial knowledge of the global state. This is inextricably
connected to the branching process semantics used there; for cluster semantics, M. is the adequate choice
of “present state at 7’. Not further that, since the constants n are stopping times, Theorem § implies also
a weak Markov property.

5.3 Causal Independence

Although the concurrency relation co is often referred to as independence, two concurrent events need
not be stochastically independent. To see this, consider the events A and D in Parts (C) and (D) of
Figure 7: {A, D} is a co-set, yet the occurrence of A entails that of D, i.e. (A € w) = (D € w); and thus
P(AN D) = P(A), making stochastic independence impossible except for the trivial cases P(D) = 1 and
P(D) = P(A) = 0. Note: This and the example of the introduction cover two main types of confusion
in the sense of [3§]

The highest possible degree of independence in a general Petri net is that of jointly enabled steps
belonging to independent clusters 7, ... ,vk; this is illustrated in its purest form by the initial example
on the left hand side of Figure 1. In general, connected nets, this independence is necessarily conditional:

— given the current marking M and
— given the choice, in M, of an I-clique A containing 71, ... ,7% by the scheduling cluster N'T.

For the latter point, the choices of 71,...,7 are also pairwise conditionally independent given the
knowledge of whether or not their respective immediate neighbors are selected: this is the Markov field
requirement (10), which indicates the highest degree of independence possible within one cluster. Moving
on, Markov fields on all clusters (including N'T) give the highest degree of independence on all levels; any
modification of, e.g., the firing rule that destroys a Markov Field thus makes the evolution of the Petri
net less local, by introducing new non-local dependencies.

6 Conclusions

The results presented here lay the foundations for a probabilistic analysis of concurrent systems in logical
time. To develop a valid probabilistic model of concurrent runs, it was essential to change the semantics
used in describing Petri net behavior to cluster semantics. We have explored the “semi-local” cluster view
from [27] here, in conjunction with and motivated by probabilistic considerations. The essential property
that makes cluster unfoldings useful as a carrier of the probabilistic model is the decomposition into tiles,
which allows structural insight and easier manipulation.

Randomizing the choice of the cluster step by Gibbs potentials allows to preserve independence, see
the above discussion.In fact, it is interesting to note that the Gibbs potential approach — had we applied
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it without previously thinking of clusters — leads naturally to the partition of a net into clusters, since all
conflict cliques are contained in a cluster; hence the cluster unfoldings can be seen as a “Gibbs semantics”
for Petri nets.

The role of the cluster net N1 is to give some structure to the action of the clusters on the state of the
net. It can do so in more or less equitable ways. One may say that N'T distributes active time over the
“players”, possibly forcing one or the other to let time pass (and see tokens arrive) without a possibility
to progress in its turn; this behavior, which leads to structurally unbalanced processes, is excluded if the
cluster net decisions are non-degenerate and i.i.d.

Acknowledgments: I wish to thank A. Benveniste and E. Fabre for substantial comments, discus-
sions, and encouragement.
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