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Abstract: We consider a second order semi-elliptic differential operator L with measurable
coefficients, in divergence form, and the semilinear parabolic PDE

(O + L)u(t,z) + f(t,z,u,Vuo) = 0,YV0<t<T
u(T,z) = @(x)

and employ the symmetric Markov process of infinitesimal operator L in order to give a
probabilistic interpretation for the solution u, i.e. we solve the corresponding BSDE. We
obtain also a representation theorem for martingales which represents a generalization of
the representation theorem given by Fukushima for additive functional martingales. This
permits us to solve general (non-Markov) BSDE’s with semi-linear terms. The nonlinear
term f satisfies a monotonicity condition with respect to u and a Lipschitz condition with
respect to Vu. Finally we prove a comparison theorem and use it in order to solve a
stochastic control problem.
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Equations différentielles Stochastiques Rétrogrades
Associées & un Processus de Markov Symétrique

Résumé : On considére un opérateur differentiel de second ordre semi-elliptique L avec
des coefficients mesurables, en forme divergente, et "EDP parbollique

(8¢ + L)u(t,z) + f(t,z,u,Vuo) = 0,V0<t<T
uw(T,z) = ®(x)

et on emploie le processus de Markov symétrique d’opérateur infinitesimal L pour donner
une interprétation probabiliste pour la solution w ce qui revient a résoudre ’EDSR corres-
pondante. On obtient aussi un théoréme de représentation des martingales qui représente
une généralisation du théoréme de représentation donné par Fuckushima pour des martin-
gales fonctionnelles additives. Ceci permet de résoudre 'EDSR général (dans le contexte
non Markovien). Le terme non linéaire f satisfait une condition de monotonie par rapport
a y = u et de Lipschizianité par rapport & z = Vuo. Nous démontrons aussi un théoréme
de comparaison qu’on emploi pour résoudre un probléme de contréle stochastique.

Mots-clés : Processus de Markov symétriques, EDP semi-linéaires, Equations différen-
tielles stochastiques rétrogrades, Calcul stochastique de Fuckushima
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1 Introduction

Backward Stochastic Differential Equations (in short BSDE’s) have been introduced (in their
actual form) by E. Pardoux and S. Peng [10] and found applications in stochastic control
and mathematical finance. One motivation is also to give a probabilistic interpretation to
the solutions of a system of parabolic semilinear PDE’s (see [11]) of the following form

0y + L)u + f(t,z,u,Vuo) =0on [0,T] x RN, wur=®.

If f and the coefficients of the second order differential operator L are sufficiently
smooth then the PDE has a classical solution and one may construct the pair of processes
Yh® = u(s, X0®), Zb% =: Vuo(s, Xb®) where X1 t < s < T, is the diffusion process with
infinitesimal operator L which starts from z at moment ¢. Then, using It6’s formula one
checks that (Y, ZL%)<s<1 solves the BSDE

T T
ver =)+ [ fxem v 2y - [ zimab,.
s s

If f is linear then the solution of above BSDE has an explicit formula and the equality
u(t,z) = Y;'" = BE(Y;"®) yields the classical Feynman Kac formula.

On the other hand, if f and the coeflicients of L are just Lipschitz continuous then the
BSDE still has a unique solution but the PDE has no more a classical solution, so that one has
to consider generalized solutions. In a series of papers initiated by [11] one considers viscosity
solutions and more recently in [2] and [1] one considers solutions in Sobolev spaces for the
PDE and proves that the probabilistic interpretation given above remains true. Anyway, in
both these approaches, since the coefficients are Lipschitz continuous, the Markov process
X with infinitesimal operator L is a diffusion process which satisfies a SDE and so one may
use the flow X%? and its associated stochastic calculus .

In this paper we consider a semi-elliptic symmetric second order differential operator L
(which is written in divergence form; no nondegeneracy condition is assumed) with measur-
able coeflicients. Then X is a symmetric Markov process which does no more satisfy a SDE.
There exists no more a flow representing X and the usual stochastic calculus corresponding
to SDE’s has to be replaced by the calculus associated to such a process by Fukushima (see
[4]). We prove that the above PDE has a unique solution v in some Dirichlet space and
the stochastic interpretation is given as u(t,z) = Y¢, P® — a.s, where P? is the law of the
process X starting from z and Y is the solution of a BSDE (analogous to that considered
above) on [0,T — t]. We also solve a general BSDE, give a comparison theorem and use
them in order to solve a stochastic control problem associated to the Markov process X and
to establish the link between this control problem and the corresponding Hamilton Jacobi
Bellman equation.

The paper is organized as follows. In Sections 2 and 3 we use analytical methods to solve
the above PDE written in variational form

T T
/0 (e, Bep) + e(ur, ) dt = / (F(t, - ur, Vugo), 1) dt + (@, 1),
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4 Bally & Pardouz & Stoica

where @ is a test function. Here e denotes the energy associated to the operator L. Note
that Vu; does not exist in our situation, but we are able to give a weak definition of Vu;o.
Moreover we prove that the above weak equation is equivalent with the mild equation in L?
sense

T
ut,”) = Pr_y®() + / Py f (5, s, Viuyo) () ds. (1)

We assume that f is Lipschitz continuous with respect to its last variable, and satisfies a
monotonicity condition with respect to u.

In Sections 4 and 5 we extend to time- space functions the representation theorem given
in [4]. More precisely we prove that if u is the solution of the above equation then

N .t
u(s +t,X¢) —u(s,Xo) = Z/ ¢i(s + 7, X, )dM(r) — (2)
=170

t
—/ f+r, X u(s+7rX.),Dou(s+r,X,))dr .
0

The martingales M? which appear in the above formula are the “coordinate martingales”
introduced by Fukushima, ¢ is a generalization of gﬁ and D,u is a generalization of Vuo.
Note also that in the classical situation (Lipschitz continuous coefficients) dM = odB where
B is a Brownian motion. So the above formula is the analogue of the standard BSDE.

In Section 4 we prove that (2) holds under P™ where m is the Lebesgue measure (which
represents the invariant measure for the process X) and in Section 5 we strengthen this
result in the sense that the equality holds under each P* with x € N¢, where N is a set of
null capacity.

In Section 6 we employ the above results and a standard fixed point argument to prove
existence and uniqueness for the solutions of the general BSDE

T T
Y;=§+/ f(s,w,YS,Zsa(Xs))ds—/ Z,.dM,,
t t

where again the function fneed not be Lipschitz continuous with respect to y; only mono-
tonicity suffices. (The data & and f(s,w,0,0) are asumed to belong to LP (Q), resp.
L? (Q; L' (0,T)) ,p > 1.) The equality holds for all ¢ € [0, T], and P® —a.s for every z € N°.
Note that the exceptional set N' may be chosen independently of £. The interest of such
a result is the following: one may choose the exceptional set N such that, if the process
X starts from a point of A¢ , it remains always in this set. So N°¢ represents a natural
state space for the Markov process X. In some sense this would replace the lack of the flow.
As a consequence one finds a version of the solution which satisfies the mild equation (1)
pointwise.

Finally, in Section 7 we prove a comparison result and use it in order to solve a stochastic
control problem.

INRIA



Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 5

2 Preliminaries

Given a bounded measurable function o : RN — RN ® R",0 = (o}) ( with upper index
i=1,...,N, and lower index k = 1, ...,n) we define a := o0* = (a"?), where a™/ =}, oo}
and note (see the Appendix) that there exists a measurable function 7 : RY — R" @ R
such that
* *
c*or =0, oro=o0, |o7|=]|70|=1.

The matrix field 7 is fixed through the paper. Further introduce the bilinear form

ou ov

o) = [ a@) T @ @, uoe CX(RY)

where C°(RY) is the space of infinitely differentiable functions with compact support and
the convention of summation on repeated indices is in force. We also define

e1(u,v) = (u,v) + e(u,v),

where (-, -) is the usual scalar product in L2. We use e(u) for e(u,u) and e; (u) for e; (u,u).
We assume that (C°(RY),e;) is closable (see [4] for detailed definitions and notation).
Some general criteria imposing conditions on a in order that e; be closable are given in
Section 3.1 of [4]: essentially certain partial derivatives of a have to be locally in L? or a
has to verify a local ellipticity assumption. More precisely, a sufficient condition is that for
each x € RN there is some r > 0 such that one of the following two conditions holds:

i) %7 € L*(B,(z)),1 <i,j < N,

ii) There exists some ¢ > 0 such that a(y) > ¢I for every y € B, ().

The domain of the form (C°(RY),e1) ( i.e. the closure of C*°(RY) with respect to
e1) is denoted by F), the associated semigroup is (P;)¢>0, - which is a symmetric Markovian
semigroup that admits the Lebesgue measure m as an invariant measure. The infinitesimal
operator of this semigroup is denoted by (D(L), L). We recall that Yu € L2,Vt > 0, Pu €
D(L) C F and, if u € D(L),v € F then e(u,v) = —(Lu,v). A very useful inequality is (see
Lemma 1.3.3 in [4])

1
e(Pu) < o lulla,  Vt>0,ue L2 (3)

We introduce the space of functions

T
Cr = {¢:[0,T] xRN = R/ ¢; € F for almost each t, / e(pt, pp)dt < 00,
0
t — ¢ is differentiable in L? and t — ;¢ is L? — continuous on [0, T},

which turns out to be the appropriate space of test functions. Denote by Cr the space of
functions ¢ € Cr such that @9 = 0. For ¢ € Cr we define

T
|mu=<ww%@+/e@m@
t<T 0

1
)

RR n° 4425



6 Bally & Pardouz & Stoica

and we denote by F' the completion of C with respect to Il -

Remark 2.1 i) Ifu € F then, for almost every t,u; € F, fOTe(ut)dt < o0, and

T 1/2
llull; = (supllut||§+/ e(ut)dt> < 0.
t<T 0

i) Ifu€ F and ¢ € F then fOT udt € F and

T T
e (/ utdt,go) =/ e(uyg, )dt.
0 0

itt) The space F can be described as the space of functions u € L? ([O,T] X RN) such
that uy € F for almost every t € [0,T], fOTe(ut)dt < 00, and such that u; € L? for any
t € [0,T] and the map t — u; is L?—continuous on [0,T). This follows by approzimating
any such function with a sequence (uy) defined by

1/n
Upt = n/ Ugysds , t € [0,T)
0

the function under the integral being a suitable extension of u on a larger interval [0,T + €]
such that uy € F for almost every t € [T, T + €] (for example Uy = uar—_¢, fort > T ).

Note that C°([0,T] x RN) is not necessarily dense in F with respect to I, but in a
weaker sense given in the following lemma.

Lemma 2.2 For every u € ﬁ, there ezists a sequence u* € C([0,T] x RN),k € N, such
that fOT e1(ug — uf)dt — 0.

Proof. Consider the scalar product &; (u,v) = fOT e1(ug, v)dt and let @ be the closure of
C([0,T] x RN) with respect to the norm associated to €;. Since e is closable, €; is closable
also (i.e. if u¥ — 0in L2([0,1] x RY) and (u*); is Cauchy with respect to the norm induced
by @, then u¥ — 0 with respect to that norm) so that Q@ C H =: {u € L2([0,1] x RY) : u; €
Ffor almost every t and fOT e(ug)dt < 0o}.

Let us prove that Q = H. It suffices to check that if w € H and wL1(@ (in the sense of
€1) then w = 0. Assume that fOT e1(wyg, ¢y )dt = 0,Y¢ € C=([0,T] x RN). Replacing ¢; by
¢y with a € C2°[0,T] we conclude that for almost every t,e;(w;, 1) = 0,V € C(RN).
Since wy € F this yields wy = 0.

Finally, since F' C H the proof is complete.O

INRIA



Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 7

2.1 Linear Equations

For f € L*([0,T] x RN) and ® € L?(R"N) we consider the following parabolic equation on
[0,T] x RN with terminal condition at time 7 :

Oy + Lu+ f=0, ur = . 4)

In the case a > cl, with ¢ > 0, the treatment of this equation is classical (see [7]). In
what follows we slightly modify the classical arguments so as to cover the degenerate case.
The semigroup (P),~, , whose existence is assumed, will be used in an essential way.

Definition 2.3 : A function u € F is called a strong solution of equation (4) with data
(®,f) ift = ug = u (t,-) is L2—differentiable on [0,T), Oyu; € L2([0,T] x RN), u; € D(L)
for almost every t € [0,T], and the equalities in (4) hold almost everywhere.

A function u € F is called a weak solution of equation (4) if the following relation holds

T

T
/ (e, Brp) + elur, 1)) dt = / (fov 1) dt + (&, pr) (5)
0 0

for every ¢ € Crp.
One can see by direct verification that any strong solution is a weak solution. We note
also that the relation defining a weak solution is equivalent to

T

T
/ (e, Bep) + e, ) dt = / (Fooe) dt + (B, 07) — (g, 1), (6)

to to

for every to € [0,T] and every ¢ € Cr, as one can directly check. Below we give sufficient
conditions for the existence and uniqueness of a strong solution.

Proposition 2.4 i) If ® € L*(R"N) then t — Pr_;® is L?>—continuous on [0,T], L? -
differentiable on [0,T) and 8;Pr_+® = —LPr_;®.

i) Let f : [0,T] x RN — R be a function such that t — f; is differentiable in L*
and t — O, f; is L?—continuous on [0,T]. Then the function w(t,z) =: ftT P, . fs(x)ds is
L2—differentiable on [0,T)] and

T
Opw(t,z) = —Pr_sfr(z) + / P,_10sfs(x)ds.
¢

Moreover, t — dyw(t,x) is L?—continuous on [0,T).
iti) Assume that ® € L?(RY), f satisfies the hypothesis in ii) and define

u(t,z) = Pr1®(z) + /t Py o fo(2)ds.

Then u is a strong solution of (4).

RR n° 4425



8 Bally € Pardouz & Stoica

Proof. i) The assertion is a consequence, among other things, of the fact that P,® €
D (L) for each ¢ > 0.
ii) In order to compute the derivative d;w one writes

T—t—r T—1
Wi — 0 / Pifogridl — / Pifyprdl
0 0

T—t T—t
/ P (feart1 — fer1) — / P feyrdl.
0

T—t—r
Then one deduces that

1 T
- (Wigr —wy) = / P;_10sfsds — Pr_; fr.
¢

Let us now prove iii). By i) LPs_;fs = 0s(Ps—t fs) — Ps—+0s fs and further, by i) and ii),
T
Lut = LPT_t‘I) + / LPs_tfst
t

T
= —OPr_®— fi+ Pr_ifr — / P, 0, fsds = —Ous — fi.
¢
O

Proposition 2.5 Assume that f € L2([0,T] x RY) and ® € L2(RN). Then the equation
(4) has a unique weak solution u € F and it is given by

T
u(t,z) = Pr_1®(z) + / Py o f,(z)ds. )
t
Moreover, the solution satisfies the following relations

T T
||ut||§+2/ e (us) ds:2/ (fs,us) ds+||<I>||§ ,0<t<T (®)
t ¢

. < € (IR + 1132 o775 ) (9)

Proof Uniqueness. Let 4 = v — w where v,w € F are two weak solutions of (5). Then
u satisfies

T
/ ((ug, Opp) + e(ug, ) dt = —(uzy, P15 )5 Vio > 0,p € Cr. (%)
to

Define 1 re
WW@Z—/UH&MS
€ Jo

INRIA



Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 9

with the convention u(t,z) = 0 for T <t < T + . We check that «¢ fulfills (*) also. We
denote 2 =: p,_s and employ (*) in order to get

T
/ (uf, Buipr)dt =

// (Ugts, Oppy)dtds = — // (wt, Orp} )dtds
to+s

ds =

- / l (utJ (pt)dt + (ut0+87 (pt0+s)
€Jo to+s

1 1> T
——/ l/ e(Utys, pe)dt + (ut0+87¢t0)] ds =
€Jo to

T 1 5 1 5
= = [ el [ wndside = G [ ungrds.on) =
to €Jo € Jo

T
S / e(us, pr)dt — (5, ).

to

Since t — uy is continuous in L2, it follows that ¢+ — u$ is differentiable in L? and G;u$
is continuous. So, the function u* is in Cr and we may write

T
| 00) + el uihe = = (u, ).

to

Since 0 (u§,u§) = 2(u§, Opus), it follows that

r 1 1
| o= 5 [ outu uf)de = =5 i, i)
to to

and we get 3 (uf,,uf ) + ftz;e(ui,ui)dt = 0, that is uf, = 0. Since uy, = lim. u§, in L? the
uniqueness follows.

Existence. Let us first consider the case when f satisfies the conditions ii) of the preceding
proposition and & € D (L). Then we know that the solution is given by the relation (7).
Moreover, since ® € D (L), one has that u € Cr, and hence this function may be introduced
in the relation(6) as a test function. This establishes the relation (8). In order to deduce
the last estimate in the statement, one uses (8) and the following consequence of Schwartz’s

inequality
T 1 /T X 1 [T )
(foous)ds < 5 [ fsllyds+ 5 [ llusllz ds -
¢ 2 Ji 2 Ji

Then (9) follows from Gronwall’s lemma.

In order to obtain the result for general data f,®, one takes a sequence of functions
(fe), € C ([0, T] x RN) such that fr — f in L? ([0,T] x R") and a sequence of functions

RR n° 4425



10 Bally & Pardouz & Stoica

(®r),, C D (L) such that ®, — @ in L? (R"Y). Let u; denote the solution corresponding
to the data (fg,®r). Then the relations (8) and (9) can be used to deduce that (ug) is a
Cauchy sequence in F'. The limit u = limy, uy, is the solution corresponding to the data (f,®)
and it satisfies the relations (8) and (9). O

3 The Nonlinear Equation

In this section we deal with the nonlinear version of equation (4), which takes the form

(O + L)u(t,z) + f(t,z,u(t,z), Vu(t,z)o) =0, u(T,z) = ®(x). (10)

We look for a weak solution of this equation in the space F'. Note that if a > cl, then F = H!
and, since u; € F for almost any ¢, the gradient Vu(¢, z) is well defined in the above equation.
But in our general situation this is not necessarily true, so that we first have to give a sense
to Vuo. Set D, =: Voo for any ¢ € C®°(RY), define Vo = {D,p : ¢ € CX(RN)}, and let
V be the closure of V; in L2 (RV; R™) .

Proposition 3.1 i) For every u € F there is a unique element of V, which we denote by
Dsu such that

e(u.0) = [ (Dyu(a). Dyol@)) da, Vg € O ().

One has D,uto = D, u. Moreover for u,v € F
e(u,v) = / (Dou(x), Dyv(z)) dz.  (+%)
RN

i1) Furthermore, if u € ﬁ, there exists a measurable function ¢ : [0,T] x RN — RN such
that |po| € L2([0,T] x RN) and D,u; = ¢y0 for almost all t € [0,T).

iii) Let u*,u € F,k € N, such that u* — u in L2([0,T] x RN) and (D,u*), is Cauchy
in L2([0,T] x RN). Then D,u* — D,u in L%([0,T] x RY), i.e. D, is closable.

Proof. Uniqueness. Let v,w € V which verify the relation in the statement, i.e.
they may replace D,u in the right hand side of the first relation in the statement. Then
J (v —w,Dyp)dz =0 for every ¢ € C° and, since v — w € Vy, this yields v = w.

Existence. We treat directly the time dependent case: for a given u € F we construct a
measurable function ¢ : [0,T] x RN — RY such that |¢o| € L%([0,T] x RY) and, for almost
every t, ¢s0 = D, uy.

Let u* € C°([0,T] x RN),k € N, be such that &, (u* — u) — 0 (see Lemma2.2) and let
¢* = Vu*. We have

e(ug, @) = /RN (Dyui(z), Dyp(x)) dz, Yo € C°(RN). (%)

INRIA



Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 11

so we may define ¢ = limy ¢¥o and ¢ = 97 (the matrix 7 is associated to o and has
been introduced at the beginning of the paper). Since o076 = ¢ and ||7o]| < 1, we have
D,u* = ¢*c = ¢Foro — Y10 = ¢o in L2([0,T] x RV; R"). Passing to a subsequence we
may find a set A C [0, 7] such that [0,7]\ A is negligible and for every t € A, e(uf —u;) — 0
and ||(¢f — ¢¢)o|, — 0. We fix t € A and write (*) for uf and ¢f,

e(uf o / (¢Fa( ¢(z)) dz, Yo € CZ(RM).

Passing to the limit we get the relation for u; and ¢;.

Let us now prove iii). Let v = limy D,u*. Passing to a subsequence we may assume that
for almost every t € [0,T], ||vt - Dguf”2 — 0. We fix such a t. We take p € D (L) C F and
we write

(vt Dop) = lim(Douy, Do) = lime(uz, ) = —lim(uf, L) =

—(ut, L) = e(ug, ) = (Dyug, Dy p).

Since D (L) is dense in F' with respect to e , {D,¢ : ¢ € D (L)} is dense in V. It follows
that Vg = Dgut.D

NOTATION:We will preserve in the rest of the paper the notation D,u,
introduced in this proposition for v € F. Moreover, we denote by Vu the set
of all measurable functions ¢ : RY — RN, such that ¢o = D,u as elements of
L*(RN,R"). Ifu € F, then the same notation Vu will denote the set of all
measurable functions ¢ : [0,7] x RYN — RN such that |¢o| € L?([0,T] x RN)
and D,u; = ¢io for almost all ¢ € [0,T].

Remark 3.2 Ifa > cI on some open set D C RY and u € F, then Vu exists on D (in the
L? sense) and Vuo = D,u on D. In the degenerate case the set Vu may contain more than
one element. Obviously D,ut € Vu.

3.1 The case of Lipschitz conditions
Consider now a measurable function f :[0,7] x RY x R x R™ — R such that
(t,x) = f(t,2,0,0) is in L([0,T] x RY), (11)

|f(ta$7yaz) - f(tawaylazl)l < C(|y - yl| + |Z - zll) (12)
and a measurable function ® € L? (RY). With the above notation, equation (10) may be
more appropriately written as

O+ L)u+ f(--,u,Dyu) =0, up = 9. (13)

In fact, we are going to treat the weak form of this equation, which can be written as

T T
/ (e, Byue) + (g, ) ]dt = / (F(t, - ue, Dyur), po)dt + (®,07), Vg € Cro. (14)
0 0

RR n° 4425



12 Bally & Pardouz & Stoica

We also consider the mild equation (which corresponds to the explicit formula (7) in the
case of linear equations):

u(t,x) = Pr_y®(z) + /T Py f(s,-,us, Dyus)(x)ds, dx— a.s. (15)
t

The meaning of the above equations is given as follows. If u € ﬁ, then u, |D,u| € L*([0, T] x
RY) and, on account of assumptions (11) and (12), one deduces that the function

fu(,x) = f(t,z,u(t,x),Dyu(t, x))

belongs to L([0,7] x RY). Having this in mind, we should look at equation (14) as being
nothing else but equation (5) written with f,. Similarly, equation (15) should be understood

~

with f, under Ps;_;. Then, by Proposition 2.5, a function u € F' is a weak solution of the
nonlinear equation (14) if and only if it solves the mild equation (15).

Theorem 3.3 Assume that f satisfies conditions (11) and (12) and that ® € L* (R").
Then equation (14) (respectively(15) ) admits a unique weak (resp. mild) solution u € F.

The solution satisfies the following estimate (with C' the Lipschitz constant in (12)),
2
lulfy: < 0205 (@I + 11£ -0, 0) 2o 112wy ) -

Proof. We define the operator A : F 5F by
T
(Au)(t,2) = Pr_,®(x) + / Pyt f(5,- s, Dyus)()ds.
t

By Proposition 2.5 we know that Au € F. We shall prove that, if T is sufficiently small,
then A is a contraction with respect to ||-||; and so the existence and uniqueness of the
solution of (15) follows - a standard recurrence procedure permits then to extend the result
to any 7. First of all

le(Aug — Av)2 = [e( /t Poci(fus — fuou)ds)? < /t [(Pa—t(Fus — fors))]/2ds <

IA

T
ds
/ ”fu,s_fv,snz ’
t 2\/8 —t
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Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 13

so by using the hypothesis (12)

T
/ e(Auy — Avy)dt
0

T T 2 T T ., ds
< f s | < [ VT [ Sl e
L] s [ N P
T \/— T
= /0 ds”fu,s_fv,sug o \/—dt<KT/ ds”fu,s_fv,sug <
T 2 2 r 2
< KT/ ”Us_Us||2+||D0us_Dovs||2 ds:KT/ (||u5—115||2—|-6(u5—’l)s)) ds <
0 0
< KT |u—vl7.

A similar but simpler calculation shows that ||Au, —Avt||§ < KT||u—v||§~ and so
[|Au —Av||§1 < KT||u—v||§,. Now we take T sufficiently small in order that KT < 1
and the proof of existence and uniqueness is finished. It remains to prove the estimate in
the statement. We write

T
/ (fu,saus) ds| <
t

T T T
/t (o (0,0) ,up)] ds + C / a2 ds + C / 1D ttglly sl ds <
1 [T 5 1 1.\ (7 5 1 [T

- II1fs (-,0,0)|5ds + | =+ C + =C ||us|l5 ds + = e(us)ds .
2/, 2 2 \ 2/,

Then relation (8) gives

IN

IN

T T T
lully+ [ eCuds <[1@l+ [ 1f, (0.03ds + (1420 +¢%) [ fuilids
t t t
and Gronwall’s lemma yields the inequality of the statement. O

Remark 3.4 The spaces Cr and F introduced above may be defined in a more general
set-up, for arbitrary Dirichlet spaces. Moreover the content of these first sections remain
valid for other Dirichlet spaces (e.g. for the Dirichlet space corresponding to the infinite
dimensional Orenstein -Uhlembeck process).

3.2 Monotonicity conditions

The nonlinear equation we are going to treat now is determined by a measurable function
f:[0,T] x RN x R x R™ — R, which satisfies the Lipschitz condition with respect to z,

|f(t,w,y,z)—f(t,x,y,z')|§C|z—z'|, (16)
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14 Bally & Pardouz & Stoica

with t,x,y, z, 2’ arbitrary and C > 0 a constant, but instead of the Lipschitz condition with
respect to y, it is assumed to satisfy some weaker conditions. First one assumes that for any
fixed triple ¢, x, z the map y — f (¢,,y, ) is continuous. The main substitute for Lipschitz
continuity is the following monotonicity condition

(y - yl) (f (t,x,y,z) - f (t,.’L‘,yl,Z)) S 15 (y - yl)2 ’ (17)

with arbitrary t,z,y,y’, z and a fixed constant p > 0. We will prove existence and uniqueness
for the nonlinear equation with functions f satisfying the above and other supplementary
integrability and boundedness conditions. In order to treat this case, it turns out that
another functional analytic frame is needed. In fact we need a slight generalization of the
preceding, which is next introduced.

Let 6 € C' (RY) be such that 0 < 6(z) < |z|, and 6 (z) = |z|, if [z] > 1 and de-
fine for p € Ry, m,(xz) = exp[—pb (z)]. These functions may be taken as weights and
modify the functional spaces previously introduced as follows. Instead of the Lebesgue mea-
sure we will use the measure m, (dz) = 7, () dz. Consider L2 = L? (RN ,dm,) with the
scalar product (u,v), = J wvdm, and the corresponding norm ||-|| ,- Similarly define the
weighted energy e, (u,v) = [ (D,u,D,v)dm, and the space F, which is the completion
of C. (RN) with respect to e, (-,-) = (,, ), + €, (-;-) . Then define the time-space norm

||u||; = Sup;<r ||ut||i + fOT e, (u) dt and the space ﬁp of time-space functions obtained as
the closure of the space C, 7 of all functions u : [0,T] — F,, which are L?—differentiable
P 14 P

with L2—continuous derivative, and such that fOT ep (ug) dt < oo (analogous to Cr). One
should mention that our assumption concerning closability of the form (C. (RY) ,e;)implies
that for each p > 0, the form (C. (R"™) ,e,,1) is also closable. Also note that if u € F,, then
ut € F, and it is not difficult to show that Dyut = 14,50} Dot a.e.

We denote by (P,),, the semigroup associated to the Dirichlet form e,, and L, its
generator. Clearly, one has L, = L — B,,, where Byu = p(D,8,D,u) is a mapping B, :
F, — L? that satisfies 1Bpull, < cpe, (u)1/2 ,u € F,, with a constant ¢ which depends only
of our function 6 and of the matrix . When p = 0, of course one has m, =m, B, = 0 and
everything is as in the previous section. The linear evolution equation which is naturally

associated to L, takes the form
@+ Lp)utf=0,ur =29, (18)

with f € L? ([0,T] x RN,dt ® dm,) and ® € L2. The weak solution is a function u € F,
satisfying the relation

T T
/ (e, Oup) -+ (e, 1)) dt = / (Forpr), dt + (B, 07), — (0> 910

to tO

for all ¢ € C,, 7. The statement of Proposition 2.5 remains valid in the sense that everything
should be modified with a p—parameter.

One technical ingredient for the treatment of the monotonicity condition is the following
lemma.

INRIA



Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 15

Lemma 3.5 If (f, ®) satisfy the above mentioned integrability conditions, u is a weak solu-
tion of equation (18), ut (t,z) = max (u (t,7),0) and 0 < t; <ty < T, then one has

to
t

to
ot [ ety ds =2 [ (), ds

Proof.In order to deduce the relation of the statement one may say that roughly, ut
has to be introduced as a test function in the weak equation. Since the positive part of wu,
the function u™, is not necessarily a true test function, we will use an approximation of it
as follows. Let h be defined by

h(t)=0,if |t|>1, h(t)=t+1,if t € (-1,0), h(t) =1—¢t,if t € (0,1)

Then set hy, (t) = kh (kt) ,k € N. One obviously has

/h =1, /hk =1, K =11,0) — Loy, by (t) = KR (kt).

We define
Ukt = /ujhk (t — s)ds,
which clearly make sense for large k if ¢ € (0,7). The function u; may be used as test
function over an interval (¢1,t2) with 0 < t; < to < T. Therefore we may write
tg t2
/ [(usa asuk,s)p + €p (u87 uk,s)] ds = / (f6‘7 uk,s)p ds + (utz ) uk,t2)p - (ut1 ) uk,t1)p
t1 t1
and pass to the limit in this relation. The only thing that remains to be proved is that
12

) 1
oy e (A R A R

In order to check this relation we will write vy, = O;ux,: and observe that

Vgt = /ujh}c (t—s)ds.

So, the expression we have to examine may be written as follows

to
/ / (ut, u;")p hy, (t — s) dsdt.
t1

Now we assert that
to

lim uy ,uf) hj (t—s)dsdt=0. *)
t s/)p''k

k Jiy
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16 Bally & Pardouz & Stoica

Indeed, the simple inequality u; u} < (uy — us)”, reduces the problem to the estimation of
g — usll; -

At this point we make the supplementary assumption that the function f satisfies the
assumptions of Proposition 2.4 (that is ¢t — f; is L? -differentiable and t — 8, f is L? -
continuous). One can easily see that there is no real loss of generality in doing so, because
once the lemma is proved, the function f may be approximated by such functions and the
relation of the lemma passes to the limit.

Then, on account of assertions i) and ii) of Proposition 2.4, the function t — u; is L?
-differentiable with bounded derivative, and so one has |ju; — us||3 < const. |t — s|°. This
estimate together with the above mentioned properties of hj, imply relation (*).

On the other hand, for any continuous symmetric function j : [0,T] x [0, 7] — R one has

ta

. . 1. .
tim [ [[5 )y (- ) dsde = 51 t2,02) — (8, 10)],
t1

which leads to

[t 1
lim . /(uj,uj’)ph;c (t— s)dsdt = 3 [Huj;“p = |Jui Hp] .

The proof is complete.O]
The nonlinear equation with parameter p corresponding to the above linear equation
looks as follows
(at+Lp)u+f('7'7u7D0'u):07 U’TZ(I)J (19)

with the function ® taken in L?). In the case of Lipschitz conditions with respect to y and z
one treats this equation exactly as we did in the case with p = 0. In the case of monotonicity
condition the contraction principle works similarly, except that now the main problem is to
ensure that f (-,-,u, Dyu) belongs to L? (dt ® dm,) , in order for the notion of weak solution
to make sense, and then to be able to yield by iteration a sequence to which one can apply
the contraction argument. The main point is the following comparison result.

Proposition 3.6 Let f' : [0,7] x RN x R x R® -+ R, and u; € ﬁp, i = 1,2 be such that
(- ut,Dout), f2 (-, -,u?,Dyu?) € L2 ([0,T) x RN, dt ® dm,) . Assume that f' satisfies
the conditions (17) and (16) and that the following inequality holds f* (-,-,u?, Dou®) <
2 (- u?, Dou?) . If u' is a solution of equation (19) with function f* and final condition
&t i =1,2 and moreover ®' < &2, then one has

ul < ul.
Proof.Set v = u! — w2, ¥ = &' — &2 and g = f! (-,-,ul,Daul) —f? (-,-,uz,Dgu2).

Since v is a solution of equation (18) with data (¥, g) one can apply the preceding lemma
and get

T T
o242 [ e iy ds =2 [ (fuvof) ds+ o
t t
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Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 17

Then we use the conditions of our statement and get
fv+ — (fl (-,-,ul,Dgul) _ fl (-,-,uz,Dgul)) ot +
(fl (',-,uz,Dgul) _ fl (-,-,uQ,DguZ)) ot +
(f* (- u?, Dyu?) = f2 (-, u?, Dyu?)) vt
< (U+)2 +C |Dyvt|vt.

Since vJTr = 0, the preceding equality leads to the estimate

T T
||vt+||i+/t e, (vF) ds < (2u+C2)/t ij”ids.

Gronwall’s lemma implies v+ = 0.0
Now, in order to treat the nonlinear equation under the monotonicity condition, we are
imposing an integrability condition. Namely we shall assume that for some r > 0 and p > 0
the function
gr (t,x) = sup |f (t,z,y,0)], (t,z) € [0,T] x RY (20)

lyl<r
belongs to L? (dt x dm,,) .

Theorem 3.7 Let f : [0,T] x RN x R x R® — R be a measurable function which is con-
tinuous with respect to y and satisfies conditions (16) and (17). Assume that the func-
tions f° (t,z) = f (t,2,0,0) and ® are bounded and the function defined in (20) belongs to

L? (dt x dm,) for somer >0 and some p > 0. If ||®]| _ V (e”T |®]l, + e”TTfl ||f°||oo) <r,

then the nonlinear equation (19) has a unique weak solution u € l?’p. This solution satisfies
the following estimates,

Il 2 < K (@I + 17°13 2 atcomy | (i)

with a constant K, which depends only of T and of the constants C and u from conditions
(16) and (17) and

et —1 ..
||u||oos||<1>||oov(e“Tu@uer =Ly ||oo)- (i)

Before proving the theorem we will establish some lemmas. First we remark that
1
12ll, < K@l and [|f°ll 2(agm,) < VTEIfllo with K = (f 7, (z)dz)*® . Note also

that the conditions imposed to f ensure that if u € ﬁ',, and ||lu||, <, then f(-,-,u,D,u) €
L? (dt ® m,) . Indeed this follows from the estimate

|f('7'7u7D0u)| < C|D<7u| =+ gr-

Now we will prove the estimates from the statement of the theorem in the form of "apriori
estimates” in the next two lemmas.
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18 Bally & Pardouz & Stoica

Lemma 3.8 Suppose that f fulfills the conditions (16) and (17). Let u € ﬁ'p be such that
f (- u,Dyu) € L?(dt @ m,) and so that it is a solution of (19). Then it satisfies the
estimate (i) of the theorem.

Proof.One starts with the relation (8), which gives

T T
e + 2 / ¢y (us) ds = 2 / (F (5,115, Do) 1s), s + | B

and use relations (17) and (16) in order to estimate the integral in the right hand side, where
one writes

f(""u’DUu)u = [f (""U7D<7u) _f('a'aoaDau)]U‘F
+ [f (+s+0, Dou) — f°]u + fu.

This leads to

T T
a2 + / e, (u)ds < (2u+C>+1) / |1 ds +
2 o112
@12 + 1712 s, -

The asserted estimate then follows from Gronwall’s lemma.O
The second estimate of the theorem follows from the next lemma which shows a more
precise inequality.

Lemma 3.9 Suppose that f fulfills the conditions (16) and (17). Let u € ﬁ’p be such that
(- u,Dou) € L? (dt ® m,) and so that it is a solution of (19). Assume that f° < a and
that ® < b, where a,b are two nonnegative constants. Then one has

u<bVv (be”T+ a (erT — 1)) .
©
If |f°| < a and |®| < b, then
lul <bV (be”T + % (er™ — 1)) :

Proof.We will compare the solution u with the solution of the following ordinary differ-
ential equation
Y +a+py=0,yr=>

A solution of this equation may be viewed as a solution (constant in z) of (19), where
f(t,z,y,2) = a+ py and & = b. The solution of the above ordinary differential equation is

y= (b + %) eMT—1) _ % The first estimate now follows from Proposition 3.6.
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Backward Stochastic Differential Equations Associated to a Symmetric Markov Process 19

In order to deduce the second estimate we first note that the monotonicity condition is
valid for the function (t,z,y,2) = —f (¢,%, —y, z) with the same constant y. Therefore the
conclusions deduced from the monotonicity for a solution u, also hold for —u.This implies
the second inequality. O R
Proof of the theorem. Uniqueness. Let uy,us € F, besuch that f (-,-,u1,Du1), f (-,-,u2, Dous) €
L? (dt x m,) and such that equation (19) is satisfied by both u; and us. Writing relation
(8) for the difference u; — us we will get

T
l[u,e = uz el + 2/ ep (U1, —uz,s) ds =
t

T
= 2/ (f (8, u1,8, Dour,s) — f (8,7, u2,5, Dotia,s) ,u1,5 — u2,8)p ds.
t

The expression under the integral in the right side is transformed writing f (s, -, 41,5, Dyt1,5)—
f (87 N u2,87 Dau2,s) in the form

f (35 'aul,saDaul,s) - f (3; ';u2,saDa'u1,s) + f (8, 'au2,saDau1,s) - f (3; ';u2,saD0'u2,s)

and then using (17) and (16) one gets

T
llut,e — U2,t”z + 2/ ep (u1,s —uz,5)ds <
t

T T
< 2/ pllus,s _UZ,Slli d5+2/ C(|Dgur,s — Dous| s lu1,s — uasl), ds
¢ ¢

T T
< (2p+C?) / Ju1,s — u2,3||f7 ds + / e, (u1,s — ug,5) ds.
¢ t

Gronwall’s lemma now implies that u; = us.

Ezistence. The proof of existence will be split into two steps.

First step. We first consider the case where the function f is bounded. Then we regularise
f with respect to the variable y, by convolution

fk: (t,x,y,z) = k/Rf(t,x,y',z)cp(k(y—y'))dy',

where ¢ is a smooth nonnegative function of compact support such that [ ¢ =1. Then f =
limy, fi, and for each k, the function 8, f; is uniformly bounded. Thus the functions f}, sat-
isfy the Lipschitz condition with respect to both y and z, and consequently each determine a
solution uy € F),. Since all functions fi satisfy the monotonicity condition with the same con-
stant p and f (+,-,0,0) = f° are bounded by the same constant, one deduces from Lemma

3.9 that the solutions uy, are uniformly bounded by ||®|| Vv (e”T 12| + e”TT_l ||f°||00) <r
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20 Bally & Pardouz & Stoica

Now let a,b > 0 and set

dk,a,b (t,.’L‘) = sup |f (t,a:,y,z) - fk (t7$7yaz)| -
ly|<a,|z|<b

Obviously one has |d,q,5| < 2M. Moreover, on account of the y-continuity and of the uniform
z-continuity, on remarks that for fixed ¢, z, a, b, the family of functions

{f(t,.’L',-,Z)/|Z| < b}

is equicontinuous, and hence compact in C[—a, a]. Since the convolution operators approach
the identity uniformly on compacts, one has

lim dk,a,b (th') =0,
k—o0

which implies limg—yo00 di,e,5 = 0 in L2 (dt x m,,) .
Then we write, for any u € F), such that |u| <,

|f (- u, Dou) = fr, (-, -, u, Dow)| < dirp1{ D, uj<} + 2M gD, u|>b}

2M
<dgrp+ > |Doul (*)

Now we write relation (8) for the difference u; — ug

T
llut,e = wi e[} + 2/ ep (U5 — uk,s) ds =
t

T
= 2/ (fi (8, w5, Dowr,s) = fi (8, ks, Doik,s) , Ut,s — Up,s) , ds- **)
t
and express the quantity f; (s, -, us,s, Dour,s) — fr (8, Uk,s, Dottt s) in the form
fl (57 '7“1,3>D0ul,s) - fk (87 '7ul,8>D<7ul,8) + fk (37 'aul,37D<7ul,S) - fk (37 'auk737D(Tul73) +

+fk (83 ) uk,.‘n Da'ul,s) - fk (87 '7uk,87 Dduk,s) -

Using relations (*), (17) and (16) one dominates the expression of the right hand side in
(**) by

T AM T \
2 dirp+dirp + - |Dougs|,ur,s — ks | ds+2pu |luz,s — Uk,s”p ds+
t t

p

T
+2 / C (IDyttys = Dottt — o)), ds <
t

r 2 T 2 1 r 2 r 2
< [ sl s [l s+ g [ Dol ds 4 5[ s = ot
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T
—|—/ [|Dyuy,s — Dauk,sﬂi ds.
¢

By Lemma 3.8 we know that fOT ||D(,ul,s||’2) ds is bounded independently of [. The number b
is at our disposal and we may choose it as large as we want. Then [, kK may be chosen so that
ftT ”dl,r,b”i ds and fOT ||dk,,~,b||’2) ds are small as we want. Summing up we have an estimate
of the form

T T
e = el + [ ep = w)ds < K [ e = wnal ds,
t t

where K depends only on C,u and T. Gronwall’s lemma implies that (ug) is a Cauchy
sequence in ﬁp. Let u = lim, u,.

Now we assert that f (-, uk, Dour) = f (-, ,u, Dyu) in L? (dt x m,) and this implies
that u is a solution corresponding to f. Indeed, passing to a subsequence such that up — u
almost everywhere, we will have f(-,-,ug, Dyu) = f(-,-,u,Dyu) in L? (dt x m,). From
condition (16) it follows that f (-, -, ux, Dyu)— f (-, -, ur, Dyug) — 0in L? (dt x m,) . Finally,
the relation (*) leads to f (-, -, ug, Dyug) — fr (-, -, ug, Dyug) — 0, and the proof of the first
step is finished.

Second step. We now treat the general case. Again we construct a sequence of functions
approximating our function f. For k € N define

fk (t,x,y,z) = ((f(taxayaz) _fo (t;m))/\k) V(_k) +f° (t,.CL')-

Each such function satisfies conditions (17), (16) with the same constants as f and fy, (-,+,0,0)
f°. Moreover they are bounded and we may apply the preceding step. Let u be the so-
lution of equation (19) with fr and the final condition ®. These functions all satisfy the
estimates from the statement, so that they are uniformly bounded again: ||ug||,, < r and

llukll, 7 < const. We will check that they are Cauchy in F,. Again one starts with the
relation (8), written for the difference uy, — ug41,

T
ks — wns1all” + 2 / ep (ks — Uni1.0) ds = (+%)
t

T
= 2/ (fi (8,5 s, Dotin,s) = St (8, Ukt1,s5 Dothit,s) , Uk,s — Ukt,s) , ds-
¢

In order to estimate the right hand side we will use the hypothesis that g, € L?. First
remark that the relations (16) and (20) imply

fe Gy ) Ly icrg,<blzi< 2y = F G 02) Ly crgo< b o< 2y

k
2C
This in turn leads to

I (o uk, Dour) = frra (oo tns Do) < gy S byupip, 0> 2 )
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Since the L2 bounds of D,uy are uniform with respect to k, one has

1
//1{gr>%}u{\D,uk|>%}dtdmp < Kk_Q’
and hence
1
//(fk (55 uk, Douk) = fatr (457 uks Dour)) (ur — up41) dtdm, < K k2

The right hand side of relation (**) is therefore dominated by

T
1
2
/ (u llur,s — wrtsll, + C llur,s — kgl ([ Dowr,s — Dauk-i-l,s”p) ds + K5
¢

Gronwall’s lemma shows that our sequence is Cauchy and has a limit v in ﬁp. Choosing a sub-
sequence k; so that ug, and Dyuy, converge dt ® m,—almost everywhere, one immediately
sees that

sz ('a ',Ukl,Do-’U,kl) — f ('a ',U,DD-U),

almost everywhere. But these functions are uniformly bounded in L? (dt ® m,), which
implies weak convergence. Then one may pass to the limit in the relation of weak solutions
and deduce that u is a weak solution of (19) with data (f, ®). This concludes the proof.0

Now let us return to equation (13) with our initial operator L. That equation may be
written in the following equivalent form

(615 +Lp)u+fl (-,-,u,D,u) = 03 ur = (ba

with an arbitrary p € (0,1) and with f'(t,z,y,2) = f(t,2,y,2) + p>_; ol (z) 0,0 (z) 2.
The function f' satisfies the conditions (17) and (16), provided f does (the constant in the
condition (16) being changed). Note also that f'(t,z,y,0) = f(¢t,2,9,0). The conditions
to apply the theorem are fulfilled so that we get existence and uniqueness for solutions of
equation (13). The formal result is as follows.

Corollary 3.10 Assume that the function f satisfies conditions (16), (17) and is con-
tinuous with respect to y. Moreover assume that the function defined in (20) belongs to
L? (dt x dm,) for some r > 0 and p > 0. If f° = f(-,-,0,0) and ® are bounded and

[|®]|, V (e“T||<I>||OO + CFTT_I ||f0||(x>) < 7, then equation (13) has a unique weak solution
and it satisfies the following estimates

2 2 2
llly 7 < K (1913 + 11132 areom, ) |

erT — 1

lull, < e T2, + i

17Nl -
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4 Stochastic integral representation under P™

We recall some results from [4]. First of all one associates to the Dirichlet form (F,e) a
Markov process (2, F, Fi, X¢, P%,0;,t > 0). We stress that the filtration (F;); is associated
in the canonical way to the process (X;);. For u € D(L)

Mtu =: U(Xt) —U(X()) —A LU(XS)dS

is a martingale under P™ and under P* for quasi- every point z € R" (we recall that m
is the Lebesgue measure, which is an invariant measure for the semigroup (P;);>o and that
P™ =: [ P®dz ). This may also be expressed as

U(Xt) - ’U,(Xo) = Mg‘ + Ng‘

with N} = fot Lu(X,)ds and so one may think of this as being a generalization of the Doob-
Meyer decomposition of the semimartingale u(X:) — u(Xp). An important result from [4]
asserts that the above decomposition holds for any v € F' with the change that then N}
is no more a finite variation process but a process of null energy (see Ch.5 of [4] for the
definition and proofs). Moreover the decomposition holds true for u € Fj,. but then M is
only a local martingale. The coordinate functions u;(z) = z¢,1 < i < N, are in Fy,. (but
generally not in D(L)) and we denote M*¢ =: M. Note that for smooth coefficients o%, X
solves the stochastic differential equation dX} = Z - ](Xt) B] +3°7, 950 (Xy)dt, where

B = (B',...B") is a Brownian motion. So M®(t fo ] 105( X,)dBI. In the general case
such a representation is not available but one proves that under P™ or P?%, for quasi every
point z,
(M M) (1) =2 Zak X,)ds (21)
0 k=1
and, more generally, for every u,v € F

(MY, M) (t) = 2 /0 Z Y oio kg; 66; (X,)ds. (22)

i,7=1 k=1
In particular, since m = mP;,
E™((M*, M?) (t)) = 2t e(u,v), (23)

for u,v € C2°. Since any u € F is a limit in energy of C'S° —functions, this formula remains
true for any u,v € F.
Moreover for a function u € C* (RY), Corollary 5.6.2 of [4] gives the following represen-
tation
N ¢
M =" [ du(X,)dM;.

i=1 0
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Since we are especially interested in writing such representations for other classes of func-
tions, we start now a detailed discussion concerning the possibility of defining expressions like
the right hand side of this equality. First let us notice that if ¢ = (¢1, ..., dn) : [0, T]x RN —
RY is measurable and bounded, the martingale

i=1

t
/(;5,- (s, X,) dM¢,
0

has the bracket

N t t
( bi (5, X,)dM, =2 [ | o |* (s,X,)ds.
g‘/o t b/ S S

If the function ¢ is no more bounded but | ¢o |€ L? ([0,T] x RY), a martingale like the
preceding can be defined by approximation and we introduce the notation

t
t
— 1 k i
/0 ¢ (s,X,) .dM, := klgiloZ/‘b’ (s,X,)dM?
0

i=1

with ¢F = 1{4/<k}@- Note that if o = 0 almost everywhere, then this martingale van-
ishes. Since the matrix a = oo™* is not assumed to be elliptic the class of functions ¢ # 0
such that ¢o = 0 may be quite large. Notice also that, if ¢ is unbounded, the individ-
ual terms appearing in the sum expressing the martingale do not necessarily make sense
as stochastic integrals, only their sum being introduced globally by the above procedure.

(For example, one may have E™ fOT >k |a};¢,~ (X,5)|2 dt = oo for a certain index 4, while

. 2
E™ fOT Yok ‘Z] ord; (Xt)‘ dt < 00.) The point sign in the expression [ ¢ (s, X;) .dM, would
remind then that the summation is in fact formal. The same notation will be used for these
sums of stochastic integrals under the measures P?, when the corresponding integrability

: 2
condition E® fOT >k ‘Z P (Xt)‘ dt < oo is satisfied. The martingale defined this way
still verifies the above bracket relation

</0. ¢ (s, X,) .dMs); = 20/ | o |2 (s, Xs) ds.

Consider now u € F. Then for every ¢ € Vu
t
M = / ¢ (Xs) .dM;, P™ —a.s.
0

In fact, let u* € C}(RM),k € N, be such that u* — u with respect to the norm of
e;. Using iii) in Proposition3.1 we deduce that Vu*o = D,u* = D,u = ¢o in L2(RN).
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Then one may pass to the limit in the representation theorem for M v* in order to get the
representation theorem for M.

Coming back to the decomposition formula, on account of the preceding representation,
we have the following result.

Lemma 4.1 Ifu € D(L) and ¢ € Vu . Then

w(Xy) — u(Xo) = /0 6 (X,) .AM, + /0 Lu(X,)ds P™a.s.

The aim of this section is to extend this representation to time dependent functions
u(t,z). We start with a particular type of functions in the next lemma and then, in the
theorem below, we prove a more general result.

Lemma 4.2 Let u: [0,T] x RN — R be such that

i) Vs,u, € D(L) and s — Lu, is continuous in L>.

i4) s — ug is differentiable in L? and s — Osu is continuous in L?.

Then clearly uw € Cr. Moreover, for any ¢ € Vu and any s,t > 0 such that s +t < T,
the following relation holds P™ — a.s.,

¢ ¢
u(s +t, Xy) —u(s, Xo) = / d(s+rX,).dM, + / (0s + L)u(s + r, X, )dr .
0 0

Proof. We prove the above relation with s = 0, the general case being similar. Let
0=1t9 <t < .. <tp="1tDbe a partition of the interval [0,¢] and write

p—1

u (t7 Xt) —u (07X0) = Z (u (tk+17th+1) —u (tkath)) .
k=0

Then each term of the sum is expressed, on account of the preceding lemma, as

U (tk+1ath+1) —u (tkath) =u (tk+1aXt1c+1) —u (tk+17 ka) +u (tk+1:th) —-—u (tk:th)

tht1 T4t tet1
= R (s, X,) .dM, + / Luy, ., (X,)ds + / Osus (X3, ) ds,
th 73 tr
where ¢*t1 = (1 ykt) € Vay,,, and the last integral is obtained by using the
Leibnitz-Newton formula for the L2-valued function s — us. Further we estimate in L? the
differences between each term in the last expression and the similar terms corresponding to
the formula we have to prove. We first estimate,

tht1

thy1 2
E™ (/ PR (s, X,) .dM, — #(s,Xs) .dMs) =

tr th
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tht1

try1
B [0 ) — g5, x) o s = [ e e, )

th th

Since s — Lu, is L2—continuous, it follows that s — u, is continuous in energy, and hence
the difference appearing in the last integral, e (ut,c o us) is uniformly small, provided the
partition is tight enough. From this one deduces that

p—1 tht1 t
S [ ) art — [+ an
k=0 "t 0

The next difference is estimated using Minkowski’s inequality

P=1 Lty 2\ 3
E™ (Z/ (Lutk_*_1 — Lus) (Xs) ds> <

k=0"1tk

P=1 g 9 1 P—1 g
3 / (Em (Lugo., — Lu,) (Xs)) ds=3" / |Lus,,, — Lu,||, ds,
k=0 "tr k=0 "tr

so that it is similarly expressed as an integral of an uniformly small quantity.
For the last difference we write

B (Z / Oy (Xo,) — Oyu, (Xs))ds>

k=0 "tk

M=

2

IN

1
2

pf /t o (B™ (@sus (Xu,) = sy (X,))) " ds =

k=0""tk

Pl g 3
Z/ (2/ (8sus)2 dm — 2/ asusPs_tkasusdm> ds <
th RN RN

k=0

P=1 ity 1 1
\/52/ ||as'ufs||22 ||6sus - Ps—tkasus||22 ds.
k=0 "tk

>From the hypotheses it follows that this will tend also to zero when the partition is tight
enough.

We conclude that the relation is obtained in the limit, taking a sequence of partitions of
diameters tending to zero.O

Theorem 4.3 Let f € L%([0,T] x RN) and ® € L2(RY) and define

T
u(t,z) = Pr ,®(x) + /t Py f(s, ) (x)ds.
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Then for each ¢ € Vu and for each s € [0,T], the following equation holds P™ — a.s.

¢ ¢
u(s +t, X)) —u(s, Xo) = /0 o(s+rX,).dM, — /0 f(s+r, X, )dr. (24)

Proof.  Assume first that ® € D (L) and s — f(s,-) is differentiable in L? and
s — 0Osf(s,-) is continuous in L2. Then by Proposition 2.4, s — u(s,-) is differentiable
in L? and its derivative is continuous in L2. On the other hand us; € D(L) and Lu; =
LPr_;® + ftT LP,_;fsxds is continuous in L2. So, using Lemma 4.2, we get the relation in
the statement. For the general case one proceeds by approximation.O

5 Stochastic integral representation under P*

The additive martingale functionals are known to be represented as stochastic integrals with
respect to the coordinate martingales M* (see [4] Theorem 5.6.3). The aim of this section is to
extend this representation to general martingales (which are no more additive functionals).
More precisely we shall produce an exceptional set outside of which the representation
theorem holds.

We start with some technical considerations.

Lemma 5.1 Let ) : [0,T] x RN — R be such that fOT 1o (t, )|, dt/v/t < co. Then v(z) =:
E*( fOsz(t,Xt)dt) 18 a quasi-continuous, g.e. finite function.

Proof. Define v.(z) =: E*( f:«ﬁ(t,X (t))dt). This is a quasicontinuous function - see [4]
p. 144, Th 4.2.3. Assume that ¢ > 0 - if not one writes ¢ = b3 — 1_. Then v.(x) / v(z)
for every z. On the other hand, by, for > £ > 0 one has; using successively Minkowski’s
inequality and (3),
7 7
el —0)? < [Py Pas < [,
g g

||2%—>0ass,n—>0.

Then, by Th 2.1.4 p 69 in [4] there exists a quasicontinuous, finite function w and a
sequence &, — 0 such that v._ (z) = w(z) for quasi every . We conclude that v(z) = w(x)
for quasi every z and so z — v(x) is quasicontinuous.O

A useful tool in the sequel will be the time-space Markov process X; = (¢, X;) with the
state space S = [0,T) x RN, which is defined by X = (ﬁ,}/:, T, Xy, 0., PO, (t,z) € S) with

Q = {[0,7)xQ}U{wal,
Xi(s,w) = (s+t,Xw)ifs+t<T,
= Aifs+t>T,
0i(s,w) = (s+t,60,(w))ifs+t<T,

wa ifs+t>T,
f‘;t’w = 5,5wa
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where A is an isolated point and wa (t) = A,Vt > 0. Note that the semigroup of X is given
by Pyu(s,z) = E*(u(s +t, X})).

Now let & : RN — R be bounded, measurable, and of compact support and set u (t,z) =
E*® (X1_;). Then clearly, as an element of L?, u may written u; = Pr_; and represents a
solution of equation (4) with data f = 0 and ®. Moreover, u (¢, ) is an invariant excessive
function with respect to the time-space process X , and consequently the process t — wu (t, X;)
is a continuous martingale under P, for each z € RN. We are going to represent this process
as a stochastic integral under quasi every measure P?. In order to do this we have to know
that the stochastic integrals make sense, and so we first prove the following lemma.

Lemma 5.2 Let ® be measurable, bounded, and of compact support. Setu (t,x) = E*® (X1_4)
and take ¢ € Vu. There exists a polar set I' such that

T
1
E””/ |¢t0|2 (Xp) dt < §E”<I>2 (Xr),z €eT".
0
Proof. By Corollary 4.3 one has the following representation under P™ :
T
u(T, Xr) — u(0,X0) = [ 8(s,X,) .dM..
0
By Ito’s formula we get
T
CI)Z (XT) = U2 (T, XT) = |’I,L(0,X0)|2 + 2/ |¢)t0'|2 (Xt) dt
0
T
—|—2/ u(s, Xs) ¢ (s, Xs).dMs, P™ —a.s.
0
Conditioning with respect to Fy one gets
T
E*®* (X1) = E° [u(0, Xo)|? +2Ez/ |0 (X;)dt, P™a.s.
0
In particular, one has
T 1
E“‘/ n A |pro|’ dt < EE”“I)Q (X7), P™-a.s.
0

By Lemma 5.1 the function in the left hand side is quasicontinuous. The expression in the
right hand side is also quasicontinuous, and hence the inequality holds for quasi- every z.
Passing to the limit with n — oo we get the inequality as asserted in the statement.O]

Now we shall fix a properly exceptional set I' and a version of each coordinate martingale
M which is an additive functional in the strict sense on I'® (see [4], p.181) and such that the
bracket formula (21) holds under each measure P%,z € I'°. (We recall that if A is properly
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exceptional, then the process started from a point & € N¢ never hits . Thanks to Theorem
4.1.1 in [4] p 137, any zero capacity set is included in a properly exceptional set.) Theorem

5.4 below will throw out other parts of I', where these martingales are not consistently
defined.

Lemma 5.3 Let ® be measurable, bounded, and of compact support. Setu (t,x) = E*® (X1_4)

and take ¢ € Vu. There ezists a polar set A containing T’ so that, for each © € A°, the fol-
lowing representation holds:

T
B(X1) = u(0, Xo) +/ 6 (s, X,) .dM,, P* — a.s.
0

T
E/ o |? (X0 dt < oo.
0

Proof. For 0 < s,t such that s + ¢t < T, the following expression make sense under P*,
for quasi every x :

t
II =u(t+s,Xy) —u(s, Xo) — / o(s+r,X,).dM,.
0

Our aim is to prove that for quasi every z, IS = 0, P* — a.s. Since M% 1 < i < N are
additive functionals, one may write

=10 + I3, ob.,, *)

with a sequence 5, N\, 0. Define then hy(z) = E* |I;’“_ . | . The representation theorem under
P™ asserts that [ hy(z)de = E™ |I§,’15k| = 0, so that E” |I:Er’15,c o 05k| = P, hy(z) = 0 for
quasi every z. One completes the proof taking A the union of exceptional sets of these
relations and letting &, — 0 in the equality (*)O

Theorem 5.4 There exists some properly exceptional set N containing I' and such that the
following representation result holds. For every bounded F,-measurable random variable &,
there ezists an (F;)¢>o -predictable process ¢ = (¢1,...¢n) : [0,00) x @ — RN such that for
each probability measure v, supported by RN \ N, one has

E=E"(¢)Fo) + /000 ¢s.dMy, P —a.s.,

o 1
B [ lgwo (X ds < 3 EE.
0

If another predictable process ¢' = (¢}, ...¢%\) satisfies the same relations under a certain
measure P¥, then one has ¢j0 (X;) = o (X5), dt X dPY — a.s.
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Proof. Suppose that £ is the class of bounded random variables for which the statement
holds outside some fixed exceptional set A'. We claim that if (§;) C £ is a uniformly bounded
increasing sequence and & = limyg_, o &, then £ € £ . Indeed, since £ and & are bounded,
E*|& — & |2 — 0. Denoting by ¢* the process which represents &, we obtain

'”A (85 = )0 (X)[Pds < B & — &2 = 0,2 € N°.

In order to pass to the limit pointwise we should choose a subsequence, and this subsequence
may depend of the point z. In order to obtain a sequence of representable variables that
converges rapidly enough under all measures P”,x € N°, we are going to construct them as
follows. For each [ = 0,1, ... set

(&) = inf{k/B* (€ - 8)° < 37},

&1 = Eri(xo)-

Then one has & = &, () on the set {Xo = z}, and consequently E® (¢ — 21)2 < 97 for any
z € N¢. The process which represents Zz is simply obtained by the formula El = ghi(Xo),
With this sequence one may pass to the limit and define ¢, = limsup;_, o, Eia (Xs) (where
limsup is taken on each coordinate) and ¢s = 157 (X;) where 7 is the matrix that we
have introduced in the beginning of the paper. (Recall that 70 = ¢.) Then ¢s0 (X;) =
1o (X,) = limy alsara (X,) = limy alsa (X4) in L2([0,00) x Q,dt x P®), and consequently

/ T (7 - a) am,

This permits us to pass to the limit in the representation formula for £, and to get it for &.

Consider now a countable set A C C°(R"N) which is dense in Cy (RY) for the topology of
uniform convergence. Consider also the countable family B of random variables of the form
¢§=T%, fi(X (t;)) where f; € A, 0 < t; < ... < ty, with t; € Q, and k € N. The completion
of the o- algebra generated by B is Fo. Since & is closed for increasing sequences, a monotone
class argument reduces the proof to the case of a random variable in B.

Let £ € B be of the above form and fix 1 <4 < k. In order to construct the density ¢
for t € (ti_1,t;] we define g = fiPy,,, ¢, fit1...Ps,—t_, -fr and use the Markov property in
order to get E*(§/Fy) = Hj-;ll [i(X(t;))Pr;—+9(X:). We denote u(t, z) = Py, _1g(z) and using
Lemma 5.3 we get a function 1 : [t;_1,#;] X RY — RN such that

2

E® — 0.

t
U(t,Xt) = u(ti—laXti_l) + ’Lp (S,Xs) .dMs, P’a.s. (*)

ti—1

So we define ¢ ; (w) = H;;llfj (X, (W)Y (t, X¢ (w)) for t € (ti—1,t;]. We recall that relation
(*) holds for every z except an exceptional set of null capacity. The exceptional set N in
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the statement, will be the union of all these exceptional sets corresponding to the variables
£eB.O

The exceptional set A from the preceding theorem has the property that the stochastic
integral representation may be extended to non bounded random variables. One may for
example, represent separately the positive and the negative parts according to the following
corollary.

Corollary 5.5 Let N be the set obtained in the preceding theorem. For any Foo -measurable
nonnegative random variable & > 0 there ezists a predictable process ¢ = (¢p1,...¢n) : [0, 00) X
Q — RN such that the following holds

§=Eﬂﬂﬁﬁ+éw%dM@ P* —as.,

W/ b (X,)[2ds < B2,
0

for each point x € N¢ such that E*¢ < 0.
If another predictable process ¢' = (¢}, ...¢}y) satisfies the same relations under a certain
measure P®, with such a point x, then one has ¢j0 (X;) = ¢ro (X5), dt x dP® — a.s.

6 Backward Stochastic Differential Equations

The set N of the preceding Theorem 5.4 is fixed from now on. The representation given by
that theorem allows us to solve backward stochastic differential equations under all measures
P? x € N, at the same time, by using exactly the same arguments as in [10], [9]. The first
ingredient in the treatment of BSDE’s is the following lemma, which repeats the original
idea from [10].

Lemma 6.1 Let ¢ be an Fr -measurable random variable and h : [0,T] xQ = R an (F¢)i>o0
-predictable process. Let A be the set of all points x € N for which the following integrability

condition holds -
B <|§| +/ |h(s,w)|ds) < 0.
0

Then there exists a pair (Y, Zy)o<i<T of predictable processes Y : [0,T) x Q@ - R, Z :
[0,T)x Q — RN, such that under all measures P®,x € A, they have the following properties:
(1) Y is continuous, (i) Z satisfy the integrability condition

T
Zo (X, 2dt<oon—a.s.
|t ( t)l Y Y
0

(i41) the local martingale obtained integrating it against the coordinate martingale, f(f Zs.dMs,
is an uniformly integrable martingale, (iv) and together satisfy the equation

T T
Y, = £+/ h(37w)ds _/ Zs-dMs ) P* —a.s.
t t
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If another pair (Y, Z}) of predictable processes satisfies the above conditions, under certain

measure P with some measure v supported by A, then one has Y. = Y.!, P — a.s. and
Zvo (Xy) = Zjo (Xy), dt x P” —a.s.

Proof. The representation of the positive and negative parts of the random variable

T
§+/ hsds,
0

by the preceding corollary, gives us the predictable process Z such that

T T T
§+/ heds = EX° <g+/ hsds> +/ Zs.dM,.
0 0 0

The process Y is obtained by the formula

T t t
Y, = EXo <§+/ hsds> +/ Zs.dM, —/ hsds.
0 0 0

This lemma, allows us to introduce the following definition.

O

Definition 6.2 Let £ be an Fr -measurable random variable and h : [0,T]xQxRxR™ - R
a measurable function such that (s,w) — h(s,w,-,-) is predictable. Let v be a probability
measure supported by N¢ such that E” [£]° < oo for some p > 1. We say that a pair
(Yz, Zt)o<i<T of predictable processes Y : [0,T) x Q — R, Z : [0,T) x Q@ — RN is a
solution of the backward stochastic differential equation in L? (PY) with data (&, h) provided
that Y is continuous under PY and together satisfy the integrability conditions

T
B / \h(t, -, Yi, Zeo(X0))] dt < oo,
0

P
2

T
E¥ (/ |Zta(Xt)|2dt> < 00,
0

and the following equation

T T
Y, =€+ / h(s,w,Ys, Z;0(Xs))ds — / Zs.dMg, P¥ — a.s. (25)
t t

Note that in this definition the function A may depend on the whole path w and need not
be just a function of X;(w) at time ¢. The relation (25) represents the backward stochastic
differential equation naturally associated to the data (£, h) in our framework. Remark that
the stochastic integral in the BSDE is not written with respect to the Brownian motion
but with respect of the martingales M?. We recall that in the case where L has Lipschitz
continuous coeflicients the Markov process X is usually taken as the solution of a SDE driven
by a Brownian motion B and then one may take dM = o(X)dB . So Z.dM = Zo(X)dB.
We stress that in the already standard notation concerning BSDE’s Z stands for Zo (X;) .
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6.1 Existence and uniqueness of solutions of BSDE’s

In this subsection we assume that £ is a given Fr -measurable random variable and h :
[0,7] x 2 x R x R™ — R is a given measurable function such that (s,w) — h(s,w,-,-) is
predictable and satisfies the conditions

|h(s,w,y,z) - h(s,w,y,z')| S C |Z - ZI' (26)

(h(s,w,y,2) — h(s,w,5',2)) (y —y") < p(y —y') (27)

with arbitrary s,w,y,y’, z,2' and some constants C' > 0, u € R. (In the proofs we will often
assume that g = 0, because one can always make the change Y;* = e#'Y;, Z;} = e Z; for the
solutions, which correspond to the change £* = e#T¢, b} (y, 2) = etthy (e My, e Htz) —e Fly
for the data. The latter function h* satisfies (27) with 4 = 0.) We will use the notation
h° (s,w) = h(s,w,0,0) and A’ (s,w,y) = h(s,w,y,0) — h(s,w,0,0). Let v be a measure
supported by N¢ and p > 1 such that E” |£” < oo. One basic tool in the treatment of L?
-solutions is the following lemma.

Lemma 6.3 If (Y, Z) is a solution of the BSDE in L? (P") with data (£, h), then one has

T T
et 1Y, + / ¥ |1, (Y,) — Yy | ds + / eHdL, <
t t

T T T
< etT €| + / e’ |h°s|ds + C/ et | Zso (Xs)|ds — / e**sign (Ys) Zs.dMs,
¢ ¢ ¢

T

T
e’ Y| + E¥ / e”s|h'3(Y;)—uYs|ds+/ e’ dLy/Fi| <
t t

T T
E¥ e”T|§|+/ eMs |h°s|ds+C/ e’ | Z,0 (X,)| ds/ Fy
t t

where L = (L) is the local time of the semimartingale Y.

Proof. One starts with Tanaka’s formula for Y,

T

T
Yol = Vil = = [ sign (V) ho (Ve, Zuo (X)) ds + [ sign (V) ZedM, + L = L.
t t

Then one writes Ito’s formula for the product e#? |Y;|, obtaining

T
e |€] — bt || = / €47 sign (Y;) (1Y — hs (Y, Zso (X)) ds+
t

T T
—|—/ e**dL, +/ et*sign (Ys) Zs.dMs.
t t
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The first inequality from the lemma follows from the relations (26) and (27). The second
inequality is obtained from the first upon conditioning.O

The well-known quadratic relation, obtained by writing Ito’s formula for Y2, has the
form

T T T
v2e2 [z ) ds =6 +2 [ Vb (VZio(X0) 2 [ Viz,du,. (29
t t t

Note that the bracket formula introduces a 2 in the second term from the right hand side.
(In the classical case our framework corresponds to the infinitesimal generator A not to %A)
Combining this relation and the estimates of the preceding lemma, one gets the next result
which justifies the name of solutions in L? (P¥). It also ensures uniqueness of solutions.

Lemma 6.4 There exists a constant K, which depends only on T,C and p, such that the
solution (Y, Z) in LP (P¥) with data (&, h) is estimated in terms of the data as follows

T
/ et 1, dt
0

1
T 2

sup e ||| + </ eZ“tlzta(Xt)th) <K | e'Tgll, +

0<t<T 0

P

p P

Moreover one has the following estimate with a similar constant

T
/ et |k, dt
0

Proof. We are assuming that g = 0. From the second inequality of the preceding lemma
and Doob’s LP -estimates for martingales, it follows that the process

T
/ ebt by (Y, Zeo (X)) dt]| < K' [ enT ], +
0

p

P

Y*' = sup |V
t<s<T

T
/ Ih°,| ds
t
4

On the other hand, from the above relation (28) and the conditions (26) and (27) it follows

satisfies the estimate

y=tf < =2 {1, +

p—1 *

*)

T
/ |Zs(7 (Xs)|d3
t
P

2
T T
Y3+2/ |zsa<Xs)|2dss|£|2+</ |h°s|ds) +(1+0) (YH) +
t t

2

T T
+C (/ |Zsa(Xs)|ds> —2/ Y, Z,.dM,.
t t
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Further we introduce the notation

T
Ut = </t \Zyo (Xs)|2ds>

and take the square root in the last inequality obtaining the following estimate for U?,

1
2

T T
,vt:/ |Zo0 (Xo)]| ds, th/ Ih°,| ds
t t

1

2

T
VUL < €|+ HE + V1 + CY™ +VOVE+ V2| | Y, Z,.dM,

The stochastic integral term is estimated by the inequality of Burkholder-Davis-Gundy with
the constant corresponding to %,

[N

1

< & (/ Y2|Zso (X)) ds)l

< e (B (v tw%) < ST (2yel, +e o), )

IN

T
/ Y, Zs.dM;
t

M)

. CE .
Taking € such that e/ 5 = v/2 — 1 one obtains

1], < ligll, + || E]], + const [y ]|, + VT[],
and combining with the relation (*) one gets
HUt”p < const (||£||p + HHt”p) + const ||Vt||p.

Since V't < /T —tU?, one deduces that there exist M and § > 0, which depend only of C
and p, such that ||Ut||p <M (||§||p + ||Ht||p) provided that T'— ¢ < §. Finally, iterating this

last estimate over the intervals [T' — kd,T — (k — 1) §] one gets summing up
1
2

T T
</ | Zyo (Xt)|2 dt) <K ||§||p + / |h°¢| dt
0 0
p

Combining this inequality with (*) one deduces the first estimate of the lemma.
In order to deduce the second estimate one uses the first estimate and the preceding
lemma obtaining first a particular form
T
/ By dt
0

P

<K' i, +

7

T
/ B (Y3, Zuor (X0))) dt
0

P P
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from which one immediately gets the general form.O

In the next section we will treat the particular case when the process Y has the form
Vi =u(t,X;) and £ = @ (X7),h = h(t,Xt,y,2). In such a situation, if moreover ® and
h(-,-,0,0) are bounded one may use the last lemma to obtain the boundedness of u. Namely,
taking the expectation with respect to each measure P®, z € N¢ the above lemma leads to

1
u(0,2) < K (e~T [l + - (e~ 1) ||h°||oo) .

The following lemma establishes such uniform estimates in the general case considered here.

Lemma 6.5 There exists a constant K, which depends only on T and C, such that the
solution (Y, Z) in L? (P¥) with data (£, h) satisfies the following estimate

T

2
T
2t |Y,[2 4 B / 62“5|Z50(Xs)|2ds/}"t]5KE[e2"T§2+( / e“s|h°s|ds> Al
t t

In particular, if € and h° are bounded one has

ut uT eHT_]_ o
sup e’ |Vy| < VK (e |I¢]|, + p 171l ) -

0<t<T

Proof. We suppose that g = 0. From the quadratic relation (28) one has

T T T
Y?+2E[/ 1Z,0 (X,)2 ds/F,) < EIJé[? +2 / Y| |1, ] ds +2C / 13| 1 Zoor (X,)] ds/ F].
t t t

Using the second estimate of Lemma 6.3 one deduces that the left hand side of this inequality
is dominated as follows:

T T
Ell€P +2 hoslds +C Z.o (X,)|d
< B[l + |§|</t| |ds + /t| o (X,)] s>+

2

T T
(/ |h°3|ds+C’/ |Zsa(Xs)|ds> JF] <
t t

<ERIEP+6 (/T e, | ds) +60? (/T \Z0 (X,)| ds) J7].

2
Now one uses the inequality (ftT |Zso (X,)| ds) < (T -1t ftT |Zs0 (X,)|” ds and obtain the

first inequality of the lemma provided 3T'C? < 1. For larger values of T one splits the interval
[0,7] in intervals of length less than ﬁ and iterates the estimate already obtained. The
second inequality of the lemma is immediately obtained from the first.O]

Note that in the preceding lemmas one do not make use of the global monotonicity of
h but only of the monotonicity of h'. The global monotonicity is used in the next lemma,
which estimates the solution dependence of the data. The proof is completely similar.
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Lemma 6.6 Let (Y, Z) be a solution in LP (PY) with data (&, h) (satisfying the relations (26)
and (27) ). Let (n,g) be a second couple of data satisfying the conditions from Definition
6.2 and let (U,V) be a solution in LP (PY) with data (n,g). Then one has

T
e’ Y, — Uyl + / e!? |hs (Ys, Vso (X)) — hs (Us, Vso (X5)) — p (Ys — Us)| ds+
¢

T
+/ et d0, < e!T | —n|+
t
T
+/ et |hs (Us, Vio (X5)) — g5 (Us, Vo (XS))|ds—i—
t

T T
+C / e |(Zy = V) o (Xo)|ds — / " sign (Vs — Us) (Zs — V) dMs,
t t

where O = (Oy) is the local time of the semimartingale Y —U. Moreover one has the following
estimates in LP, with the same constants as in Lemma 6.4

T i
+ (/ e’ |(Z, — Vp) U(Xt)|2dt> +
0
V4

sup et |V, — U]
0<t<T

p

T
/ et hy (Us, Vio (X)) — g1 (Us, Vior (X)) dt
0

<K (6”T 1€ —=ll, +

)
)

T
/ et |y (i, Zyo (X0)) — e (U, Vio (X0)| dt]| <
0

P

T
<K (e”T € —mll, + / e |hy (U, Vio (X1)) — gt (Us, Vo (Xy))| dt
0

In the first inequality of this lemma one may change the term

/T eus |hs (Y:savtsa (Xs)) - hs (U57V:90' (XS)) — M (Y; - Us)' ds
t

with the following one

/T e’ |h3 (Ysa Zsa (XS)) - hs (Usa ZsU (Xs)) — M (Ys - Us)' ds.

The existence of solutions is ensured by the following theorem.
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Theorem 6.7 Let (£, h) be the data fized in the beginning of this subsection and let p > 1
be fixed. Denote, for r > 0,

h*" (s,w) = sup |h' (s,w,y)|
ly|<r

and let A be the set of all points © € N¢ with the following properties

T p
B <|§|+/ |hg|dt) <o,
0

T
/ hy"dt < oo, P* —a.s.,r > 0.
0

Then there exists a pair (Y, Zy)o<i<T of predictable processes Y : [0,T) x Q@ =+ R, Z :
[0,T) x Q — RN that represents a solution in LP (P*) of the BSDE with data (&, h) for each
z € A
P
If v is a probability measure supported by A and such that EY (|§| + fOT |h?| dt) < 00,

then an arbitrary solution (Y',Z') in LP (P¥) of the BSDE with data (£, h) should coincide
with (Y, Z) in the following sense: on has P —a.s. Yy =Y, for any t € [0,T] and Z; =
Zi,dt — a.e.

Proof. The uniqueness assertion follows immediately from Lemma 6.4. For the existence
we only consider the case p = 0 and will give the proof in three steps.

FIRST STEP First we assume that £ and h are bounded. Then the result follows from
Theorem 2.2 of [9)].

SECOND STEP Now we assume that £ and h° are bounded and consider a sequence (h¥)
of bounded functions which approximate h and satisfy the following conditions

1° hk ('7 '7070) =h ('7 '7070) = hoa

2° there exists some constant ¢ such that |h! — h°| < c|h¥ — h°| for I < k.

3° for given (t,w) € [0, T]xQ and r,q > 0 there exists an index ko such that h* (t,w,y, z) =
h(t,w,y,z) as soon as |y| < r,|z| < g and k > ko.

4° each function h* satisfies the conditions (26) and (27) with the same constants as h.

(For example the sequence h* = ((h —h°) Ak) V (—k) + h°,k €N, satisfies these re-
quirements. Observe that the third condition follows from the fact that the map (y,z) —
h(t,w,y,z) is bounded on {|y| < r} x {|z| < q¢}.)

Let (Y*,Z*) be the solution in L? (P%) of the BSDE with data (&, h*) under all P*,z €
A, provided by the preceding step. We are going to prove that, for each p' € (1,p), there
exists the limit limy_,o0 (Y*, Z*) = (Y, Z) , in the L?" sense and that (Y, Z) is a solution in
L? (P®) of the BSDE with data (£, h), for each z € A. In order to simplify the presentation
we will analyze first the convergence under an arbitrary fixed measure P*  with x € A. We
leave to the reader the task of dicussing the global measurability aspects.
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First note that, on account of Lemma 6.5 the processes |Yk| ,k € N, all are uniformly
bounded by a constant say 7 > 0. Also, the solutions (Y*, Z¥) are uniformly bounded in L?

by Lemma 6.4,
T 9 T
+ (/ |Zko (X)) dt) + / i (Y, Zfo (Xy))| dt
0 0

P P

T
/ I dt
0

We are now going to show that (Y'*, Z*) is Cauchy. We start from the following inequality
provided by Lemma 6.6

[N

sup |Y;k|
0<t<T

<

p

< K| Ell, + *)

p

1
T 2
sup |VF=VH|| + (/ |(Zf—Zi)a(Xt)|2dt> +
0<t<T , 0
p/

P

<

p/

T
H/ |h’f (Ytk7ZtkU (Xt)) _hi (Ytl,Zig (Xt))|dt
0

T
<K / ¥ (V) ZEo (X)) - B (Y, ZEo (X)) |dt ()
0

pl

We use p’ € (1,p) in this inequality because with such a parameter we will next show that
the term in the right hand side tends to zero. For each ¢ > 0 we set h? = hly|;|<,) and
hTk = B*1(), <41. One clearly has

|h? (t,w,y,2) —h® (t,w)| < Cq+h™" (t,w), |yl <

Therefore, on account of property 2° of the approximating sequence h* we deduce

R (Y, ZEo (X)) — b <

Wt (Y, ZEo (X)) — h°t‘ < (Cqg+hy") keN.

Then one may use the almost sure integrability property of h*", ensured by the hypothesis,
and property 3° from above to deduce the following relation

T
lim [ sup |h$* (VE, ZFo (X)) — h§H (VE, Zko (Xt))‘ dt=0, P* —a.s.
l—o0 0 k>l

The boundedness in LP provided in the relation (*), implies then

=0. (#)

lim sup

T
[ et vzt () - gt (v, 28 ()|
l—o0 k>l 0

'
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Similarly one has

lim sup
=00 k>

r

hP* (y,z) — b (y, Z)‘ +2C 2] 1{z5qp + ‘hi’k ) - he' )|,

Byt (V) - wt () |at| =o. (#4)

p/

Now we write

|hi (y,2) — R (y,2)| <

where we use the notation h"* (t,w,y) = h* (t,w,y,0) — h° (t,w), for any k € N. This leads
to the inequality

T
[ Ink (v, 2t () - B (v, 260 (X0) at] <
0

'

+

T
<[ nat v, zbo ) - ' (v 2o ()
0

/T
P’ 0

The first and the third terms in the right hand side of this inequality pass to the limit
according to the relations (#) and (#+#). In order to estimate the middle term of the right

hand side we will employ Holder’s inequality with respect to the powers (2, %, 2;,”;})) ,

p'

2C +

T
12t 00 gatacn ot it (V) =yt (1) ae

pl

T
k
/0 |Zt o (Xt)| ]‘{|Ztka(Xg)|>q}dt <

p=p
T

. T : T =
2p —p 2
<T % (/0 |Zfo (Xy)] dt) </0 1{IZf«f(Xt)|>‘1}dt>

This implies a restriction on p', namely one should take p' > £, but do not alter our
argumentation. After a new use of Holder’s inequality one gets

T 4
E (/0 |ZFo (Xy)] 1{|Z;“J(Xt)|>q}dt> <

’ !

T
E (/0 1{|Zfa<xi>|>q}dt>

. T 2
<7% | B (/ |Zfa(Xt)|2dt)
0

[S]
L]
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>From the estimate (*) one deduces further that the last quantity is less than a constant
RT 1 . . . .

multiplied by P For large ¢ this last quantity becomes arbitrarily small. Thus we may

conclude that

lim sup =0

=00 k>

T
/ |h§ (Y, Zfo (Xy)) — b (Y, Zfo (Xy))| dt
0

pl
and this in turn implies the following limit relations

1
)

T
lim sup sup |V -Y}|| + </ (Zf - Z})o (Xt)|2 dt) =0,
l=00 > 0<t<T > 0
pl
T
lim sup / \hf (Y, ZFo (X)) — by (Y], Zio (X)) | dt]| =0. (&)
l— o0 k>l 0 o

>From the first of these relations one deduces that (Y*,Z*) has a limit (Y,Z) in the
following sense

1
3

T
-+ (/0 |(Ztk—Zt)a(Xt)|2dt> = 0.

pl

lim
k—o00

sup [V — V4|
0<t<T

4

Clearly relation (*) ensures < 0.

(47 1220 0 )

>From relation (&) we deduce that the sequence hf (Y}*, ZFo (X;)) ,k € N, is a Cauchy

sequence in L' (dt ® dP®). The property 3° of the approximating sequence (h*) allows us
to easily identify the limit

.k (yk ok _
Jm g (Y, Zfo (Xp)) = hy (Yi, Z4o (X3)) -

Finally the above arguments allow one to conclude that (Y, Z) is an L? (P*) solution
corresponding to the data (&, h).
THIRD STEP Now we can prove the general result. Put

= (EANK)V (=k), B2F = (RO A k) V (=k), h¥ = h— h° + hoF

and denote by (Y*, Z*) the solution corresponding to the data (£*, h*) provided by the pre-
ceding step. The second inequality of Lemma 6.6, again ensures that the sequence (Y*, Z*)
is a Cauchy sequence and, consequently has a limit ”in LP”. Like in the preceding step one
deduces that the limit represents the solution we are looking for. O

Remark 6.8 The treatment of the monotonicity presented in this section uses some new
estimates for the solution. These estimates reveal that, with p = 2, the good norm for h° is

1
HfoT [hy| dtH2 and not (fOT ||h°t||§ dt) * | as was previously used in the literature of BSDE.
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6.2 Probabilistic interpretation of weak analytical solutions

We shall now look at the connection between the solutions of BSDE’s introduced in this
section and PDE’s studied in Section 3. In order to do this we have to consider BSDE’s
over time intervals like [s,T] with 0 < s < T, and so we first introduce some notation and
terminology related to these intervals. Our notation differs from the standard notation of
BSDE’s, that is essentially formalized for time inhomogeneous SDE,s. Since the present
approach is based on the theory of Markov processes, which is a time homogeneous theory,
we have to discuss solutions over the interval [s,T’], while the process and the coordinate
martingales are indexed by a parameter in the interval [0,T — s].

Let & be a Fr_, -measurable random variable and h : [s, T]xQxRx R™ — R a measurable
process such that (h (s +1,w,",));c(o,r—s) is Predictable (with respect to (Fi);cpo,7—g)- Let
v be a probability measure in V¢ such that EV¢? < oco. We say that a pair (Y3, Zt) s<t<T
of processes Y : [s,T) x Q = R, Z : [s,T) x Q — RN is a solution of the BSDE over the
interval [s,T] under the measure P¥ with data (&, h) provided that Y is continuous and
together satisfy the integrability conditions

T
E/ IB(t, - Y, Zoo (Xo_s))| dt < 00,

T
E"/ |Zo (Xy—s)| dt < o0,
s

and the following equation under PV,
T T—t
Y, =¢ +/ h(r,w, Yo, Zuo (Xo_s))dr —/ ZosrdMi,s <t <T.
t 0

Now let us assume that f : [0,7] x RN x R x R™ — R is again the function appearing in
the basic equation (13). Note however that before these functions were considered more as
L? elements, while now it will be important to look at them as pointwise defined functions.
Like in Section 3. we use the notation f° (t,z) = f(¢,2,0,0). The next result interpret
probabilistically Theorem 3.3. The proof is inspired from Subsection 3.1.1 of [5].

Theorem 6.9 Assume that the function f satisfies conditions (11), (12) and ® € L? (RN) .
Denote by
T
A={(s,z) €[0,T) x N°/E* <<I>2 (X7r—s) +/ |£° (t, Xo—s)|? dt) < oo},

A;={z e N°/ (s,z) € A},s €[0,T).

Then the set A is absorbent for the time-space process X and m (AS) = 0, for each
s €[0,T). There exist universally measurable functions (u,¢) ,u: A — R, ¢: A — RN such
that, for each s € [0,T) and each x € Ay, the pair (u (t,X¢ ) ,¢(t,Xt,s))SStST solves the
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BSDE under P* with data (® (X1_5), f (¢, Xt—s,y, 2)) over the interval [s,T]. The functions
u, @ also satisfy the following relations, for (s,z) € A,

T
u(s,z) = E°(®(Xr1_s)) +/ E*(f(t, Xi—s,u(t, Xt—s), do(t, X—s))dt, *

T
E* ( sup |U (t7Xt—S)|2+/ |¢U (t7Xt—s)|2 dt) S

t€[s,T)

T
< KE* <|<I>(XT_S)|2+/ |f°(t,Xt_s)|2dt>.

Moreover, the class of ul 4 is an element of F which is a weak solution of (18) and ¢o
represents a version of D,u.

Proof. The properties of A are ensured by condition (11) and by the strong Markov
property.

Let us construct the functions u, ¢. For s € [0, T), denote by (Y;?, Z7) s<:<7 the solution of
the BSDE over the interval [s,T], under P*,x € A, with data (® (X7_;), f (t,X¢—s,¥,2)) .
By the uniqueness part of Theorem 6.7 one may deduce that

Y00, =Y, te[s+rT), P°—a.s.,
(28770 (Xy—s—r)) 00, = Zf0 (Xy_,) ,dt x P* —ace.,
for each fixed r € [0,T — s) and all measures P?,z € A;. In particular, if we define
u(s, z) =: E*(Yy),
we will have
u(t, Xi—s) = EXt==(YV}) = E*(Y! 0 0y_s/ Fis) = E° (Y| Fi_s) = Y P® —a.s5,Vz € A,.

Denote W; (s,w) = (W1, (s,w),..Wn, (s,w)) = Z7 0 (X)) (w), for (s,w) € [0,T) x Q
and ! € [0,t—s). One has W, (r + s, 6, (w)) = Wi, (s,w),dl x P® -a.e. In terms of the time-

space Markov process X introduced in the preceding section, this writes W; (61 (s,w)) =

Wigr (s,w) . Therefore t - Ap ¢ (s,w) = ;AT Wi (s,w) dl represents an additive functional

for the time-space process X . By definition this functional is absolutely continuous with
respect to dt so Theorem 66.2 in [12] asserts that there exists an universally measurable
function ¢y, : [0,T) x RN — R, such that 9y, (t, X;—s (w)) = Wit—s (s,w) , dt x P* -a.e. We
define

¢ =91
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where 7 is given in the beginning of the paper. Note that ¢o (¢, Xi—5) = Zf (070) (Xi—s) =
Zfo (Xi—s), so that we conclude

780 (Xy—s) = 60 (¢, X1_s) dt x P%a.e.,Vz € A,.

Now one easily deduces relation (*) from the statement. In particular, one deduces that
t — u(t,X; ) is continuous P* — a.s. for each 2 € A,. This implies the equality of the
processes u (-, X._s) = Y.*, completing the proof of the fact that u (-, X._5) , & (-, X._s) solves
the BSDE over the time interval [s, T]. The remainder proof presents no more difficulties. O
The above result suggests us the following definition.

Definition 6.10 Let A be an absorbent set with respect to the space-time process X. A
pair of universally measurable functions (u,¢),u : A = R,¢ : A — RN, is called solu-
tion of equation (13) in the sense of BSDE’s on A provided that, for each s € [0,T) and
each x € Ay, the pair (u(t,Xy—s), ¢ (t, Xi—s)) ;<1< solves the BSDE under P* with data
(® (X1—s), [ (t, Xt—s,y,2)) over the interval [s,T].

Obviously, the uniqueness ensured by Lemma, 6.4 implies that if (u', ¢') is another solu-
tion in the sense of BSDE’s on A, then u = u' and ¢o = ¢'0c modulo sets of zero potential
with respect to X (i.e. ¢o (¢, Xi—s) = ¢'o (t, X4—s) ,dt x P* — a.s., for any (s,z) € A). So,
unlike the generalized gradient D,u of an arbitrary function in a , which is determined up to
dt x m -negligible sets, the gradient ¢o of a solution in the sense of BSDE’s is more precisely
determined. The preceding theorem ensures existence of solutions in the sense of BSDE’s on
a maximal set A and describes their basic properties. Clearly, if ® and f° are bounded one
has A = [0,T) x N¢. Relation (*) from the statement is a kind of punctual mild equation.
As we have seen, the mild equation (15) has a meaning on L? elements and it is equivalent
to the weak equation (14). The punctual mild equation (*) has a stronger sense.

However, compared with the notion of solution in the sense of BSDE’s, relation (*) alone
is weaker, because it does not determine the gradient as precisely as BSDE’s do. In the case
of the linear mild equation, for example, the gradient D,u would not appear at all in (*).
Therefore one can not deduce that a pair (u, @) which satisfies the punctual mild equation
is necessarily a solution in the sense of BSDE.

7 Comparison theorem and a control problem
We shall first solve explicitly the linear BSDE
T T
Yi=¢+ / (as + BsYs + (s, Zso (Xs)))ds — / Zs.dM, (29)
t t
where «, 3,7%,i = 1,n, are adapted_processes, v = ('y’) , the process f is assumed to be

bounded from above, the processes v* are bounded and the following integrability conditions
are satisfied

T
/ |B:| dt < oo, P* —a.s.,x € N, *
0
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T
/ gl dt, € € Noen-L? (P).
0

This linear equation satisfies the conditions from the hypothesis of Theorem 6.7 with p = 2.
So the solution exists and satisfies the estimates from Lemma 6.4. The next lemma gives a
formula for the solutions in L2.

Lemma 7.1 The solution in L? (P®) of the linear equation (29) is given, under P* x € N°¢,
by
T
Y; = E‘”(H‘t,T + / Ft,sasds/]:t)
t

where Ty 5 = exp(Ny — Ny — L ((N), = (N),) + [ Brdr) with Ny = L [ o7 (X,) .dM} and T
is the matriz defined at the beginning of the paper.

Proof. Because exp (2N; — £ (2NN),) is a supermartingale and (IV) is bounded it follows
that exp(2N; — (IN),) is integrable. From this one deduces that sup;< < I't,s is square inte-

grable and that ftT Nis |ag| ds is P*— integrable, for each 2 € N¢. Therefore the expression
in the right hand side of the formula asserted by the lemma makes sense.

Now we note that, because of the linearity of our problem, there is no loss of generality
if we assume, and so we will do in this proof, that £ and «a are nonnegative.

We first treat the case where the process § is bounded. The proof is analogous to the
proof in the standard case (see e.g. [5]). Denote by Ty = To; and Y, = V;I'y + fot asTyds,
where Y has the expression in the statement, and note that Y; = E*(Yr/F;). Then, by
the representation theorem 5.4, we may write Y; = fot Zs.dM; with Z = (Z;), where
Z;i = 1,N are some predictable processes. We also note that dT'; = T';(dN; + B;dt) and
dl;' = =Ty (dNy + Bdt — d(N),). Since Y; = (V; — f(f a,Tds)T; ! we get

dY; = —Yy(dNy + Bedt — d(N),) + T; ' Z,.dM; — oydt — d(Z.dM, T dN), =
=T;'Z; - Yt%%r (X}4)).dM; — Yy Bdt — oydt—
~2((O71Z: - Yigoer (X))o (X0, (507 (X0 (X)) .
We denote Z; =T, Z, - %Yt(rfyt). The last term in the above equality is
—{Zio (Xy) , o (X)) dt = — (Zyo (Xi) ,ve) dt = — (y, Zyo (Xy)) dt,
where we have used the relation oo*7* = o710 = o (see the appendix). So we get

dYy = Zy.dMy — Yy Bedt — apdt — (i, Zyo (Xy)) dt,

that is the equation (29).
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When J is not bounded we will define an approximating sequence as follows: (% =
BV (=k),k € N. Let us denote by Ffis,Ff,Yk,Zk,Yk,Zk the processes corresponding

to B* according to the above notation. One easily sees that the sequence nys, k € N, is

decreasing and hence the sequence of processes defined by the formula from the statement is
. . . sk

nonnegative and decreases: limg_,o, Y* = Y. The sequence of random variables Y = §F§~+

fOT a;TFdt, k € N, is also decreasing to Y7, and consequently the processes representing

them, Z", converge locally

E(?ﬁ—?r)zzE[/T

. . 0 . .
where 7 is the first time when Y exceeds a certain, arbitrary, value. Then clearly one has
the local convergence of the local martingales:

t N1 t g
/ (T3)  Zi.am, - / (T,) ' Z,.dM,.
0 0

>From the relation that express Z in terms of Z, used in the preceding step of the demon-
stration, one concludes that the following convergence also holds locally,

t t
/ ZkdM, — / Zs.dM.
0 0

The estimates of Lemma 6.4 hold in the limit for (Y, Z). In order to verify that this pair is
an L? solution it remains to verify that the relation (29) pass to the limit a.s. The terms
that contain Z pass to the limit by the arguments already discussed. The convergence of
the term ftT Y¥BEds is ensured by the inequality

T T
/ V4 |ﬂf|dt < ( sup Y;O> / |B¢| dt < 00, a.s.
0 0<t<T 0

This finishes the proof.00
We shall now use this result in order to prove the following comparison result.

(7t 7)o (x0) ‘2 dt] - 0,

Theorem 7.2 Consider two couples of data (€, f) and (€, f) which satisfy the conditions
(26) and (27) and admit solutions in L* (P") where v is supported by N'; denote by (Y, Z)
and (Y, Z) the corresponding solutions. Assume that

€>E PV —as.and  f(s,w,Ys, Zs0 (X)) > f(s,w,Ys, Zso (X,)), ds x dP” — a.e.
ThenY >Y,dsxdP¥—a.e. The comparison is strict in the sense that, on the eventY; = Y,

one has € = Z’f(s7w7Y:S7ZSO- (Xs)) = 7(57(}'}7?37730- (Xs))7 a'nd YS = ?57 for every s Z t7
PY —a.s.
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Proof. The proof is the same as in [9]. We denote
AY = Y-V, AZ=Z-7, A{=¢£(-¢

6f5 = f(s,w,Y;,Zsa( )) f( 8 0'( ))

ofs = (F(s,w,Ys,Zs0 (X5)) = (5,0, Y5, Zs0 (X5))) | AY,
and, for each i = 1, ...n,

6z,-fs. = (T(S,w,?s,V;) — T(s,w,?s,Vsi_l))/(AZSJ(XS)),- with
Vi = ((Zs0(X5))y 5 (Z50(X5)); 5 (ZSU(XS))Z'_H y s (ZSU(XS))H)-

We take 6, f; = 0 (respectively d, fs = 0) if AY; = 0 (respectively (AZ0(X,)); = 0).
Using the assumptions (26) and (27) one may easily check that d,, fs are bounded and
0y fs < p. We also notice that (AY, AZ) solve the linear BSDE

T T
AY, = A£+/ (5fs + (5, Fs)AY, + (8. f5, AZyo (X,)))ds —/ AZ,.dM,
t t

and so v
AY; = E*(A¢T7T; ! + / T,I;'6sfds/F;) >0
t
with I' given in the previous lemma (one takes a =4 f, f = d,f and v = 4. f). This proves
the assertions of the theorem.O

We shall now consider a control problem associated to the Markov process X. An
admissible control is a process 6(t,w) which is progressively measurable with respect to the
filtration (F;)¢>0 and which takes values in a compact subset K of some metric space. We
denote by © the class of admissible controls.

A bounded measurable function b : [0,7] x RN x K — RY is given and we suppose
that it is contlnuous with respect of the last variable. For a given admissible control 6 we
define N = fo (Xs,05) .dM; , TY = exp (Na——<N0>t) and P%* =T"?. P?. The payoff
function of the control problem is defined as

T
J0(z) = B (g(Xr) + / h(s, Xs,0,)ds),
0

where g and h are bounded measurable functions and h is continuous in 8. One wants to
minimize the payoff function, that is to calculate the value function
J*(z) = inf J?
() = jnf J*(@)
and to find an optimal control #*, that is an admissible control such that J*(z) = J?" ().

In what follows we shall restrict our analysis to points € A¢. We shall now calculate
J?(z) by solving the BSDE

T T
Y = g(Xr) + / Hy(X,, 2% (X,) ,6,) / 70.dM, (30)
t t
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where H : [0,T] x RN x R™ x K is the Hamiltonian defined by
H(s,z,z,0) = h(s,z,0) + 2 (b(s, z,0)0, z) .
Let us prove that
(@) =Y

where Y}f’w is the initial value of the solution of the preceding equation (30) under P*.
Indeed, one has

T T
A :Y09+/ Yfrg’de—/ TYH, (X,, Z80 (X5),05) ds+
0 0

T T
+/ FZZf.dMS+2/ T4 (bo (X,), Zio (X,)) ds.
0 0

Taking the expectation with respect to P® one gets
T
E%®g(Xr) = E°T%YY = E°Y) — Ew/ T0h, (X,,05) ds = Y" — EPh, (X,,0,) ds,
0

that is the asserted relation.
In order to calculate the value function and to produce the optimal control we have to
solve the following BSDE

T N o ,T
Ve =gn) + [ H(6, X0 220 (X)) -3 [ 2,0t @1
t — e

where
H*(s,z,2z) = inf H(s,z,z,0).
9EK

It is easy to check that z — H*(s,x, 2) is Lipschitz continuous, so that there exists a unique
solution (Y*, Z*) of equation (31). To be more specific, we denote by (Y;"", Z;**)o<¢<r the
solution of the equation under P*, so that the initial value of the solution is a constant:
Y ¥ = E*Y

0o = 0-

Since H is continuous as a function of § and K is a compact set the infimum is attained
at a point 8* and, by a measurable selection theorem one may choose a measurable function
(s,z,2) — 6*(s,x,2) which realizes the infimum. We construct the optimal control in the
following way: 0% := 6*(s,w) = 6*(s, X5 (w), Z} (w)).

Corollary 7.3 Under the above hypotheses J*(z) = Y,"* and 6* is an optimal control.
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Proof. Note that

H*(s,X,,Z}0 (X)) =91é1£H(s X, Z 0 (X,),0) = H(s, X, Z 0 (X,),0%).

It follows that Y* = Y? . On the other hand, for every admissible control 6, we have
H(s, X, 7% (X;),05) > H(s, X, Z%0 (X,),0?), and consequently, by the comparison the-
orem, J%(z) = Y® > Y{"® = J¥ (2). It follows that J*(z) = Y;"® and 6* is an optimal
control.O

We now may interpret the solution of the Hamilton Jacobi Bellman equation as the value
function of the above control problem. The HJB equation is

(0 + LYu + H*(t,z,Vuo) =0, u(T,z) =g.

We have proved in the previous section that this equation admits a unique solution on
N¢ in the sense of punctual mild equation and it satisfies u(0,z) = Y;"" = J*(z).

8 Appendix

Let us denote by M (N, n) the set of all real matrices with N rows and n columns. Each such
matrix represents a linear operator from R”™ to R™. On the other hand, the set M (N, n)
is isomorphic to the vector space RV X", so that it has a natural topology and particularly
one may speak about Borel measurability.

Lemma 8.1 For given natural numbers n and N, there exists a measurable function f :
M (N,n) — M (n,N) such that, for each E € M (N,n) the matriz F = f(E) has the
following properties: 1° EF represents the operator of orthogonal projection onto the image
space ER™(C RV ), 2 FE represents the operator of orthogonal projection onto the space

(ker E*E)J'(C R™), that is onto the orthogonal complement of the kernel of E. In particular
EFE=E,EF = F*E*,FE = E*F* and |EF|| = ||FE|| = 1, with the operator norm.

Proof.The proof of this lemma follows from an analysis of the polar decomposition of
the matrix E. Recall first that the series

2k—1) 1 k1
1+$—1+Z 25! 2k+2$

has convergence radius 1, so that for A € M (N, N) with || A ||< 1, one may define

ot .- r(2E=1! 1,
(I+4)% = z_: (2k)! 2k+2A'

Then, if A is non- negative definite, we may write

Atel=([[All+e) [I—(IIAII +e) (Al = A,
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M=

and, because || || A || -I — A ||<]|| 4 ||, one may use the above series to compute (A +l)2.
Therefore, the square root is obtained as a measurable function of A,

[N

1

A% = lim (A+ —1)
k—o0 k

If E€ M (N,n)set A=E*E, B = A% and note that U = AR" = BR", the image space is

the same. Let P the matrix representing the orthogonal projection from R™ onto U. Then

one has ker E = ker A =ker B=U" and PB = BP = B.

The following matrix .
C=lim A2 (4+ e,
g

is well defined and satisfies the relations PC' = CP = C, BC = CB = P. This can easily be
seen by choosing an orthonormal base of eigenvectors of A and performing a change of base
in R™ so that all these matrices become diagonal matrices. Further we set T = EC and
observe that one has TB = E, which is the well-known polar decomposition of the matrix
E. One immediately checks that T is an isometry from U to V = ER™ = TR" C R". The
matrix @, corresponding to the orthogonal projection from R” to V, satisfies QT = T. One
also has TP = T and PT* = T*, T*Q) = T*. Using these one successively verifies that 1°
T*T = P, 2° T* is an isometry from V to U and 3° TT* = Q. We conclude then that the
matrix F' = CT*satisfies the relations EF = () and FE = P. Clearly F is expressed as a
measurable function of E.OJ0
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