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Abstract: The numerical quantization method (see [B.P.1, B.P.2, B.P.P.1]) is a grid method
which relies on the approximation of the solution of a nonlinear problem (e.g. backward Kol-
mogorov equation) by piecewise constant functions. Its purpose is to compute a large number
of conditional expectations along the path of the associated diffusion process. We give here
an improvement of this method by describing a first order scheme based on piecewise lin-
ear approximations. Main ingredients are correction terms in the transition probabilities
weights. We emphasize the fact that in the case of optimal quantization, a non neglectable
number of correction terms vanish. We think that this is a strong argument to use it. The
problem of pricing and hedging American options is investigated and a priori estimates of
the errors are established.
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Schémas numériques d’ordre 1 pour la méthode de
quantification

Résumé : La méthode de quantification (voir [B.P.1, B.P.2, B.P.P.1]) numérique est une
méthode de grille qui repose sur "approximation de la solution d’un probléme non linéaire
(par exemple une équation de Kolmogorov rétrograde) par des fonctions cconstantes par
morceaux. Son but est de calculer un grand nombre d’espérances conditionnelles le long des
trajectoires du processus de diffusion associé. Nous présentons ici une amélioration de cette
méthode en introduisant un schéma d’ordre un basé sur des approximations linéaires par
morceaux. Les outils principaux sont des termes de correction dans les poids de transitions
de probabilités. Nous portons ’attention sur le fait que dans le cas de la quantification opti-
male, un nombre non négligeable de termes correcteurs s’annulent. C’est un argument fort
qui plaide en faveur de son utilisation. Le probléme de pricing et de couverture d’options
américaines est étudié¢ de fagon théorique (erreurs a priori) et numérique (par des simula-
tions).

Mots-clés : options américaines, quantification, calcul de Malliavin, schémas numériques,
méthode de Monte Carlo.



First order schemes in the numerical quantization method 3

1 Introduction

The numerical quantization method has been introduced in [B.P.1], [B.P.2] and [B.P.P.1]. It
is a grid method which is conceived in order to solve non linear problems in large dimension.
Since the problems which we have in mind have a P.D.E. formulation, analytical methods
like finite differences or finite elements are candidates in order to solve such problems but it
is well known that the implementation of this type of methods is rather difficult in dimension
larger than three. So one would like to use some probabilistic methods of Monte Carlo type
(which have the advantage of being dimension free). But this may not be done directly
for non linear problems because the resolution of such problems suppose the computation
of a large number of conditional expectations and not only of a single expectation. The
numerical quantization method is in-between the analytical approach and the Monte Carlo
method. One uses some grids and some weights (like in the finite element method) but the
weights are computed using a Monte Carlo method. Although the error depends on the
dimension as in the analytical methods, the advantage of using Monte Carlo is that one
may implement such algorithms in dimension larger than 3 (typically up to 10 - beyond, the
number of points needed in the grids becomes huge).

The aim of this paper is to give a more efficient version of this algorithm. Roughly
speaking, in [B.P.1], [B.P.2], [B.P.P.1], [B.P.P.2], we have studied approximation schemes of
order zero and now we give approximation schemes of order one. Basically the schemes of
order zero use piecewise constant approximations of the functions at hand and consequently
employ the information in one point only - the center of the cell on which the approximation
of the function is constant. The schemes of order one use linear interpolation and so put
to work several points - the center of the cell but also the centers of their neighbors. For
example the basic finite element method represents an algorithm of order one because it
employes linear interpolations and, if one uses polynomial interpolations then one obtains
schemes of higher order (but of course the algorithm becomes much more complex). In our
frame we use the Malliavin integration by parts formula in order to compute some correctors
which produce piecewise linear interpolations. The attractive thing in our approach is that
although the scheme become more complicated as we pass from a 0t*-order scheme to 1%¢-
order scheme, the complexity of the algorithm remains of the same order and the correctors
which come on are of the same nature. Consequently they may be computed rather simply
by the Monte Carlo method with the sample used to compute the weights coming on in the
original 0*"-order method.

As emphasized in Section 3, there are two types of projection errors coming on in our
algorithm, say “ceil” and “ground” errors. So, a priori we need two types of correctors
concerning each of these errors. But it turns out that if we use optimal grids (in the
quantization sense) the ground correctors vanish. This is an enlightening fact concerning
optimal quantization and a strong argument to use it.

The numerical quantization represents a quite general approach to non linear problems
because its main purpose is to compute a large number of conditional expectations along the
path of a diffusion process (see Section 3.3). But our specific initial motivation comes from
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pricing American options, which is an optimal stopping problem and so a typical non linear
problem. In this paper we also focus on this problem in order to illustrate our method.

Finally, we mention that the first order correctors are closely related to the strategy, so
we can produce as well some proxy of the strategy as a by-product of this first order scheme
(see [B.P.P.2] for an extensive discussion of hedging by quantization) (see Fig. 1 at the end
of this paper).

2 The basic algorithm for pricing American options

2.1 The problem

We consider a market model containing a risk-less asset SY and a d—dimensional risky asset
S; € R*,0 <t <T, whose dynamics read

ds? = S0rdt, SO =1,

and
dSt = Dlag(St)(Tldt + E(t, St)dBt), Sg =1.

Here 7 is the interest rate, 7 is the volatility function and By = (B}, ..., Bf) is a standard
Brownian Motion on some probability space (€2, F, P) with the standard filtration (F;)o<¢<T
associated to the Brownian motion. T is a fixed time (maturity). In order to avoid some
rather complicated formulae in our computations it is convenient to work with X; := log S;
instead of S; itself. It is easy to see that the dynamics of X obey

dX; = O'(t, Xt)dBt + b(t, Xt)dt, Xo =z =:logsg

with o(t,z) =5 (t,€%),b(t,z) = r — 1 Tr(c0*)(t, €%).
Moreover, we consider a payoff function h : [0,T] x R? — R and we want to price an
American option of payoff h. The price at time ¢ € [0, 7] is given by

Y = esssup, 7, E(h(r, X;) | )

where T; 7 denotes the set of all the stopping times 7 taking values in [¢,T]. This is the
Snell envelope of the semimartingale h(t,S;) (if b is sufficiently smooth). It is well known
that no closd formula holds for Y so we will consider a discrete approximation. To process,
we consider the Euler scheme of step %,

— — — — . T —

th+1 = Xt,c-{-U(tk,th)Ak +b(tk:Xt;c)E: Xo. =z,
where t; = % and Ag = B(tgt+1) — B(tr)- In order to lighten the notation we put X =:
Xy,,01(z) = o(ty, ), bp(x) = b(ty,z) so that we are concerned with the Markov chain

(X&) k=0,...,n given by the induction

1
X1 = Xi + 0 (Xi)Ap + bk(Xk)Ea Xo =z

INRIA



First order schemes in the numerical quantization method 5

Then the discrete version of Y is defined by Y;, = esssUP7, L E(hi(X7) | Fry,) where

hi(z) = h(tg,x) and Ty, v denotes the set of all the discrete stopping times with respect to
the filtration (F3,)i=0,n , which take values in {k,...,n}. We shall work under two different
sets of hypothesis:

(i) o and h are Lipschitz continuous functions.

(Hl) =
(11) oo* > cIy where I; is the identity matrix.
or
(1) o,b are are Lipschitz continuous and
h is Lipschitz continuous in ¢ and semiconvex in z.
(Hz) =

(1) oo* >cly.

The precise definition of semi-convex functions is given in [B.P,1] - we mention that
convex functions are semi-convex along with twice differentiable functions whith bounded
derivatives.

It is proved in [B.P.2] that under these hypothesis

<
na

o\
(Pmax i, -7 P) < 1)

with @ = 1 under (H;) and a = 1 under (H,) (when using the true “sampled” diffusion

(X4, Jo<k<n as the Markov chain instead of its Euler scheme).
Now we compute Y, using the dynamical programing principle:

?tn = hn(Xn)
?tk = max{hk(Xk)vE(?tk+1 |ftk)}

The analytical counterpart of this scheme is obtained in the following way. One constructs
recursively the functions uy by

up(xz) = hp(z)
up(z) = max{h(z), E(ups1(Xps1) | X = z)}.

Then Y, = uk(Xx) and consequently, up to the approximation of Y by Y, the price at time
zero is given by wug(z) = ug(log so).

2.2 The basic algorithm

We want to produce an algorithm in order to compute ug. The difficult point will be of
course to design an efficient method to compute E(ugi1(Xgt1) | X = ),k = 0,...,n. It
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is clear that we cannot do it for every point z € R?, so we will settle some space grids
ET

Ty = {z},... ,mfcv’“} C RYk =0,...,n corresponding to the epochs ¢y = “5-. The way we
choose the size N of the grid and the location of the points zj, of the grid I'y, play a crucial
part and the numerical efficiency of the algorithm heavily depends on this choice. But these
problems have already been extensively discussed in [B.P.1] and so we leave them out here.
So, in this paper the grids 'y, k = 0, ..., n are some exogenously designed objects. Moreover
we define the Voronoi tessel of zi by

i d i ; _
Cr={z€R /|a: xk|§0§1]11Ska z a:k‘}

and we denote by II; the projection on the grid Ty i.e Iix(z) =: Zfﬁ“l %10,’; (z). Note

that Ci,i = 1,...,n is not a partition of R? because the different tessels have boundary
hyperplanes in common. But this is just a formal disagreement because the laws of the
random variables we work with are absolutely continuous and so weights no hyperplane.
The basic idea is to approximate

E(upt1(Xpg1) | Xp = 2}) = Bupp1 (Mgpr (Xer1)) | T (X3) = 24). (2)
Note that
. Ny '
E(upr(Megr (X)) [ TR(Xp) =23) = D wp (@) E(lgg, (Xkt1)) | 1 (X))
Jj=1
Net1 ' y
= Z Uk+1 (5’3?@4-1)”;9]
j=1
j )
with 7 P € Gipr Xi € G)
P(Xk S C}c)
The wij’s are the weights in our algorithm and we compute them using the Monte Carlo
method. The important point here is that we may compute all 7/,i = 1,...,Nj,j =
1,..., Nky1,k =0,...,n using the same sample (X;)kgna cee (X,é”)kgn of the chain (X)r<n

(see [B.P.,1]). In fact

it .
my ~ Ty =

M
Eq:l 10£+1 (X13+1)10;; (X,Z)
i .
Zq:l 10,’; (Xlg)

So we avoid using different Monte Carlo procedures in order to compute the conditional
expectation at each point, which would be extremely expensive. In this sense our algorithm
may be seen as a compressed Monte Carlo Method. Now the algorithm reads

3)

Un(2l) = ho(zl), i=1,..,N, (4)
Nig1

ak ('Z'i:) = max{hk(m}c), Z 71-z,]’l/;k—l—l('Z.'l7;;_|-1)}7 k= 07 EETALE
j=1

INRIA



First order schemes in the numerical quantization method 7

Of course in true applications we do not know W,’Z , SO We use %,ij . This introduces one further
error — the statistical error— which is not discussed here (see [B.P.2]).
This is our basic algorithm. It is an algorithm of order zero because we replace ug11 () by

Upp1(Mgyq(z)) = Z;V:"fl xi+110§+1 (z) and X}, (with respect to which one takes conditional

expectation) by II;(X) = j‘jl .’L’Zlcr,ic (Xk). So we work with piecewise constant functions.

2.3 Optimal grids and error estimates

We give now some error evaluations which are obtained in [B.P,2]. First, one proves that
R ) 1/2 C n ) 1/2
(Bt v, - amon?) < S+ Y (B0 -mon) o
ksn L

with @ = £ under (Hi) and a = 1 under (H>).
The grids we use are optimal in the following sense. One denotes defines the distortion

of a grid T := {z!,..., 2™} (with obvious notations) as
Ny
(Dx,, () := E| X — T (X)|* = D B((Xx — 2°)* 1 (Xx))- (6)
i1

A grid T'y, is optimal if
Dx, (T'y)= inf Dx, ().
X (Tk) i x,(T)
A basic result from the quantization theory (the Bucklew & Wise Theorem - see [G.L.],[P.],
[B.P.1] for the precise result) asserts that, if the grid is optimal, then there exists a real
constant Cy such that

1/2 C.
(D, (T)? = (B(Xe = Tir, (Xu)?) < 7
k

(7)

Plugging (7) in (5) and the structure of the constants Cy in (5) make possible to tune
the Ny s in an optimal way - and this is done in [B.P.2]. Since in this paper we are simply
interested in the asymptotic order, we leave out this tedious analysis and just assume that
N < N,k=1,...,n for some N and express the above error in terms of N.

Proposition 1 Assume that (7) holds true and N, < N,k =1,...,n. Then

1/2 1
_ 2 o
(E(%fmk — g (I (X)) | ) <C (n_a + Nl/d) ®)

with o = § under (Hy) and a =1 under (Hs).

RR n°® 4424
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Let us take one step beyond into the numerical properties of optimal grids. Since I'y, :=
{z1,...,2V*} achieves the minimum, formal derivation in (6) (see [P.] for the complete
argument) yields

a7 (D3 (0 = 2B((Xe = a1y (X)) =0, (9)

We will show in the next section that optimal grids produce an error of order N2 instead of
N~! - and the relation (9) represents the key argument: it says that, if the grid is optimal,
then the terms of order one in a certain Taylor expansion of order two fade.

3 Correctors of order one

In the approximation presented in (2) there are two different projection errors corresponding
to Iy (“ceil”) and Tlg4q (“ground”). The aim of this section is to produce some correctors
which reduce these errors. In order to enlighten the notation we put X r = Hy(Xy) and, for
every integrable random variable ® and every set A € Fr we denote E4(®) := E(® | 4).

3.1 The basic integration by parts formula

In our very elementary setting the Malliavin integration by parts formula reads as follows.
Given two differentiable functions f, g : R — R, and any real constant C,

0
B(5L

(Ag(A0) = ~B(U(80) + O G2 (M) - ZAGg(BR). (10
The proof is obtained by a usual integration by parts( with respect to the gaussian distri-
bution). It represents the starting point of the Malliavin calculus - which goes far away -
but we stop here.

It seems natural to take C' = 0 in the above formula because anyway V(f+C) = Vf. But
in our frame f appears as an a priori given function and the fact that we have the freedom of
choosing any C is crucial for simulation. The practical way of using this formula is to employ
the Monte Carlo method for computing the expectation in the right hand side in order to
obtain the expectation in the left hand side. So we would like to simulate the expectation
of some variable with a small variation and consequently we would choose C = —E(f(Ay))
(if we know it) for example.

Now let U : RY — R be a measurable function with polynomial growth (with U (Xy1)
integrable). We define
PkU(.CL') = E(U(X]H_l) | Xk = .'E)

which represents the semigroup of the Euler Scheme. Our problem is to compute the deriva-
tives of PyU . We define 0y (z,y) := = + 0% (2)y + br(2) L so that Xy1 = 05(Xk, Ag) and
consequently PrU(z) = E(U(6k(z,Ar))). Moreover, since oy, is invertible, we may define

Mel,y) = :opi(e) x Vobi(z,y) and (11)

INRIA



First order schemes in the numerical quantization method 9

d BAql n 1
7 _ k
Pr(z,y) = _(1:21 (6—%(%9) - quAZ (ﬂfay)) -

Lemma 1 The partial derivatives of PLU are given by

oOP,U
61‘1

(z) = E((U(Bk(z, Ar)) = C(@)ph(z, Ar)), L =1,...,d. (12)
where C' is any real function.

Proof. One may assume w.l.g. that U is smooth. Note that V,(U o 8;) = (VU) 0 ) x
Vybr = (VU) 00y, x oy and so (VU) 06y, = V(U 0 8) x o, *. It follows that

VP U(z) = E(VU)(0k(z, Ak))Vabi(z, Ak)) = E(Vy(U 0 k) (z, Ax) Ak (2, Ar))
and now (12) follows from (10) with C' = C(z). O

Remark 1 Let us emphasize the simple but important example of constant volatility oy, and
constant drift coefficient by, (the log-normal model corresponding to the classical Black-Sholes
model). Then 0y (z,y) = & + ory + b2, A\e(z,y) = o' and so pl(z,y) = Z(yor ")

Finally we give a priori estimates which we use in order to evaluate errors.

Proposition 2 Suppose that U is[U]1- Lipschitz continuous. Then

OPU 0?PU
< < 1
H B, ‘Oo <CU}y and ‘ didwr | S ClUL1ivn (13)
Moreover, if U is just a bonded measurable function
oOP,U &’ PU
< < .
|2 <clva aa |ZEE] <cpolon (1)

Proof. The first inequality is obtained by direct calculation and the second one is
obtained using integration by parts once. The proof in the case of a bounded function
is done using integration by parts once (respectively twice) in order to obtain the first
(respectively the second) inequality. O

3.2 The Il projection error (ground error)

We consider the same measurable function U as in the previous subsection and we want to
approximate P,U(z},). We define

E(U(Xk41)1ci (X))
P(Xk € C,zc)

0 (zk) =

RR n°® 4424
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and we note that, if U(z) =1
our algorithm. We write

i, (x) then ¢ (x}) = m/,i.e. the standard weight we use in

E(U(Xk11)1ci (X)) = E(PU(Xi)1c: (Xx)) = PoU(2})P(Xk € C) + €},

with
ClP.Ux

Ni
D lekl < [PUWE| Xk — T (Xk)| < =7+

i=1
the last inequality being a consequence of (7). In particular the above relation gives
PU(aL) = ¢k (ah) — e /P(Xy € C}) and so

Ny,
B|RUR) - o (0| = Y B(PUE) - 6 (80| Lx,ecsy)
=1
C[PkU]l.

Ny,
= 3RV - eh)]| P € 0 < Tl

The aim of this section is to prove that, as a consequence of the optimality of the grid, the

above error is of order N2/? ingtead of N1/4.

Proposition 3 Assume that U is Lipschitz continuous and that the grid Ty, is optimal, so
that (9) holds true. Then

E|PU(Xk) - o} (%) < %}f (15)

Proof. We use a Taylor expansion

E(U(Xe+1)lci (Xx)) = E(PU(Xe)lci (Xk)) = PoU(2})P(Xk € C})
d

+3° ZE G B - ) 16, (X0) + R
=1

with (see (13))
J C[U]iv/n
i 1
; Ry| < ||0*PU||, B Xk — (X)) < T

Since the grid is optimal, E((Xy — «})'1¢: (Xk)) = 0 and the proof is complete. [

INRIA
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3.3 The ll;,, projection error

The aim of this section is to compute @Y (z%). We cannot solve our problem for a general
measurable function U so we need that U has the special form

U(z) = PeaV(z) = B(V(Xk42) | Xpy1 = 7).

Moreover, in order to obtain reasonable error evaluations, we assume that V = Py, oW for
some bounded measurable function W. This may be seen as a regularity property for V, in
particular V' is Lipschitz continuous. Assume that W is Lipschitz continuous as well. Then,
as a consequence of (13),

02U
8wl6‘x,/
We define the new weights by seeting

ov
6.21‘[ 0o

< CWh. (16)

< CVIivE  and '

e _ E(plr (Xra15 Arp) X1 = 230) Uog et ey, , Kk Xir1s Xit2))
k P(X; € Cl) :
l= 1,...,d,i:1,...,Nk,j:1,...,Nk+1,T=1,...,Nk+2

(17)

and
Ni41 d Neg1 Npgo

PVkU l’k Z U Z'k_H 7Tk +Z Z Z $k+2 \./l)'”i;ijr (18)

=1 j=1 r=1
where C’{',’l are arbitrary constants which have to be settled in order to reduce the variance
in our algorithm.
Lemma 2 Suppose that U = P,V with V = P2 W for some Lipschitz continuous function
W. Then

B|PU(R) - Pt (R < SR (19

where C' depends on the diffusion coefficients.

Proof. The idea is similar to that in the previous section: we localize on C,Z 41 and we
employ a Taylor expansion

o (@) x P(Xx € Cf) = E(U(Xg+1)1ci (Xk))
Nyy1

Z E(U(Xk+1)1c,ﬁ+1 (Xk—i—l)lc,i (X&)

N1

= Z U(xi+1)E(lci+1 (Xk+1)1ei (Xk)) +

oU . .
+ Z ZE(&C! (K1) (X1 — Hffcﬂ)llciH(XkH)lc; (Xk)) + Q%

j=1 I1=1

RR n°® 4424



12 Bally € Pagés € Printemps

with

Niy1

j l j U
Zl ”ZI 8$l6$l k+1)(Xk+1 - ',1‘“]7;;4-1) (Xp41 — wi_{.l) 1(){;“ (ch+1)1c;'c (Xk)) +
J 7
Npg1 d

ou ;
> ZE wkﬂ gy Ker) (Xews = 240) Loy (Kiern)Leg (X))
7j=1 I=1

We use (16) and we obtain

C[Wlivn
N2/d

IA

Nj, ) N 9
> BQH] < C0°U] , B[ Xirs ~ i
i=1

In order to compute g—g(X;H_l) we use (12) with £ = X}, and we obtain

oU ;
s A= (Xip1) = B((V(Orr1(Xpg1, Dk41)) = CF )Pl (i1, Apyr) | Xera)

= B(V(Xk42) = CY )Phi1 (Xer1, Akgr) | Xiga)-
Moreover, using the Markov property first and then localization for Xy, o yield

oUu ,
E(a (K1) (X1 = xi:+1) 1cz><c;c+1(Xkan+1))

= E((V(Xgt2) — Cv,l)Pk+1(ch+17Ak+1)(Xk+1 - $i+1)llcz xC? (Xk, Xi41))

k41
N2

= Z E((V(Xk42) = C) ) phys (Xer1, Apgr) (Xiga _xi+1)l]‘c’fcx0i+1xc’:+2(Xk7Xk+17Xk+2))

Nk+2
= > (V@) — CL)E s Kig1, Apgr) (Xegr — Thy) Les %G1, x gy (K X1 Xie2))
r=1

Lij
+HY.

Recall that V is Lipschitz continuous . Recall also that || Py (Xiy1, Ak+1)||2 < C4/n. Then

N3 Niy1
> Y |a
i=1 j=1
Ny ~ ~
< CVIvAY B([Xers = Rera| | Xiws = K| 1o (X))
=1
~ 2 2
< C\/HE(‘Xk+2 _Xk+2‘ + ‘Xk+1 - Xk+1‘ ) < ZT\//Z-

INRIA
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Finally, using the result from the previous section

B ‘PkU(X'k) - PV,kU(Xk)‘

C[W]iv/n ~ ~
< [N—z];;/_ + B |y (Xx) — PV,kU(Xk)‘
ClWh ) )
< [Nz/;/_ Z|¢U — PyiU(a})| x P(Xy € C})
CWhyn RS O | CIW/m
S T +ZE|Q|+ZZZHJ < —Na
=1 i=1 j=1

and the proof is completed. O

In the algorithm we have in mind we want to compute P, U but we do not have the exact
value neither of U nor of V but just some approximations U’ : Ty41 = Rand V' : Ty — R.
So we are interested to evaluate the impact of the error U — U’ and V — V'. The functions
U’ and V' are not related by U’ = P, V' and this relation makes actually no sense because
these functions are only defined on some grids. Anyway, one may define Py ,U’(2%) by
(18).

Lemma 3 Suppose that \/n < N/, For every p > 1 there exists an universal constant Cp
such that for everye >0 and every U, U' : Tyy1 = R, V,V' : Tpao - R

E ‘(PVkU ~ Pyl ()?k)‘ <E ‘(U —u) ()?Hl)‘

n°vn o

+—~i/a N1/d

B[V V)R] + o2 | = V)R (21)

where Cp, is a constant which depends on the coefficients of the diffusion process and on the
constant in (7).

Proof. We assume that C{,’l =Y 14 SO that these terms disappear when taking the
difference. Moreover, having in mind the expression of our weights we obtain

E|(PyxU — Py 1 U") ()?k)‘
Ny

= > |(PvsU = Py yU") ()| P(X € C)

i=1

IA

d
B(|(U = U)Eesr)| + BV = V) (Ees)| 3 1ok (et )| | X = K
=1

: A+ B.
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Let us evaluate B. We denote @ := E;i:l |p§c+1(Xk+1, Ak+1)| ‘Xkﬂ — Xi41| and write

B = E((V-V)(Zk)| Q)

nfy/n
S Nl/d

BV = V) Rer)| + | (7 = V) Fasa) |, N2l PQ > "y

Note that |} (z,y)| < C(1+ 2 |y| (L+]y|)). Then it is easy to see that [|Q||, < Cy/n/N'/4 <
C. Moreover, since \/nAg; is standard normal distributed

ny/n O s ne/?
PQ = Nl/d)ﬁce ¢ +P(|Xk+1—Xk+1‘ZW)
< Ce 9™ +P(|X Ryl > B
< e + (‘ k1 — k+1‘ > W)
7 € C
—C'n y4
< Ce + Y5

the last inequality being a consequence of (7). We may assume that the exponential term is
dominated by C,/n?/? and so the proof is completed. O
As an immediate consequence of the above lemmas we obtain

Theorem 1 Let U = P,V with V = Py 1 W where W is a Lipschitz continuous function
on R and let U' : Tjy1 = R and V' : Ty12 — R be any real functions. Suppose also that
Vi < NY4. Then, for every p > 1,6 >0

E|(PU = PyrU") (%) (22)
cw n ES nfy/n ~
< WAL L | -0 (Ri)| + SV B|(V ~ V') (Risa)
C;D n (¥
*aers [V =V R

where Cp, is a constant which depends on the coefficients of the diffusion process and on the
constant in (7).

3.4 The algorithm for the Snell envelope

In this section we give the analogues of the algorithm in (4):

’l/in(lL‘;) = hn("l};% i=1,..,N,
Piiipy1 = Paypo kUgy1-
k(o) = max{hi(z}), Ptigsa (})}-

INRIA
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Note that

N1 d Nit1 Nigo

7 lyijr
Pyigya (2}) Z Uk+1 $k+1 m ‘*‘Z Z Z U1 (Ty2) = Oy, )70

=1 j=1 r=1

The constants C] ., are to be chosen in order to reduce the variance.

The definition of 7rl T makes not sense for k =n — 1, so, in this case we do not use the
corresponding corrector and we just put B,_ 105 () = EN" h(z3) :f 1-

Now our problem is to evaluate the error given by our algorithm. A straightfoward
argument shows that, if A has polynomial grows, then maxy<, uk+1()? k+1)” <C < +4o0.
= 2

Then

Blun(Xe) - an(%)|
< K ‘Pkuk—i-l(jfk) - ﬁkak—i-l()?k)‘ =FE ‘Pkuk-i-l()?k) - Pak+2,k77k+1()?k)‘

Cvn
N2/d

ney/n

< N1/d

~ = C
E ‘(Uk+2 - Uk+2)(Xk+2)|) + £

+ B (et — i) (Ri)| + .

We take now N suficiently large in order that n®y/nN /¢ < 1/n. The iteration of the above
inequality gives

S C C C C,
E|uk(Xk)—uk(Xk)‘ STL( \/ﬁ'{'np:;s) >~ n\/_ —_—

N2/d N2/d n
the last inequality being true if p > 16/¢.

Remark 2 Recall that up, = max{hy, Pyug+1} # Prurs+1 so the above argument is not
really rigorous. Some troubles may appear in the computation of OPyug,1 when hitting the
obstacle. It seems difficult to give a precise description of this error but we notice that this
occurs rather seldom on one hand, and, on the other hand the derivatives appear in the
correctors, so they are already multiplied by small quantities. So this does not seem to be a
bad error. Anyway, numerical evidences show that this work well.

Assume now that n®y/nN~—1/? < 1/n and p > 16/ and let us see which is the impact of
this inequality. Recall that the error which we compute is

c cnfc

R C ~
[Yo — o (mo)| < v + |uo(z0) — Uo(z0)| < —; na + N2/d -

with a = 1 for a semi-convex obstacle and a = % for a Lipschitz continuous obstacle.
Our restriction on N ensures that N/ > ns+3/2 50 that ny/nN~2/? < 1/n. So we obtain
|Yo — Uo(z0)| < = ¢ 4 % We have (almost) proved the following theorem:

RR n°® 4424
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Theorem 2 Let us choose € > 0 and p > 16/ and suppose that NV > pet3/2 Then
. C
[Yo — @o(z0)| < n_z

where o = 1/2 under (H1) and oo = 1 under (H»). Cp is a constant which depends on the
coefficients of the diffusion process and on the constant in (7).

Remark 3 Recall that if we use the basic algorithm we need N = n?? in order to obtain an

error of order 1/n and N = n®%? in order to obtain an error of order 1/\/n. So there is a
gain at least if we want to obtain an error of order 1/n. In fact the error evaluations we are
able to obtain here are not very sharp and it seems clear that there is a gain in any case.

3.5 Geometrical interpretation

We mentioned above that the 1—schemes corespond to the linear interpolation for the func-
tion ug41. The aim of this subsection is to make this assertion more precise. For simplicity
we consider the one dimensional case only. So z € R and we denote I = [zi,zi"). We also
denote

- . . -
oo g o Ukl (37;11) — Uk+1 ('CL.'I;‘;+1) nooog o Uk (37?94_1) — Uk+1 ('(L“l;‘;+1)

Upt1 ($k+1) = Gl 7 Upt1 ($k+1) =
Tht1 — Thy1

. —
Thi1 = Thy1

and we think to u;c’:l(a:fc +1) (respectively to u;c’il(a:fc +1)) as an approximation of the right
hand side (respectively of the left hand side) derivative of ug41 in 27, ;. The linear interpo-

. - ) Nig17 5.
lation for {ugq1(2} 1),4 =1,..., Ngy1} on [z, 2, 1] is given by

Niy1

@) = Y 1y ) (w1 @) + 0 () 0 = 701)
=1

- . J j @l g +eit]

Tn order to express this in terms of Vorono tessels we denote C k1 = [Thy g, 2 5—4) and
J e WO J J J J J it i
ki1 = (FH57, @ yy) so that Gy = 5k+1 U 6k+1 and Iy, = ﬁk+1 U C%yq- With

this notation

+1

Nyy1
U (y) = D 1o W)urr(zh,y)
=1
Nyt
, ) ) 1 . )
+ Z (187 (y)u;:H (:th]c+1)(y - xfc.H) + lﬁj (y)u2+1($i+1)(xi+1 - y))
i=1 k41 k41

Suppose that we are far from the free boundary. Then using the above expression we obtain

Uk (x;ﬂ) = E{Bthx};}(ﬂk-i-l (Btk+1))

INRIA



First order schemes in the numerical quantization method 17

Niy1 '
= Zuk+1($i+1)E{B%=w;}(1C£+1(Btk+1))

=1

Nyt

+ 3 U @) By, —agy (s (Buy)) Bryy — 7))
k+1\Yk+1/5{ By =3 } ﬁ’ tht1 tet1 k+1

j=1 k1

Npg1

1 . ,
+ E u;;;+1 (‘(E‘]Z;+1)E{Btk=$};}(1ﬁj (Btk+1)('7‘"17‘;+1 - Btk+1))'
=1 k41

So the linear interpolation may be seen as a Taylor expansion of order one, with the
derivative approximated by finite differences (in a different way in the left hand side and
in the right hand side). This is exactly what we are doing in the 1— schemes. The only
difference concerns the approximation that we use for the first order derivatives. The reason
for which we do not use finite differences approximations is because this kind of scheme is not
available in the multi-dimensional case, when the grid is not regular (we mean hypercubes):
optimal grids are never regular.

Let us now come back to our way of computing derivatives. We stress that this is based
on the fact that uj11(2}, ) is itself an expectation. The formula

U1 (@ 1) = B2 (O (@hyrs Akr1)) — O)p (2141, Arr)

gives a pathways interpretation of the derivative and this is the basic fact which allows us
to compute the derivatives using a Monte Carlo method.

There is one more difference between our method and the linear interpolation method.
In the computation of u}, , (2,) using the finite difference method one uses two values of

Upy1 : at T 41 and at x?:l (respectively in mfcjrll) In our method we do not use the values of
up41 but of ugys. Moreover, we employ all the values ugi2(2},,),7 = 1,..., Npi2. Finally
we stress that our interpolation is picewise linear but not continuous.

3.6 Numerical results

In this section we give some numerical results which illustrates our method and the contri-
bution of the correctors. We will take for the obstacle

d/2 d
h(t,z) = Hm, - H Z;
=1 i=d/2+1 "
This corresponds to an American style exchange option based on the d- dimensional asset
2 =S8, =(S},...,S¢). The fact that we take the special form ([[%/2 Si — H?:d/2+1 S, for

the payoff is motivated by the following technical reason. We have to compare our result with
an (almost) perfectly computed price, and this is done in dimension 2 by Villeneuve & Zanetti

in [V.Z.], using a finite difference method. So we use the fact that Hfﬁ S¢ (respectively

RR n°® 4424
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e, /2415¢) has the same distribution as some standard one dimensional Black & Scholes

diffusion S} (respectively S2) with constant volatility. Note anyway that in our algorithm
we simulate independently each S;,i = 1,...,d so that our algorithm is a true d-dimensional
one. We give the results for d = 4,6, 10.
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Figure 1: Dimension d = 4, n = 25 and Na; = 500, In-the-money case. a) Value of the
American option function of the maturity T. The crosses denote the quantized version with
order 0 (+) and order 1 (x). b) Hedging §; and J, function of maturity 7' computed with
the first order scheme. c¢) Hedging 3 and d, function of maturity 7' computed as the former.
The reference price and hedging (V&Z) are denoted by solid lines.
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Figure 2: Crosses denote the quantized version with order 0 (+) and order 1 (x). a)
Dimension d = 6, n = 25, Naz = 1000, In-the-money case. Value of the American option
function of the maturity T. b) Dimension d = 10, n = 50, Nos = 1000, In-the-money case.
Value of the American option function of the maturity T. ¢) Dimension d = 10, n = 50,
Nss = 1000, Out-the-money case. Value of the American option function of the maturity T.
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