N

N

Linear algebra for skew-polynomial matrices

Sergei Abramov, Manuel Bronstein

» To cite this version:

Sergei Abramov, Manuel Bronstein. Linear algebra for skew-polynomial matrices. RR-4420, INRIA.
2002. inria-00072168

HAL 1d: inria-00072168
https://inria.hal.science/inria-00072168
Submitted on 23 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00072168
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4420--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Linear algebra for skew-polynomial matrices

Sergei Abramov — Manuel Bronstein

N° 4420
March 2002

THEME 2

apport
derecherche

% I N R I A

SOPHIA ANTIPOLIS

Linear algebra for skew-polynomial matrices

Sergei Abramov* , Manuel Bronstein'

Théme 2 — Génie logiciel
et calcul symbolique
Projet Café

Rapport de recherche n® 4420 — March 2002 — 18 pages

Abstract: We describe an algorithm for transforming skew-polynomial matrices over an
Ore domain in row-reduced form, and show that this algorithm can be used to perform the
standard calculations of linear algebra on such matrices (ranks, kernels, linear dependences,
inhomogeneous solving). The main application of our algorithm is to desingularize recur-
rences and to compute the rational solutions of a large class of linear functional systems. It
also turns out to be efficient when applied to ordinary commutative matrix polynomials.

Key-words: computer algebra, linear algebra, skew polynomials, differential systems,
recurrence systems

* Computer Center of the Russian Academy of Science, Vavilova 40, Moscow 117967, abramov@ccas.ru
f INRIA - Projet CAFE, Manuel.Bronstein@inria.fr

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Algébre linéaire pour matrices de polynémes de Ore

Résumé : Nous décrivons un algorithme qui transforme une matrice de polynomes de
Ore a coefficients dans un domaine de Ore en une forme réduite par lignes. Cet algorithme
est utilisable pour faire des calculs standards d’algébre linéaire (rang, noyau, dépendance
linéaire, résolution d’équations) sur ce type de matrices. L’application principale de notre
algorithme est la désingularisation de systémes de récurrences linéaires, ainsi que le calcul
des solutions rationnelles d’une grande classe de systémes linéaires fonctionnels. Il s’avére
aussi étre efficace sur des matrices de polynémes commutatifs usuels.

Mots-clés : calcul formel, algébre linéaire, polyndémes de Ore, systémes différentiels,
systémes aux différences finies

Linear algebra for skew-polynomial matrices 3

Introduction

In order to bound the degree of polynomial solutions of certain linear systems of functional
equations, we used in our ISSAC’2001 paper [3] a desingularizing transformation for linear
recurrences systems. Given such a system EZ:l My(n)Zyr = G(n), where the My(n) are
matrices with entries in a suitable integral domain, our transformation was used to ensure
that M;(n) had full rank, which then allowed the bounding procedure to proceed. We study
in this paper that transformation in greater depth, in particular extending it to coefficients
in an arbitrary left Ore domain, which makes it applicable to multivariate skew-polynomial
matrices, for example matrices over Weyl algebras. In addition, we study its additional
properties and extend its range of applications to the standard calculations of linear algebra
for skew-polynomial matrices: computing their ranks and kernels, as well as finding linear
dependences and solving inhomogeneous linear systems. It turns out that our transformation
is a generalisation to matrices of skew-polynomials of known row-reduction methods [6], so
we study its arithmetic complexity in the commutative case, where it is comparable to (but
not better than) some of the best methods known. Experimental benchmarks confirm this
to be the case in practice for commutative matrix polynomials over finite fields. Finally, our
ISSAC’2001 use is recalled as one of the applications of this transformation.

By convention, all rings and fields in this paper have characteristic 0 but are not neces-
sarily commutative. Given a nonzero Laurent polynomial p = Y, p; X* (with finite support),
its degree is deg(p) = max{i s.t. p; # 0}, while its valuation is v(p) = min{i s.t. p; # 0}.
We use [M]; to denote the it" row of the matrix M.

1 Ore domains and skew-polynomials

We recall in this section the basic definitions and properties of Ore domains and skew-
polynomials, which are a common abstraction of differential and difference operators.

Definition 1 A left Ore domain is a ring R without zero-divisors and such that every two
nonzero elements of R have a nonzero common left multiple.

Any left Ore domain R can be embedded in a field K of left-fractions of R [9]. The rank of
a left R-module M is then defined to be the dimension of K ® M as a vector space over
K, which corresponds to the maximal cardinality of R-linearly independent subsets of M.
Given a matrix M with entries in R, we use rkg(M) to denote the rank of the left R-module
generated by the rows of M, and omit the subscript when it is clear from the context.

Any commutative integral domain is obviously a left Ore domain. A classical noncom-
mutative left Ore domain is the ring of skew-polynomials, which we proceed to describe.
Let R be a ring and ¢ an injective endomorphism of R. A o-derivation is amap § : R — R
satisfying

6(a+b)=6ba+6b and 6(ab) = (ca)(éb) + (6a)b for any a,b € R.

RR n° 4420

4 Abramov € Bronstein

Note that the map Og that sends every ¢ € R to 0 is a o-derivation. Let X be an in-
determinate over R. The skew-polynomial ring over R, denoted R[X;o,6] is the ring of
usual polynomials in X over R, with the usual polynomial addition and the multiplication
given by Xa = o(a)X + é(a) for any a € R. When § = Og, that ring is denoted R[X; 0]
and is called a difference operator ring over R. When §6 = Og and ¢ is an automorphism
of R, localizing R[X ;0] at the powers of X, we obtain the skew Laurent polynomial ring
R[X, X ~1; 0], which is the ring of Laurent polynomials in X over R, with the usual addition
and the multiplication given by Xa = ¢(a)X and X ~'a = 67!(a)X ! for any a € R.

Lemma 1 If R is a left Ore domain and o is an automorphism of R, then R[X, X~ '; 0] is
a left Ore domain.

Proof. By Corollary 1.1 of [8], the difference operator ring R[X ;o] is a left Ore domain.
Since every p € R[X, X !; 0] can be written as p = X °p’ where s > 0 and p’ € R[X; 0], it
follows that R[X, X ~1; o] has no zero divisors. Let p,q € R[X, X !; 0], write p = X *p’ and
q = X~ 'q' where s,t > 0 and p/,¢' € R[X;0], and let m € R[X;0] be a nonzero left common
multiple of p’ and ¢'. Then, m = p'p’ = ¢"¢’ for some p”,¢" € R[X; o], which implies that
m = p’ X*p = ¢" X*q is a nonzero left common multiple of p and g. O The above result
allows us to construct multivariate skew Laurent polynomial rings over a left Ore domain by
iterating the univariate construction with several automorphisms. Our algorithm, described
below, can be applied to matrices with entries in such rings by considering them univariate
in their topmost variable. A more general construction of multivariate skew-polynomials,
but with nonnegative exponents only, is described by [8], and sect. 4.1 describes how our
algorithm can be applied to those.

2 Rank-revealing transformations

Let M be a matrix with entries in a ring S. The elementary row operations applicable to M
are (i) applying a permutation to the rows, (ii) multiplying a row by an element of S that is
not a zero-divisor, and (iii) adding a multiple of a row to another one. A row transformation
is a finite sequence of elementary row operations. Each elementary row operation can be
performed by multiplying M on the left by an elementary matriz, namely (i) a permutation
of the identity matrix, (ii) the identity matrix with one entry on its diagonal replaced by an
element of S that is not a zero-divisor, and (iii) the identity matrix with at most one nonzero
entry outside its diagonal. Therefore, any row transformation can be seen as multiplying M
on the left by a matrix 7', which is a finite product of elementary matrices.

Definition 2 Given a matrix M with entries in a left Ore domain R, a row transformation
T is a rank-revealing-transformation (RRT) for M if rk(M) is exactly the number of nonzero
rows of T M.

Note that an RRT T for M immediately yields rk(M). In addition, the rows of T' corre-
sponding to the zero rows of 7'M form a basis for the left-kernel of M. Therefore, applying
an RRT to the transpose of M yields a basis of its kernel.

INRIA

Linear algebra for skew-polynomial matrices 5

The use of various RRTs is classic in commutative linear algebra: Gaussian elimination
over commutative fields and its fraction—free variants over commutative integral domains [5]
obviously satisfy the above definition since they produce a row-echelon form of M. For
matrix polynomials over a commutative field, there are weaker RRTs that originate from
linear control theory: some methods used to compute the row-reduced and Popov forms [11]
are RRTs, as is the algorithm of [14] for computing weak Popov forms. We describe now a
skew-variant of row-reduction that provides a fraction—free RRT for skew-polynomial ma-
trices.

Let R be a left Ore domain, ¢ an automorphism of R, R[X,X !;0] a skew Laurent
polynomial ring over R, and suppose that we can compute ranks and kernels of matrices
with entries in R. Our RRT is described as algorithm 1 below, using the following notations:
1,, denotes the n x n identity matrix, B? denotes the transpose of the matrix or vector B,
and if B has entries in R[X, X ~!;0], deg;(B) denotes the maximum degree in X of all the
elements of the " row of B. Finally, for V any left R-submodule of R* and J any subset
of {1,...,k}, V; = {v € V such that v; = 0 for all j € J} is the intersection of kernels of
projections and is therefore a left submodule of V.

Algorithm 1: One-step trailing skew—RRT.

Input: An n x m matrix M with entries in R[X, X !;0].
Output: An RRT T for M and the transformed matrix T M.

(1) Write M as M = 31, My X* where | < h and M; # 0
(2) T«1,

(3) Z —{i€{l,...,n} st. thei*® row of M is 0}

(4) while Ker(M}), # {0}

(5) v < a nonzero element of Ker(M})

(6) I — {ie{l,...,n} such that v; # 0}

(7 Choose ig € I such that Vi € I,deg; (M) > deg,(M)
(8) A — 1, with io*® row replaced by X 1o

(9) T — AT, M — AM, update M;,..., M}

(10) if the io'" row of M is 0 then Z «— Z U {io}

(11) return (T, M)

Note the following remarks about the steps of algorithm 1:
e In step (1), the M} are matrices with entries in R.

e Computing Ker(M})z in step (5) is done by removing from M} the columns indexed
by Z and computing the kernel of the resulting matrix.

e In step (5), a full basis of the kernel is not required, a single nonzero vector is sufficient.
In addition, if R is itself a skew Laurent polynomial ring, then algorithm 1 can be used
recursively to compute Ker(M}).

RR n° 4420

6 Abramov € Bronstein

e Even though the matrix A of step (8) is more complex than a single elementary matrix,
it is a row transformation because v;, # 0.

e The products AT and AM in step (9) are not actually computed as matrix products,
they simply correspond to replacing the io*® rows of T' and M by the linear combination
of rows given by X ~!v. Furthermore, if M is represented by the matrices Mj, ..., My,
then the product AM can be performed directly inside those matrices.

e The matrix T' does not need to be updated in step (9) if only rk(M) is needed. Even
if elements of Ker(M?) are desired, one can store the sequence of pairs (v,49) used at
each loop rather than update T', and use them to compute elements of the kernel after
the algorithm has terminated.

We now proceed to prove termination and correctness of algorithm 1.
Lemma 2 Algorithm 1 terminates after at most n(h — min(0,1) + 1) loops.

Proof. Write M = ZZ:z M; X before step (9), and let M’ be M after that step. As noted
above, M’ is M with the iy*® row replaced by

h
XM =) X M X" (1)
k=l
Since v!M; = 0, the starting point of the above sum is k¥ = [+ 1. In addition, v; = 0 whenever

deg;(M) > deg; (M), so v*M; = 0 for k > deg, (M). Therefore, using the commutation
rule X 'a =0 1(a) X! we get

h degiO(M) degiO(M)
XM=Y XTMX = Y X TWMXE= Y o Mp)XE
k=1 k=Il+1 k=Il+1

It follows that either X ~'v*M = 0 or deg; (M') < deg, (M). In the first case, the cardinality
of Z is increased in step (10), so that case can occur at most n times. In the second case,
>, deg;(M') < 3. deg;,(M), where the sums are taken over the nonzero rows. Since that
sum is at most nh and at least 0 if { > 0, or nl if [< 0, that case can occur at most
n(h — min(0,1)) times. O

Lemma 8 rk(M) remains unchanged throughout algorithm 1.

Proof. Write M = ZZ:Z M X* before step (9), and let M’ be M after that step, and
M’ and M denote the left R[X, X 1;0]-modules generated by the rows of M’ and M
respectively. As noted above, M’ is M with the i'" row replaced by

(M, =X "M =) X 'u[M]; €M,

1=1

INRIA

Linear algebra for skew-polynomial matrices 7

so M’ is a left R[X, X ~!; o]-submodule of M. Proposition 9.3 of [9] then implies that
tk(M) =rk(M') + tk(M/M"). (2)

Let w = ", w;[M]; be an arbitrary element of M. If w;, = 0, then w € M’. Otherwise,
w;, # 0, so w;, and X ~'v;, have a nonzero common left multiple cw;o = 3X ~1v;, where
a, 3 € R[X, X! 0] are nonzero. We then have

aw = aw;|[Mli, + Z aw;[M]; = BX tvi, [M]i, + Z aw;[M');
i#io i#io

BlIM iy =Y X' [M)i | +) ewi[M']; €M,
1#10 i#i0

which implies that M /M’ is a torsion module, hence of rank 0, and the lemma follows
from (2). O
We finally conclude that algorithm 1 yields a rank-revealing transformation.

Theorem 1 Let (T, M') be the result produced by algorithm 1 on the input matriz M. Then,
rk(M) is the number of nonzero rows of M'. Furthermore, rkr(M]) = rkgp;x,x-1,0)(M) and
the rows of T corresponding to the zero rows of M' form a basis of Ker(M?).

Proof. Let [M'];,,...,[M'];, be the nonzero rows of M’. Since the algorithm terminated,
we must have had Z = {1,...,n} \ {i1,...,%,} and Ker(M/*)z = {0} in step (4), which
implies that [M]]:,,...,[M]]s. are linearly independent over R, hence that rkr(M]) > r.
However, the remaining rows of M/ must be zero since they are zero in M’, so rkg(M]) = r.
Let now ay,...,a, € R[X,X!;0] be not all 0 and such that i1 a[M');; = 0, and
B; = X~ "a; for all j, where v = minj o, 20(¥(a;)). Then, 3; € R[X;0] for all j and there
is at least one j such that §;(0) # 0. Multiplying the linear dependence on the left by X~
and on the right by X! we get

0=3 X Ya;[M], X7 =3 Bi[M'X7; .
j=1

J=1

Since the 3;’s are in R[X ;0] as well as the entries of M’'X !, evaluating the above at X =0
yields

0= Z ﬁj (0)[Mll]ij

in contradiction with [M]];,,...,[M]];, linearly independent over R. Therefore, the r
nonzero rows of M’ are linearly independent over R[X, X 1; 0], whence rkgyx, x-1,0)(M') =
r. Since M and M’ have the same rank by lemma 3, we get r = rkg[x, x-1,5](M) = rkg(M]).
Since M’ = T M, the rows of T corresponding to the zero rows of M are elements of Ker(M?).
There are n — rk(M) such rows, which is exactly the dimension of Ker(M?). Finally, the
rows of a row transformation are linearly independent, so we obtain a basis of Ker(M?*). O

RR n° 4420

8 Abramov € Bronstein

Corollary 1 Let R be a left Ore domain, o an automorphism of R and R[X, X ~;0] a skew
Laurent polynomial ring over R. If we can compute ranks and kernels of matrices with entries
in R, then we can compute ranks and kernels of matrices with entries in R[X, X ~';0].

We only require in algorithm 1 the computation of one nonzero vector in a kernel. It
is frequently the case that algorithms for computing such vectors return a full basis of
the kernel, or several vectors. If fraction—free elimination algorithms exist for matrices
with entries in R, then we can use several linearly independent kernel vectors in order to
decrease the number of kernel computations performed by algorithm 1. Our modified RRT
is described as algorithm 2 below.

Algorithm 2: Multi-step trailing skew—RRT.

Input: An n x m matrix M with entries in R[X, X ;0.

Output: An RRT T for M and the transformed matrix TM.

) Write M as M = Zzzl M, X" where | < h and M; # 0

) T 1,

) Z —{i€{l,...,n} st. thei*® row of M is 0}

) while Ker(M}), # {0}

) U < s x n matrix whose rows are R-linearly independent ele-
ments of Ker(M/)z

(6) for j —1tos

(7 v < [U];

(8) I — {ie{l,...,n} such that v; # 0}

(9) Choose ig € I such that Vi € I,deg,; (M) > deg,(M)

(10) A «— 1,, with i*™ row replaced by X 1ot

(11) T — AT, M «— AM, update M;,..., My

(12) if the ip'" row of M is 0 then Z — Z U {ig}

(13) Compute a row transformation E over R such that the o'}

column of EU has zeroes in rows j + 1 to s
(14) U~ EU
(15) return (T, M)

Fraction—ree elimination over R, as used in step (13), certainly exists when R is a
commutative integral domain [5], but also in the noncommutative case, provided that R is
an effective left Ore domain in the sense of [8], i.e. that nonzero common left multiples can
actually be computed in R with their cofactors. In that case, given a matrix B with entries
in R an entry b;; # 0 can be used as a pivot to eliminate the j* column of B: for each k # i
such that by; # 0, computing , 3 € R such that ab;; = Bby; # 0, then multiplying the k't
row of B by —3 and adding to it « times its i*? row is a pair of elementary row operations
that brings a 0 at row k£ and column j. Termination and correctness of algorithm 2 follow
from the following lemma.

INRIA

Linear algebra for skew-polynomial matrices 9

Lemma 4 7k(U) = s throughout the inner loop of algorithm 2. In addition, the rows j to s
of U are in Ker(M})z throughout that loop.

Proof. rk(U) = s at step (5) and it does not change when U is multiplied on the left by
the row transformation F at step (14), so it remains s throughout the inner loop. When
j =1, the rows of U are in Ker(M}); by definition, so suppose now that the rows j to s of
U are in Ker(M})z for a given j < s at step (7). Let M’ be M after step (11), Z' be Z after
step (12) and U’ = EU be U after step (14). Since M; and M| differ only at row iy, and the

io™ entries of [U"];41,...,[U’]s are 0, those rows are in Ker(M). In addition, the entries of
[Ul;,---,[U]s whose indices are in Z are zero and Z' C Z U {ig}, so [U']+1,-.-,[U’]s are in
Ker(M])z and the lemma follows by induction. m|

As a consequence of lemma 4, the element v of step (7) in algorithm 2 is always in
Ker(M;)z, so lemmas 2 and 3 as well as theorem 1 remain valid for algorithm 2.

We note that there is also a “leading” variant of algorithm 1 that works with M), rather
than M;: one uses Ker(M})z in steps (4) and (5), then picks an entry of v corresponding
to a row of M of minimal valuation rather than maximal degree in step (7), which becomes

(7) Choose ig € I such that Vi € I, v, (M) < v;(M)

where v;(M) denotes the minimum valuation in X of all the elements of the i*" row of M.
Finally, X ! is replaced by X in the definition of A in step (8), which becomes

(8) A« 1, with io"" row replaced by Xv'.

Lemmas 2 and 3 are easily seen to remain valid with the above modifications, as well
as theorem 1, except that we now have rkr(M},) = rkgx, x-1,,](M) instead of M;, which
is the essential reason for using the leading rather than the trailing version at times (as in
section 4.3 below). Of course, the above modifications can be applied to algorithm 2 as well.

While we have mentionned only ranks and kernels in the discussion so far, our algorithm,
like any RRT, can be used to find linear dependencies between vectors with entries in
R[X,X~1; 0], as well as to solve inhomogeneous systems of the form M Z = b, since this can
be reduced to finding the kernel of the augmented matrix [M | b].

3 Complexity and experimental results

Let M = ZZ:: M;X* be a matrix with entries in R[X,X~!;0] and d = h — min(0,1) + 1.
The number of loops of algorithm 1 at most nd by Lemma 2, so we only need to count
the cost of each loop. Using formula (1) for updating M at step (9), we must compute d
products of the form v? M}, each costing nm multiplications of R. Counting an application of
o~ ! to be one operation in R, left-multiplying each v! M}, by X ! also costs nm operations,
so step (9) has an arithmetic complexity of O(nmd). Computing Ker(M}); can be done
in O(n?m) operations in R when R is a commutative integral domain. When R is an
effective left Ore domain, counting the computation of a nonzero common left multiple to
be one operation in R, then noncommutative elimination also has an arithmetic complexity of

RR n° 4420

10 Abramov € Bronstein

O(n?m), so the worst-case arithmetic complexity of algorithm 1 is O(n?md? +n3md). When
n=m = d = O(u), the complexity of computing rk(M) is then O(x®). In the commutative
univariate case, this is the same than the complexity of Chinese remaindering, although we
expect row—reduction to perform somewhat better because proving the rank with Chinese
remaindering always requires nd modular images, while the bound of Lemma 2 is generally
pessimistic. Computing the rank with the weak Popov form of [14] has a complexity of
O(nmd?rk(M)), which is better than row-reduction when rk(M) << u, but is the same
when rk(M) = O(u).

Given the similarities in arithmetic complexity with the above two methods, algorithm 1
has been implemented on top of the ¥ library [7] by G. Chatley (chatley@iitk.ac.in)and
extensive benchmarks carried out. For polynomials over finite fields (where the arithmetic
and binary complexity are the same) the results, shown in figure 1 below, confirm the above
analysis, namely that when n,m,d and rk(M) all have the same orders, algorithm 1 lies
between weak Popov forms and Chinese remaindering, the timings being proportional with
small constant ratios (less than 2). In the case of full rank matrices, algorithm 1 and Chinese

50000 T T T T T T T - T
Algorithm 1. —+— /

Chinese remaindering ---x---/

45000 Weak Popov form ---x---/

40000 / h
35000 | / 1
30000 [/ y

25000

msecs

20000

15000 -

10000 -

5000

Figure 1: Results for square matrices of rank n — 1 over F[z], F a finite field.

remaindering outperformed the weak Popov form by an order of magnitude, since the rank

INRIA

Linear algebra for skew-polynomial matrices 11

can be proven full after a “small” number of loops (see theorem 2 below). So the fastest
overall approach in practice is either to do a random evaluation check and proceed with
weak Popov form if the rank is not full, or to apply row—reduction directly in all cases. Also
as expected, the above three methods all outperform fraction—free elimination by one order
of magnitude, as illustrated by figure 2 below, where the timings for two—step fraction—free
elimination on the same examples have been added.

1.26+00 ' T T T T T T _ T
Algorithm 1 —+—
Chinese remainding ---%--- 7
2-step Bareiss ---%---
Weak Popov form &
le+06 | /]
800000 | |
g I
3 v’,
@ 600000) |
E /,'
400000 - |
200000 |
¥ I
0 e e PR g e U
5 10 15 20 25 30 35 40 e o

Figure 2: Comparison of two—step fraction—free elimination to the curves of figure 1.

Unlike the weak Popov form, row—reduction does not require the coefficients to be from
a field. However, as for the weak Popov form, it suffers from growth of the coefficients in
R, so its practical usefulness is either for coefficients in finite fields, where such growth does
not occur, or for matrices of skew-polynomials, for which the other fast methods are not
applicable.

RR n° 4420

12 Abramov € Bronstein

4 Applications

4.1 Matrices over Weyl algebras

Corollary 1 means that our algorithms are applicable so far to nested skew Laurent polyno-
mials. Such rings are however isomorphic to localisations of the Weyl algebras, so we can
apply our algorithms to perform linear algebra on matrices over Weyl algebras. Let C be
a commutative field and A4,,(C) be the Weyl algebra C[z1,...,%m,01,...,0n] where the
product is given by the commutation rules

aiaj = ajai, TiTy; = T 5Ty, and (‘ij — ZL’jai = (51']‘ 5

where 6;; is 1if ¢ = j and 0 if 4 # j. Let C[n4,...,nm,] be the usual polynomial ring in m
variables, and R,,(C) be the nested skew Laurent polynomial ring

R,.(C) =C[nq,... ,nm][Xl,Xfl;al] e [Xm,X;I;Um]

where o; is the automorphism of R, (C) over C defined by o;(n;) = n;j+6;; and 0;(X;) = X;.
Then, the map

Om - C[acl,:vl_l, e T, T O, +,0m] = Rn(C)
given by

bm(z:) = X, pm(z;) =X, and ¢ () = (n; + 1)X; (3)

extends to a C-algebra isomorphism between those two left Ore domains. Therefore, ranks
and kernels of matrices with entries in A,,(C) can be computed by applying ¢,,, using
algorithm 1 or 2 on their images, and applying ¢! to the basis of the kernels (although this
gives generators in the localisation, they can be multiplied by suitable powers of the z;’s to
obtain generators in A,,(C)). As mentioned earlier, this means that we can also find linear
dependences over A,,(C) and solve linear systems with coefficients in A,,(C).

4.2 Deterministic z-adic lifting for solving linear systems

Let F be a commutative field and F[X] a commutative univariate polynomial ring over F.
Taking o to be identity on F', algorithms 1 and 2 are applicable to matrices with entries in
F[X]. Let A be a nonsingular n x n matrix with entries in F[X] and b € F[X]" be given. The
asymptocally fastest way to compute the unique solution z € F(z)™ of Az = b is by using p-
adic lifting [10], where the p-adic expansion of z is computed for an irreducible p € F[X] that
does not divide det(A). Since the computations are done in F[X]/(p), choosing p = X — «
for some o € F is preferable. When F' is large enough, a suitable a can be chosen at
random, but this could be impossible over small finite fields, where a higher-degree p may
be required. Our algorithm can be used as a nonsingular alternative to the singular z-adic
lifting of [15] in the following way: let (T, A’) be the result of applying algorithm 1 or 2
to A. Then, A’ = T'A and theorem 1 implies that rkrp(A’(0)) = n since A is nonsingular.
Therefore, A’(0) can be inverted in F' and nonsingular z-adic lifting can be applied to the

INRIA

Linear algebra for skew-polynomial matrices 13

modified system A’z = T'b, whose unique solution z is also the unique solution of Az = b.
In practice, we do not need to compute explicitly the RRT T, it is sufficient to carry out on
b the elementary row operations being carried out on A throughout the algorithm, which
yields T'b.

In the commutative polynomial case, the number of loops performed by the algorithm
on nonsingular inputs can be given quite precisely (this result was already presented as
Lemma 3.5 of [6], where commutative row—reduction was described).

Theorem 2 Let R be a commutative integral domain and M be a nonsingular square matriz
with entries in the commutative polynomial ring R[X]. If X does not divide every entry in
M, then algorithm 1 terminates after exactly N loops, where N > 0 is such that X~ | det(M)
and XN+1 [det(M).

Proof. Since X does not divide every entry in M, then M(0) # 0, so write M =
2220 M X" before step (9), and let M’ be M after that step. Then, M’ = AM where
A is the matrix computed at step (8). It follows that EM' = VM where E is the identity
matrix with the i,'" diagonal element replaced by X and V is the identity matrix with the
io™" row replaced by v*. Noting that det(V) = v;, # 0 and taking determinants on both
sides, we get

X det(M') = v;, det(M),

so a power of X is divided out of det(M) every pass through the loop. Theorem 1 implies
that (T'M)(0) is nonsingular, where T is the row tranformation produced by the algorithm,
therefore det(T'M) is not divisible by X, which implies that we go exactly N times through
that loop, where X% | det(M) and XV +1 [det(M). O

Since each loop in algorithm 1 costs O(n?d + n®) operations in F (see sect. 3) and
nonsingular z-adic lifting has a complexity of O(n3d'*¢) where 0 < ¢ < 1 depends on
the multiplication algorithm in F[X], we see that our desingularisation procedure does not
change the complexity as long as N << nd, which is generally! the case. We then get the
same arithmetic complexity than [15], but we expect nonsingular z-adic lifting to have less
overhead in practice than their algorithm.

4.3 Desingularisation of linear recurrence systems

This application of our algorithm was described in [3]. Let C' be a commutative field, CZ be
the commutative ring of functions from Z to C' and o be the shift automorphism of CZ given
by (of)(n) = f(n + 1) for all f € C%. Let R be a subring of C” satisfying the following
properties:

(i) R is an integral domain.

(ii) R is closed under o.

IThere are of course matrices for which N &~ nd, but there are as many matrices for which approximately
nd random points must be tried before a nonsingular reduction is found.

RR n° 4420

14 Abramov € Bronstein

(iii) Vf € R\ {0},{n € Z s.t. f(n) = 0} is finite and can be computed.

The classical example of such a ring is the polynomial ring R = C[n], but rings such as
C[q™ or C[n,q™] where ¢ € C* is not a root of unity also have those properties [2]. Viewing
the elements of R as C-valued sequences, consider the system of linear recurrence equations

h

Z Mp(n)Zpsr = G(n) forallm>p (4)
k=1

where the My (n) are p x ¢ matrices with entries in R, M;(n) and My(n) are not identically
0, G(n) is a vector with entries in C%, and p is either a fixed integer or —oo, in which case
the recurrences are valid for all n € Z.

We say that m € Zis a singularity of the system (4) if rk(Mp(m)) < g. When p = gand m
is not a singularity, then (4) can be used to compute uniquely Z,,+n given Z,q1, .-+, Zmth—1,
so we are interested in systems having finitely many singularities. When p < ¢, then every
m € Z is a singularity, so suppose that p > ¢. In that case, our algorithm can be used to
transform the system, when it is possible, into an equivalent one with finitely many singular-
ities, thereby “desingularizing” it: consider the skew Laurent polynomial ring R[X, X ~!; 0]
and the p X ¢ matrix M = ZZ:I M, X*. Applying the “leading” variant of algorithm 1 or 2 to
M yields a row transformation T and M’ = T'M such that rkg(M}) = rkpix,x-1;0)(M) = r
and M’ has exactly r nonzero rows. If r < ¢, then (4) is underdetermined and cannot be
desingularized. If r = ¢, then M] has at least one nonzero g x ¢ minor, and the singularities
of (4) must be among its finite set of zeroes. Furthermore, M’ yields the system

h
ZMJIC(")Zan =G'(n) foralln>p (5)
k=1

where G’(n) is the result of updating G(n) inside the loop of algorithm 1 or 2 via G «— v'G.
If any zero row of M’ corresponds to a nonzero entry of G'(n), then (5) has no solutions.
Otherwise, taking the ¢ nonzero rows of M’ and the corresponding entries in G'(n) turns (5)
into a square system of full rank. By construction, it is clear that any solution of (4) must
be a solution of (5), but the converse is not necessarily true. To recover the solutions of (4)
from those of (5), we must add the following steps to algorithm 1 or 2: first initialize a set
of constraints B « (), then inside the loop add to B the linear constraint

> M (m)]iy Zm ik = Gig(m)

for each m € Z such that v,o(m) = 0. At the end, the solutions of (4) are exactly the
solutions of (5) that satisfy all the constraints in B.

Another question that arises whenever the solutions of (4) are the coefficients of some sort
of series expansions is whether it has solutions of finite support. The following correction to
Theorem 4 of [3] gives an upper bound on the support of such solutions when the system is
not underdetermined.

INRIA

Linear algebra for skew-polynomial matrices 15

Theorem 3 Let d € Z be such that G(d) # 0 and G(n) =0 for alln > d (d = —c0 if G
is identically 0), and suppose that (4) has a nonzero solution Z such that Zn # 0 for some
N € Z satisfying Z,, = 0 for alln > N. Then, either N < [+max(u,d) or rk(M;(N—1)) < q.

Proof. Suppose that N > | + max(u,d). Then, N — [> pu, so applying (4) ton = N —1
yields

h
> MyN =0)Znyk—i+ M(N —1)Zy = G(N = 1).

k=I+1
Fork >I,N+k—1>N,s0 Znytr—; =0. In addition, N = > d, so G(N — 1) = 0 and we
obtain M;(N —1)Zx = 0. Since Zy # 0, we must have rk(M;(N —1)) < q. O

The condition N < [4+ max(u,d) yields a finite number of positive values for N, while
the rank condition is a problem similar to desingularisation: if p < ¢, then the system is
underdetermined and no bound can be found. Otherwise, applying the “trailing” variant of
algorithm 1 or 2 to M = EZ:I M XF* yields a row transformation T and M’ = TM such
that rkr(M]) = rkg[x,x-1;,](M) = r and M’ has exactly r nonzero rows. If r < g, then (4)
is underdetermined and no bound can be found. If r = ¢, then M| has at least one nonzero
¢ X ¢ minor, and all the values of N — [such that rk(M/(N — 1)) < ¢ must be among its
finite set of zeroes. However, when u # —o0, its value changes during the algorithm, so the
first bound N <[+ max(u,d) has to be updated as follows: initialize u; «— p for 1 < i < p,
then update p;, inside the loop via u;, < 1+ max;cr(p;). At the end of algorithm, return
u' = max; u;. The finite set of bounds for the solutions of (4) is then given by

N <Il+max(y',d) or tk(M/(N-1))<gq.

Finally, we note that when R is the polynomial ring C[n], there are fast modular algorithms
for computing the kernels required by algorithms 1 and 2 [13, 15]. Since those methods have
better complexity than Gaussian elimination in C[n] (see figure 2), using those methods
inside our algorithm yields a better binary complexity than the EG—elimination of [1], which
relies on “careful” Gaussian elimination.

4.4 Solving linear functional systems

This application, described in [3], relies on the following additional property of the isomor-
phism ¢; given by (3) in the univariate case: for any differential operator L € A;(C) =
C[z,0;] and any power series y = > <, yn2"™ € C[[z]], the sequence (¢1L)(yo,y1,...) is the
coefficient sequence of L(y) [4]. Therefore, the formal series solutions of a differential system
A(x,0;)Y = F(x), where A is a matrix with entries in 44 (C), can be found by solving the
linear recurrence system M Z = G, where M is the matrix whose entries in C'[n][X, X ~!;0]
are the images of the entries of A by ¢1, and G is the sequence of coefficients of the for-
mal series expansions of F(z). When the system AZ = F is not underdetermined, then
the recurrence M Z = G can be desingularized by the leading variant of our algorithm (see
sect. 4.3), thereby allowing the formal Taylor series solutions to be computed. Furthermore,

RR n° 4420

16 Abramov € Bronstein

the polynomial solutions of AZ = F correspond exactly to the series solutions with finite
support of M Z = @, so an upper bound on the degrees of such solutions can be computed
by the trailing variant of our algorithm as explained above. The desingularization procedure
also yields a bound on the order of the pole at x = 0 of the rational solutions of AZ = F,
so performing it at all the singularities of the system allows its rational solutions to be com-
puted. In particular, differential systems of the form Y’ = A(x)Y + F(x) where A(z) is a
matrix with entries in C(z) are of full rank, so their solutions can be computed using this
approach.

This approach is not restricted to differential systems: choosing an appropriate persistent
sequence of C[z] as expansion basis for the power series, one can find isomorphisms with
properties similar to those of ¢; between other operator algebras and R[X, X ~!; o] for some
suitable commutative integral domain R. This allows our approach to be also applied to
difference and g-difference systems, as well as mixed differential/g-difference systems, we
refer to [3] for additional details. Note finally that there are several choices for the basis of
C[z] to use, and that some of them are preferable since they yield recurrence systems with
4 = —oo in (4), thereby avoiding having to update u during the bounding process. A more
detailed discussion of basis selection for particular classes of equations is presented by [12].

References

[1] S.A. Abramov. EG-eliminations. Journal of Difference Equations and Applications,
5:393-433, 1999.

[2] S.A. Abramov and M. Bronstein. Hypergeometric dispersion and the orbit problem. In
C. Traverso, editor, Proceedings of ISSAC’2000, pages 8-13. ACM Press, 2000.

[3] S.A. Abramov and M. Bronstein. On solutions of linear functional systems. In B. Mour-
rain, editor, Proceedings of ISSAC’2001, pages 1-6. ACM Press, 2001.

[4] S.A. Abramov, M. Petkoviek, and A. Ryabenko. Special formal series solutions of linear
operator equations. Discrete Mathematics, 210:3-25, 2000.

[5] E.H. Bareiss. Sylvester’s identity and multistep integer-preserving Gaussian elimination.
Mathematics of Computation, 22:565-578, 1968.

[6] B. Beckermann and G. Labahn. Recursiveness in matrix rational interpolation prob-
lems. Journal of Computational and Applied Mathematics, 77:5-34, 1997.

[7] M. Bronstein. ©i*— a strongly-typed embeddable computer algebra library. In J. Calmet,
editor, Proceedings of DISCO’96, LNCS 1128, pages 22-33. Springer, 1996.

[8] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves multi-
variate identities. J. Symbolic Computation, 26(2):187-228, August 1998.

[9] P.M. Cohn. Free Rings and their Relations. Academic Press, London, 1971.

INRIA

Linear algebra for skew-polynomial matrices 17

[10] J.D. Dixon. Exact solution of linear equations using p-adic expansions. Numerische
Mathematik, 40:137-141, 1982.

[11] T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, N.J, 1980.

[12] D. Khmelnov. Basis selection for linear functional systems solutions. Programmirovanie,
To appear, 2002.

[13] M.T. McClellan. The exact solution of systems of linear equations with polynomial
coefficients. Journal of the ACM, 20:563—-588, 1973.

[14] T. Mulders and A. Storjohann. On lattice reduction for polynomial matrices. Technical
Report 356, Dpt. of Computer Science, ETH Zurich, 2000.

[15] T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In
C. Traverso, editor, Proceedings of ISSAC’2000, pages 242—-249. ACM Press, 2000.

RR n° 4420

18 Abramov € Bronstein

Contents

1 Ore domains and skew-polynomials 3

2 Rank-revealing transformations 4

3 Complexity and experimental results 9

4 Applications 12
4.1 Matrices over Weyl algebras o oL 12
4.2 Deterministic z-adic lifting for solving linear systems 12
4.3 Desingularisation of linear recurrence systems 13
4.4 Solving linear functional systems 15

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http:/ /www.inria.fr

ISSN 0249-6399

