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Frontiére Libre dans less Ecoulements Stationnaires
de Type Norton-Hoff Thermique

Résumé : On g’intéresse dans ce papier a 1’étude du probléme inverse de
Iidentification des frontiéres libres dans les écoulements visco-plastiques. L’écoulement
du fluide est gouverné par le modele de Norton-Hoff incompressible couplé a
I’équation de chaleur avec condition de Robin. La viscosité du fluide est modéli-
sée par la loi d’Arrhenius.

Le but pricipal de ce papier est de fournir un résultat de sensibilité permettant
d’identifier la frontiére libre.

Mots-clés :  Frontiére libre, identification, fluide visco-plastic, loi d’Arrhenius,
probléme inverse, optimisation de forme, fonctionelle cotit.
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1 Introduction and Motivation

We consider a regular domain occupied by a viscoplastic fluid whose the boundary is
split in three parts: the Dirichlet boundary over which the velocity and a heat flux
rate related to the Robin condition are specified, the outflow boundary is adiabatic
and over which the velocity is also specified Finally the free boundary subject the
classical conditions: zero normal velocity component, stress and heat flux rate.

On this domain, we formulate the Norton-Hoff heat steady problem subject to the
above boundary conditions.

We notice that here the coupling occurs between a non homogeneous Norton-Hoff
equation and the heat equation with Robin condition. This setting a novel existence
result to the corresponding coupling problem when the geometry of the domain is
specified. In fact, it is suuficient to prove existence and uniqueness result to each
equation separately. Due to this we prove existence to the heat equation via the Lax-
Milgram theorem (see [5]). We provide a positivity result to the heat equation and
we establish the optimal regularity of the solution taking in account the regularity
of the associated right hand side, the proofs are similar than the ones given in
[11]. Besides, we supply an existence result to the non-homogeneous Norton-Hoff
problem through a variational method via a regularity result linked to the scale
factor. Whereas, due to the existence result provided, in a general setting, we
recover the desiried result.

The free boundary identification problem can be considered as an inverse problem
consisting in searching for a domain €2 such that the complementarary of its free
boundary is known. Our point of view is to treat the problem as a shape sensitivity
of a cost functional formulated on the free boundary and governed by the Norton-
Hoff state. From a heuristic point of view, looking for the shape sensitivity consists
in observing the perturbation effect on the solution defined in a moving domain (see
[8], [20]). However, Norton-Hoff model is non-linear and not regular enough which
implies a number of technical difficulties: mainly, we are not able to differentiate
the considered cost functional. Obviously, numerous many differentiation results
exist concerning non-linear problems, in particular for the steady Navier-Stokes
equations, in which the linearized problem is well posed and regular (see [4]).
However our corresponding linearized problem is neither well posed nor regular.The
main idea is to avoid differentiating the cost functional via a differentiation of the
state. Instead, we introduce a combination between the min-max derivation (see
[2]) and a parameter penalization. In fact, the Norton-Hoff equation is non-linear
but it is variational, we penalize it with the so-called compliance functional which
is the minimum of the associated energy. As the heat equation is linear this enables
us to formulate a min-max where the heat equation plays the role of a constraint.
Therefore, we establish a parameter penalized functional formulated as an infemum.
First, we prove that the parameter infemum is reached, second that the penalized
functional converges towards the cost one when the parameter goes to zero. Then,
we give an abstract differentiation result concerning a class of shape functionals



Free Boundary Problem in Norton-Hoff Steady Flow with Thermal Effects )

formulated as minimum. Thus we get the shape gradient of the penalized functional.
Finally, we provide a weak existence of the shape gradient of the cost functional.
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2 Free Boundary Problem in the Static Case

2.1 The Norton-Hoff Heat Static Problem

We consider a C*-domain €2 occupied by a viscoplastic fluid. Its boundary is splitting
in three parts:

the Dirichlet boundary 4 on which, on the one hand, the velocity is given and equal
to ug, on the other hand we impose a heat flux related to the Robin condition. The
out flow boundary v, on which the rate of heat is adiabatic, the velocity is too equal
to ug; the last condition is provided by making a stopper. Finally the free boundary
endowed by the classical free boundary conditions; on which the normal component
of the velocity field and of the stress one are equal to zero with an adiabatic rate.
The free boundary problem consists to search for a velocity field, a temperature
function and the geometry of a boundary v, fullfiling the hereafter equations.

K@(t,z))le(u)[P~%c(u) + PI = o in Q
—div(o) = f in Q
(1) SP diviu) = 0 in Q
— div(A\V0) = o(u)--e(u) in Q
with the boundary conditions:
( U= g on g U,
00
% = 0 on L
2) BCY o+ L = g on
on
(0-n,7) = 0 on g
| (o-nn) = ¢ on g

where ¢, is an unknown constant. With the free boundary classical conditions:

u-n = 0 on g,
@) Lomm 20 o

with 00 = 74U ~s U7, where

vq is the Dirichlet boundary, 7, is the leaving boundary on which we make a stopper
which oblige the fluid to flow with the same velocity u,, 7 designates the free
boundary and p is the Robin coefficient.
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Figure 1: Visco-plastic Fluid

We begin by investigate the associated heat equation with Robin condition. We
prove an existence result due to the Lax-Milgram theorem, we establish an optimal
regularity and a positivity result which will be needed to recover a regularity result
linked to the scale factor issue from the Arrhenius law.

2.1.1 Heat Equation

— div(A\V0) = o(u).e(u) in Q

00
(4) % = 0 on g
MW+ o = g on

on

Proposition 2.1 The heat equation has a unique solution in H'(Q). And there
exists € > 0 such that the solution belongs to W*==2(Q).

For the proof it is enough to refer to [11].

Proposition 2.2 The solution of the heat equation is non-negative
6(z) > 0; a.e.

Proof of proposition

Indeed, the heat problem is variational: the solution minimize the associated energy
which is coercive in H'(Q2) as p > 0,

o1 1
9=argmm(§/)\\Vg0|2)+§,0/ (,02—/529%04-/ %)
w Yd Yd

since —¢; and g are non-negative then we get for all ¢ in H(Q);

1 1
E/A\W?ﬂ)/ 902—/ 990+/ qitp > §/A\V|w\|2+p/ \s@lz—/ g|90|+/ ail¢|
Q Yd Q Vd Q Yd Q Vd
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hence we check
0>10]; ae

which achieves the proof
[ |

In the sequel, we deal with the non homogeneous Norton-Hoff problem. We prove
an existence result via a variational study through an established regularity result
related to the scale factor.

2.1.2 Non Homogeneous Norton-Hoff Problem

K. e(u)P2e(u) + PI = o in Q
—div(o) = f in Q
(5) div(u) 0 in Q
u ug on ygU7s
(om,7) = 0 on 0N

Functional Setting Let
Waiw = {v € WH(Q); div(v) =0}

C(Q) = {U - Wdi'u; V=1Ug ON 7q U’}/s}

C is a closed convex subset of the Banach-space Wy, .

Regularity of the Arrhenius Law

Proposition 2.3 Let K = K. exp(ﬁ) being the scale factor associated to the
Norton-Hoff law, where K. is the consistency of the material, 0 is the solution of
the heat equation and 6y is a strict non-negative function. Then

K belongs to L>(Q)

Proof of proposition 2.3
In fact, it is enough to mention that the consistency K. and the heat solution 6 are
non-negatives and via the fact that the function 6, is strict non-negative, then we
get the proof.

]
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Existence Result

Proposition 2.4 The non-homogeneous Norton-Hoff problem has a unique solution
in the convex subset C.

Proof of proposition 2.4

Let us introduce the following mapping; for any given f in W'

d:C — IR
©) o= [ e = o

The functional ® is convex, lower semi-continuous, coercive and Gateaux differen-
tiable. Its Gateaux derivative at u in direction v is

&' (0 v) = /Q Kle(w) P2 (u)..(v) — fo

where the expression |e(u)[P~%¢(u)..(v) has to be understood as continuously
extended with 0 at any point z with |e(u)|(z) = 0.

It remains to prove that ® is coercive. Indeed, let u, be a sequence in C such that
|lunllw,;, tends to infinity, therefrom let w be a raising of u, in C and v, = u, —w
hence v,, belongs to W, ”, then

¢wa=0%ﬁﬁw+wmﬂﬂiéﬂw+w)

SO
®(un) 2 clfva| = [w|[P = lgll e [|vnll 2o
then .
n e < (@(un) + Cpl|gl| L= |vn|Le)?

while, if u,, tends to infinity then ®(u,) has to do too, otherwise it is impossible due
to the last inequality.
Thus, there exists a unique u in C such that

®(u) = min ®(v)

veC

Which ends the proof.

Remark 2.1 In vertu of the existence result to the monophasic Norton-Hoff heat
problem supplied in [?], w e shall notice here that problem (1), (2) has at least a
solution when the geometry of domain is known.
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2.2 Free Boundary Problem
We look for a domain 2 with boundary 02 = v, U 7, U 7y such that:

u-n=(o-n, n)=0 on g

The hereafter lemma will be so useful; it allows us to lighten the equations of the
free boundary problem.

lemma 2.1 Assume that u-n =0 on 7, then since
u=1uq on YaU"ys

hence
o, = (0-n,n) = 0 on 7.

Proof of lemma

In fact, we have for all v in the convex subset C'(2);

/Q ()P (w) - e(v —w) — f(v—u) >0

Green’s formula yields, for all v in C(Q)

—/Qdiv(o)(v—u)—f(v—u)—i-/ o-n(v—u)>0

o0
Since the friction is zero we get, for all v in C'(€2)

/E)Q(o-n,n)(v—u)-nz()

but v —u =0 on ;U s, so

Vovedl,; / (0-n,n)(v—u)-n=0
YL

as u.n = 0onyy and div(v—u) =0, hence forallvin C'; | (v—u)-n= / v-n =0,
L 7L

also / (0 -n,n)v-n = 0. This means that (¢ - n,n) belongs to the dual of the set
L

of functions whom the mean on 7 is vanished, then there exists a constant ¢ such
that:
(0-n,n) = ([Kle(u)e(u) +p]-n,n) = ¢
But the pression P is defined in L” to within a constant. One may choose
P = P' + ¢,, whence
(0-n,n) = 0
which achieves the proof.
]

In a general setting, an identification problem can be considered as an inverse
problem.

10
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2.2.1 Inverse Problem

Accordingly, the inverse problem consists to look for a domain €2 within the boundary
0f) = 7, U, U ¥ such that:

u-n = 0 onvyg

The following proposition proves that the free-boundary problem is well posed (in
the sense that the free boundary is building by an unique velocity).

Our point of view is to treat the inverse problem as a shape control of a cost
functional formulated on the free boundary and governed by the Norton-Hoff state.

2.2.2 Cost Functional

The cost functional is given via a mapping Fq from W, () to IR.

J(Q) = F(Quq) = |u.nl?

M

then the free boundary ~, will be the set of points where u - n vanishes.

In fact, Norton-Hoff is not enough regular and non linear which involves many
technical difficulties mainly we are not able to differentiate the considered cost
functional. Obviously there exists many differentiation results concerning non-linear
problems, notably for the Navier-stokes problem in the static case, in which they
use the linearized problem which is well posed and regular (see [4] ). However
our corresponding linearized problem is neither well posed nor regular. The main
idea here is to avoid differentiating the cost functional via a differentiation of the
state. That is why we introduce a combination between the min-max derivation
and a parameter penalization. In fact, Norton-Hoff equation is non linear but it
is varitonal, we penalize it with the so-called compliance functional which is the
minimum of the associated energy. As for the heat equation, it is linear, which
enables us to formulate it in a min-max where we use the heat equation as a
contrainst. Therefrom, we establish a parameter penalized functional formulated
in an infimum.

2.2.3 Penalized Functional

Let ¢ being a given reel such that the embedding of W%? in W% is compact where
W42 is a subset of the Sobolev-space W?2~52 for all ¢ > 0.
Let us consider a set of admissible viscosities:

1
A={keW*Q); k> 5}
For a in ]0, 1[, we introduce the following penalization of the functional J:

Q)= inf (v,
T = ot Teelv k)

11
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with
Fau(v,k) = inf sup L(p, )
PEQ yeQ
where
Lip,v) = jl¢) + H(p,9)
. 1 1
o) = [ lonl + [l —ex@] + k= Ay
o) = [ A0V —He(w)ri+ /wpgow /quw
and

Alp) = Kexp(

<P+90)

Do, k) = / f;|e<v>|P— fv

exo(R2) = min{®q(v, k), (v,k) € C(2) x A(Q)}

Remark 2.2 We shall notice here that, on the one hand, the penalization will oblige
the mapping ® to reach its minimum and the reel k to recover the Arrhenius low
associated to the temperature . On the other hand, via the inf-sup the map H has
to vanish which requires the couple (,v) to reach the corresponding saddle-point
associated to the heat equation. These reasons explain the choice of the penalized
functional.

2.2.4 Existence of Minima

Proposition 2.5 The functional L has saddle-points. Then

Foalv, k) = L
0,a(v, k) gggrggg (¢, )

Proposition 2.6 The functional Fq o has a minimum in Wy, (©2) x A.

Proof of Proposition

Let (vy, kn,) be a minimizing sequence of the functional F. This means that
V(v,k) € Wain (Q) x A; F(un, kn) < F(v, k)

then
F(n, kn) < F(u, A(9))

F(vn, k / u.nl?
"
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therefore

1 1
@) [ fonenl? 4 2 @alon ) = exal@] + 3w = A@ves < [ fu-nP
v

M 1

accordingly, on the one hand there exists ¢ > 0 such that

[onllwa, < ¢

so one can extract a subsequence denoted also v, which converges weakly towards
v* in Wai,. Then |e(v,,)|P converges strongly towards |e(v*)|P in L' ().
On the other hand, there exists ¢ > 0 such that

[[Eonlwae < ¢

then we can extract a subsequence denoted also k,, which converges weakly towards
k* in A. Since the embedding of W%2? in L* is compact, we get; k, converges
strongly towards £* in L*>°. Whence

knle(n)P — k*le(v*)[P,n 1 oo strongly in L*(S)

with the truth that the functionals j(y) and H are weakly Ls.c. on Wy;, (©2) x A(Q2)
we get
F(*, k*) <lim inf F(v,, k)

nToo
Thus the minimum’s existence. Let (u3, K3) denote a minimizer:
I = Flug, Kg)

Which achieves the proof.
|

lemma 2.2 Let 6,, = 0(vy, k,) be the solution of the heat equation with right hand
side ky|e(v,)|P. The above result provides; 0,, converges weakly towards 0(v*, k*) = 0*
in W2, where q is a reel chosen as above.

Let 63 be the solution of the heat equation with right hand-side Kgle(ugd))|P.

2.2.5 Convergence of the Penalized Functional

Proposition 2.7 When a tends to zero
JQ) — J(Q)

and
sup ||(ug, Ko) — (ua, Ka)|lwa, @)xa@) — 0.

13
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Proof of proposition 2.7

Let o, be a sequence in 0, 1] which tends to zero. Any sequence (ug", K& )nein,
where (ug™, K3*) is a minimizer of Fq,, converges weakly (up to passing to a
subsequence as before) to (u*, k*) in Wy, (©2) x A(£2).

Since the embedding of W2 in L* is compact then Kg* converges strongly towards
k* in L. This yields that 6(ug", K5*) converges towards 6(u*, k*) in W2 then
A(O(ugr, K3™)) converges to A(O(u*, k*)) a.e.

Since Fqa, (ug", K5") < Faa, (ua, Kq), we have

Jo(Q) < J(Q); Vn
and so, on the one hand
K" — A(@)[lwez < 0 J ()

then by passing to the limit with respect to n via the lower semi-continuity property
of the sobolev-space W%2, we get

k* = A0(u*, k*))

on the other hand
By, Kg) < and(Q) + exy(9)

by passing to the limit when n tends to infinity, the lower semi-continuity of ® on
Wiin (Q) x A(Q) yields

Do(u”, A(O(u, k%)) < exq ()

but eg,(€2) being the unique minimum of ®, then (u*, k*) = (ugq, Kq).
Hence, by uniqueness of the heat solution, 6(u*, k*) = 6
From the weak lower-semi continuity of F, we then have

J(Q) < lim inf Jo(Q)

n—oo

hence, we derive

J(Q) — J(Q)

Equation (7) also prove that ®q(ug®, K5") tends to ex,(€2). As we know already,
this yields ||lug*|lw,,, converges to ||ua|lw,,, and thus ug" converges towards ug
strongly in Wy;,.
Thus, the proof is given.

n

We provide some abstract results which are the tools in order to solve the shape
sensitivity problem with respect to the free boundary.

14
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3 Abstract Results

In order to differentiate the penalized cost functional we adopt the so-called Velocity
method introduced by Cea and Zolésio. It consists to perturb domains via a vector
field to which we can associate a flow mapping.

3.1 The Velocity Method

Let D be a subset of IRY. We assume it is bounded and has a smooth boundary.
We denote by Oy;, the set of all Lipschitz domains in D. Let I be a closed interval
of IR* which contains 0. Let k£ be a non-negative integer. The purpose of the
speed method is to provide one-parameter deformations of a domain in order to
formulate continuity and differentiability properties in a “computable way”. This
method allows arbitrary large deformation of the domain. We will briefly remind
some results about this method which will be used throughout this work. We refer
to [20] for the proves and further details.

We will choose speed-field in the space

Ve ={V e C%(I,C*D,IRM)); V-nyp =0o0ndD}

where ngp denotes the out unit normal of 0D. This space is endowed with the
uniform convergence topology, and thus is a Banach space when [ is bounded.

The following proposition yields from O.D.E. theory. It allows us to derive from a
field V' a one-parameter deformation of the domains.

Proposition 3.1 EachV inV, has a unique flow mapping T(V) in C*(I,C*(D, IRN)).
The image T of any s in I:

i) maps D onto D.

i) has an inverse T, ' and T=' : s — T belongs to Vi (I)

iit) the application T is solution of the equation

0,T(s) =V,0T, and Ty = Idp
Moreover, flows have the semi-group property:
VW e Vi(I),Vs,t €1, s+tel;, Ty(Vin) =T(Vs)
For any domain w in D, we can consider the family
Q(V) =Ts(V) (), Q0(V) =0

When O is a subset of Oj,, we define a shape functional on O as a mapping
O — IRN. The family O has to be stable under the flow transformations i.e.

YV e Vi(I),Vs € I, T,(V)(O) C O

In order to give sense to the shape analysis, we briefly revisit here.

15
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Definition 3.1 A shape functional J is directionally-shape continuous at g in O
(with respect to Vi) iff for any V in Vi, the mapping s — J(Q25(V)) is continuous
at 0.

A shape functional J is shape differentiable at 2, iff

i) For any V in Vy the Eulerian deriwative of J at Qg in direction V in Vy

s—0 S

erists.
i1) The mapping V — dJ(Qo; V) is linear and continuous from Vi to IRN.

In the following, we exhibit an abstract result concerning a class of shape functionals;
mainly the functionals formulated in a minimum. This result will allows us to
establish the hopened shape gradient of the penalized functional.

3.2 Eulerian Derivative of a Class of Shape Functionals

We are interested in shape functional given via a variational principle. Its shape
differentiability is obtained by the following result.

Let (Fo : Wi (Q) — IR)qco be a family of functionals on the set Wy, X A.

Assumption 3.1 There exists Qg in O and V in Vy such that

i) There exists sg > 0 such that for any 0 < s < sq, the mapping

(v, k) = (DT v, k) o To(V) is an isomorphism between Wi, (Q(V)) x A(Qs(V))
and Wdi/u (Qo) X A(QO)

i) For any 0 < s < sq, Jo,(v) 15 a weakly Ls.c. functional on

Wan(Q(V)) % A (V).

i) For any (v, k) in Wain(Q) x A(Qo); s = Jo,0((DTs.v, k) o T, (V) lays in
C([0, so], IR).

w) The mapping (s,v,k) — OsJo,(v)((DTs.v,k) o T, (V) is weakly ls.c. on
[0, so] X Whain(€20) x A() at any point (0,v, k).

Theorem 3.1 With previous assumption, the shape functional J(2) = I(mkr)l Jo(v, k)
has an Eulerian deriwative at Qg in direction V. 7

This Eulerian derivative is linear with respect V(0) iff there ezists a unique mini-
mizer for Jo,.

Proof of Theorem

The field V' being fixed, we omit its reference in the notations. By previous results
the functional has a minimum for any s < sq. It is reached on a subset W of
Wiin (Q5) x A(€,). This set may be transported:

W* = {(DT,.v,k) o T, (v, k) € Wi} C Wi (Q0) % A(Q).

16
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For any (v*,k*) in W* , (0%, k%) in WO | (v, k) in Wy, (Q0) X A(£) and 0 < s < sy,
we have
J(Q) —J( Q)  Jo,(DTo0®, k%) o T;Y) — Joo (v°, K°)
s

- T, (DT,0%, K)o T, 1) — Joy (0, K9)

S

Passing to the limit when s tends to zero, we come to

0J(Qp; V) = limsup () = T(&)

s—0 S

< 0sJo, (DTs®, k%) 0 T )]s

since W° = W,, hence

(8) 0J(Q; V) < inf 0,Jq,((DT,0% k%) o T, )]s

(vo,ko)

But we also have, for any (v®, k%) in W* | (v°, k%) in WO, (v, k) in Wi (Q0) x A(Qo)
and 0 < s < s,

Jao, (DT k%) o T — Jo, (v°, k°) < J(82s) — J(Qp)

° Jo. (DTy.0%, k%) 0 T=1) = Jo (o0, K°)

S

Since [s — Jo,((DTs.v%, k%) o T; 1)] € C*([0, so], IR), for any s € [0, so], there exits
o (depending on s) with |o| < s such that

Jo.(DTow" k) o T71) = Joo (v°, &%) = 80,1, vy (DTyv", k) o T, | s=)
passing to the limit when s tends to zero we come to

05 Jo, (DTo0°, k) 0 T 1) |s=0) < 8J(Q0; V) = lim inf HEI)E) = JE)

s—0 S

and thus, since W% = W,

(9) sup O,Jq, (DT,° k%) o T7Y)|=0) < 0J(Q; V)

(vo,ko)

Finally, equations (8) and (9) yield the existence of the Eulerian derivative of J at
)y in direction V.

dJ(Qp;V) = inf)asJQs((DTs.vo,kO)oTs_l(V))|s:0

(vo,ko

17
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4 Weak-Differentiability of State Dependent Func-
tional

We shall notice here that it is easy to see that the considered cost functional Fy
fulfills the hereafter assumption.

Assumption 4.1 We assume that for any ()
i) Fq is weakly continuous on Wei, ().
i1) There exist constants 3 > 0 and q < p such that

Vo € Wiin (), Fo(v) > _ﬂ”U“;}/de(Q)

i1) For any Qo, any V', any v € Wy (), the mapping s — Fo v\ (DTs.v o T, 1 (V)
15 differentiable near zero.

The first hypothesis stands here for shortness and may be weakened.

4.1 Differentiability of the Penalized Functional

In the sequel, we will be interested to the differentiability with respect to the
domain of the penalized functional. The velocity method will provide the shape
differentiability and an expression of the shape gradient. We point out that our
study needs only to move the free boundary ~,.

For the following, we fix )y in O and a speed-field V' in V,. Let T belongs to Ti
such that T,(V) is the associated flow mapping to V; for any s € I :

Q =T(V)(Q), T(V)lauy =1Id, 7 =T(V)(m)
The transported problem will naturally be defined in transport sets:
Cs = C(Qs)a Qs = Q(Qs)a As = A(Qs)

Each of these sets inherits of all the properties of C,Q and A.

Transported Static Problem The transport of the problem can not be done
without the transport of the data. In our situation, the right hand side is the only
data to be transported. A rather general way do deal with this problem is to consider
that the data is a family {fq} indexed by all the admissible domains € such that,
at least, fo belongs to W., () for any w. In this section, for the sake of simplicity,
we make the following assumption, which is a very simple particular case.

Assumption 4.2 Let f being in L (D, IRN).

18
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Thus we are able to formulate the transported static problem. It has a solution
(us,0s) in Cg X Q.

K(0(x),)|e(us) P 2e(us) + PI = o, in Q,
—div(os) = f in Q
(10) (SP), div(u,) = 0 in Q
— div(A\V0s) = o(us).e(us) in
with the boundary conditions:
( Uy, = Uy on yqgUys
00, N
n = 0 on 7
(1) LR
pos + on, & on
L (05 ms,7s) = 0 on °;}

Remark 4.1 We recall here that our aim s to identify the free boundary v, that is
why we only move it.

We have the following transport lemma:

lemma 4.1 Let v in the conver C(S2), then
div(v) = 0 iff div[(DT,.v) o T, '] =0

Shape Gradient of the Compliance

Proposition 4.1 The mapping s — ®(s,v, k) is differentiable in 0 for any (v, k)
in Wai, X A. We will be interested in the expression of this derivative for uq,, the
solution of Norton-Hoff in €.

0;Pq, (DT,v, k) o T; 1) |s=0 = —/Q kle(v) P2 (v)..s(DvDVy — D(DVy.v))

(12 K
(=le(v)|P = fv)divVy — Df.Vo.v — fDVyv

Qo

Proof of Proposition 12

The transport lemma and a mere change of variable provide;

O, (DT, k) o T )
(13)

-1
/ Fol,  (DTywo T Y)P — f(DTswoTY)
Q P
k

- / |s(DT D(DT, )P — ( 0 T) DT 0j(s)

Qb
where, for any operator m; s() = 3 (7 +*).
Then the result is supplied, since the mapping s — (DT, DT "j(s)) is differen-

tiable in 0.
n

19
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Proposition 4.2 The compliance functional
e(§2;) = min{®q, (v, K); (v, k) € C(8s) x A}
15 shape differentiable
0se(Q) = 0,®((DT,.ugy, Kag) 0 T; )| s=o
This gradient is given by expression (12).
lemma 4.2 For all (v, k) in W, X A, the mapping
s — ®q, ((DT,v,k) o T; 1)

is weakly-l.s.c. at (0,v,k).

Min-Max Derivation

Proposition 4.3 Let y be the adjoint state of the heat equation. The mapping

s — inf sup L(S,@saws)
(PserqpsEQs

15 differentiable in 0. Its derivative 1s given by

OsL((0,y) 0 T, )ls=0 = 0sj (0 0 ;) |s=0 + 0 H((6, ) 0 T)|s=0

where (0,y) is an associated saddle-point solution of the corresponding coupled state-
adjoint problem.

Proof of proposition 4.3

Since the functional L(s, ¢, ¥;) is given as follows;

L(Sv Ps) 1/}3) = j(s, 903) + H(Sa P d}s)

then, on the one hand, with the fact that the function j(s, ;) is quasi-convex with
respect to ¢, then on the other hand H(s, p,1)) is convex-concave with respect to
(s, ¥s). It is enough to refer to [20].

n

lemma 4.3 For any (p,v) in Q%, the mapping

s — inf sup L(s,po T, b o T, 1)
PE€Q yeQ

is weakly-l.s.c. at (0, p,).

20
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Shape Gradient of the Arrhenius Law

Definition 4.1 Let (¢,7) = (§,%), then

2
— )| drdy

I = A Ryasey = Ik = Ay + [ [ 1=

va—yl

Proposition 4.4 The mapping s — ||koT; 1 — A(poT; )||Wq,2(Qs) is differentiable
for all (k,p) in A x Q in 0. Its derivative is given as follows:

_ _ k—A x
Bsllk o Tt — Ap o To M)3ya2 g,y ls=0 = / I |m(f )(r+2 Wi Vo(z) — Vo(y), = — y > dzdy
+/ / |(k — A(p)) (w—y)l divVeddy
(14) |z -yl

NdivVy

/Q [l — A()|® + [V (k — A(9))

—2 [ < (V)9 (k = A()), Tk = Ale) >
Q
lemma 4.4 For any (k, @) in A(Q) x Q(R2), the mapping
Ix A(Q) x Q(Q) = IR; (s, k,0) = |lkoT, " — A(e o T, Y Ifyazia,)

is weakly-l.s.c. at (0,k, ) (see [1]).

Differentiability of the Penalized Functional

Theorem 4.1 Under assumption 3.1, the penalized functional J is shape differen-
tiable in Oy with respect to V.

Proof of theorem 4.1

Indeed, the functional J satisfies the assumptions of theorem 3.1: for any initial
domain €y in O and any V in Vy,

i) For any s in I the functional Fq,(v)q is weakly Ls.c. on Wy, ().

ii) From propositions (4.1),(4.3), (4.4) and assumption3.1, there exists a neighbor-
hood I’ in I such that

V(v,k) € Waiw X A(Q) 1 [s = Fa,01,a(DTsv, k) o T, 1 (V)] € CH(I)
iii) From lemmas (4.2), (4.3), (4.4) and assumption3.1,
the mapping (s,v,k) — 0sFa,(v),a((DTsv,k) o T;'(V)) is weakly-l.s.c. on I’ x
Wdiv (Qo) X .A
Accordingly, the shape functional J* has an Eulerian derivative dJ*(€; V) at €
in direction V' in Vy: if we denote S* = {(v®*, k*); Fap.a(v® k%) = J*(Q0)}, then

d.T*(Q; V) = min{d, Fo,v)a(DT,0® k%) o TV oy (v%, k%) € S°}

21



22 J. Ferchichi, J.P. Zolésio

with
3 Fa,(vy,a(DTsu* K*) o Ty ), =
/ lug, -n|PdivVo
7
_1 / K®[e(u®) [P 2e(u)..s( Du® DVo — D(DVo.u®))
20
KQ
/ (—e(u®)|P — fu)divVo — Df.Vo.u® — fDVp.u®
Q, P
KQO|€(ug0)|p_28(ugo)..S(DUQODVO - D(DV().UQO))

0

o
1

ta
1

3
1
(22

S5

Kq .
( po le(uqy )P — fuqg)divVo — Df.Vo.uq, — fDVo.uq,
o

(15) _9

ég\

Ae(Vp). V0%, Vy) — AV Vy* — K%|e(u®)|Py*]divVp

+ pK%|e(u®)P~2e(u®)..s(Du®DVy — D(DVy.u®))y™
)

_1/ (K> — A(8%))(z — y)|?
Qo

@ ‘I7y|'r+2

5~

< Vo(z) — Vo(y),z —y > dzdy

Qo
o _ o _ 2
oo [ AN DR
Qo /0 |z —y|
2 [ TR = AP + V(K = AG)PldinVe
Q0
2

-2 /Q < e(Vo)V(K®™ — A(6%)), V(K™ — A(6%)) >

This Eulerian derivative is linear and continuous with respect to Vj, hence J* is
shape differentiable at {2y with respect to V: there exists a distribution VJ* such
that for any domain €y and for any V in Vj,

Vt e IR, dJ*(u(V),V(t)) =< VJ*(Q(V)), V(t) >

Remark 4.2 We are not able to get a boundary expression in the last shape gradient
because of the less-reqularity of Norton-Hoff state. But by the abstract result given
by Hadamard, we already know that the hole of the shape gradient can be given as a
boundary one.

Remark 4.3 We shall notice here that we are not able to compute explicitly the
limit of the shape gradient when the parameter o goes to zero. In fact, it is in the
same context of the non reqularity of Norton-Hoff state, otherwise we are able to
derive.

4.2 'Weak Eulerian Derivative of State Dependent Functional
We have the following weak differentiability result.

Theorem 4.2 For any Qg in O and V' in Vi, the mapping s — J(Qs(V)) has a
weak Eulerian derivative 6.J(Q, V') in the dual space H' with

H={pe H(0,]); ¢(r) =0}

22
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Proof of theorem 4.2

For any 0 < a < 1 and any 0 < s < 7, we have

s - o) = [ 7 (s Vi)t

0
Hence for any ¢ in L%([0, 7)),

/ ")) — Jo())ds = / 9 / AT (0 Vi) dt]ds

(16) ° /‘
= [ dJ*(Q; V) )ds]
, 40l sl

Since the element of H'([0,7]) are absolutely continuous,

H o= () = / CE(s)dsi € € L2(0,7))

Hence for any ¢ in H,

- / Q) — T ()ds = / "4 Vi) (s)ds

With proposition 2.7 and the shape continuity of J. Lebesgue’s theorem provides

lima o /OTas)[J“(m J(Q0)]ds = / (s J(Q)]ds

Hence uniform boundedness principle provides the existence of a linear operator §.J
in H' such that

Yy e H, /OT dJ(s)Y(s)ds = limg_yo /OT dJ*(Qs; Vi)(s)ds
and we have
- [@) - s@sas = [ arusas

Thus the proof is achieved.

Conclusion

We shall notice here, on the one hand, that we are not able to get a boundary
expression in the penalized shape gradient because of the less-regularity of Norton-
Hoff state. But, by the abstract result we know that the whole of the penalized
shape gradient can be given as a boundary one and we are not able to compute
explicitly the limit of the provided shape gradient when the penalization parameter
goes to zero. In fact, by using the so-called extractor method we prove some hidden
regularity on the flow under a questionable density property. In that context we
would be able to get the limit with respect the penalization parameter in order to
recover the boundary expression for the functional shape derivative.
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