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Abstract: We consider a flow of data packets from one source to many destinations in
a communication network represented by a random oriented tree. The multicast mode is
characterized by the ability of some tree vertices to replicate the received packets in a way which
depends on the number of destinations downstream. We are interested in the cost of packet
delivery and in several performance metrics associated with multicast flows on Galton-Watson
trees and trees generated by point aggregates of a Poisson process. Such stochastic settings are
intended to represent tree-shapes arising in the Internet and in some ad hoc networks.

The main result, in the branching process case, is a functional equation for the p.g.f. of
the flow volume; we provide conditions for the existence and uniqueness of a solution and a
method to compute it using Picard iterations. In the point process case, we use the stochastic
comparison technique developed in percolation theory for Boolean models to provide bounds
on the introduced cost functions. We use these results to derive a number of characteristics of
these random trees and discuss applications to analytical evaluation of costs and loads induced
on a network by a multicast session.
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Métriques de performance pour des flots multipoint sur
des arbres aléatoires

Résumé : Nous considérons un flux de paquets de données d’une source vers plusieurs des-
tinations dans un réseau de télécommunication représenté par un arbre orienté aléatoire. Dans
le mode de transmission multipoint, certains sommets de ’arbre peuvent répliquer les paquets
recus de 'amont vers plusieurs destinations en aval. Nous sommes intéressés par le coiit de la
transmission d’un paquet et par d’autres métriques de performance pour deux types d’arbres
aléatoires: des arbres générés par un processus de Galton—Watson et ceux générés par des
agrégats d’un processus ponctuel de Poisson. De telles hypothéses stochastiques apparaissent
naturellement dans les arbres multipoint de I'Internet et des réseaux ad hoc.

Le résultat principal dans le cas de processus de branchement est ’équation de la fonction
génératrice du volume des transmissions. On fournit une condition d’existence et d’unicité de
la solution de cette équation et une méthode de calcul par des itérations de Picard. Dans le
cas de processus ponctuel, nous obtenons des bornes sur les fonctions de cotit en utilisant des
techniques de comparaison stochastique développées dans la théorie de la percolation pour les
modeéles booléens. Ces résultats nous permettent de dériver certaines caractéristiques d’arbres
aléatoires et d’évaluer analytiquement les cotlits et les charges induites sur un réseau par une
session multipoint.

Mots-clés : arbre aléatoire, session multipoint, processus de Galton—Watson, processus de
Poisson.
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1 Introduction

Consider a communication network which takes the form of an oriented tree T' = (V, E), with
vertices V = {i} and edges E = {(iy,iz)} directed from the root iy. Suppose that a bit of
data (a packet) is delivered from the source at iy to the receivers at the vertices of T using the
following scheme: every vertex gets one packet copy and every edge (i,i2) transports exactly
as many copies as required to serve the receivers in the whole subtree rooted at i;. Define two
transmission modes depending on where the necessary number of packet copies is produced.
Call the mode unicast if the packet can be replicated only at the root vertex iy, and multicast
if it can be replicated at any vertex. Hence, in unicast mode, the number of packet copies
transported by the edge (ij,iz) equals the number of receivers in the subtree rooted at i,
whereas, in multicast mode, it never exceeds 1.

In this paper, we focus on the properties of multicast packet flows on random trees. Our aim
is to assess the cost and the load induced on a network by a multicast session and to quantify
the gain of multicast over unicast in terms of flow volumes and other tree-related performance
metrics. This question has been addressed by many experimental studies, but only a few
analytical models of multicast trees have been proposed. These latter models include the use
regular k-ary trees and so-called fractal k-ary trees of fixed depth as representations for multicast
infrastructure [15, 1]. We start off the assumption that multicast trees should have variable
depths and branching characteristics and introduce two kinds of distributions: trees generated
by Galton-Watson branching processes and by aggregates of points of a Poisson process. Both
models will be defined in the next section. The first model represents the logical pattern
of packet distribution, while the second reflects a physical view of network nodes and their
transmission capabilities in space. Aiming for generality, we consider mized unicast/multicast
transmission modes assuming that only a share of vertices can replicate packets, and allow for
multiple receivers per vertex.

The motivation for this study comes from telecommunications. A wide range of networking
applications, such as conferencing, media streaming, and software distribution, require simul-
taneous delivery of data from a single source to multiple destinations. One-to-many routing
protocols usually construct a distribution tree composed of paths connecting the source to all
receivers. Unicast protocols treat packet delivery over different paths separately, which results
in redundant transmissions of multiple packets over edges belonging to several paths. Multicast
provides a more efficient alternative (at the cost of additional intelligence of network nodes):
since packets can be duplicated at the vertices where routing paths diverge, sending one packet
copy per tree edge is sufficient. See [2] for a survey on multicast routing techniques.

Empirical evidence shows that, in the Internet, multicast trees exhibit high variability of
shapes and branching characteristics [6]. This is also true for ad hoc networks, which consist
of mobile hosts communicating over wireless links without any centralized control, and whose
topology is intrinsically subject to frequent changes [13]. This calls for the development of a
stochastic modeling framework that would capture the variations of the multicast infrastructure.
Regarding our models, we consider the branching process setup to be mostly fitting for the
Internet case, and the point process setup for ad hoc networks.

We define our performance metrics as cost functions associated with multicast flows. The
principal ones are the total flow volume (i.e, the total number of packets transferred over all
edges) and the flow volume at a given vertex (i.e, the number of packets transferred over
the edges incident from this vertex). Others include the additive and the multiplicative flow
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4 B. Btaszczyszyn € K. Tchoumatchenko

weights. Several transmission characteristics (packet loss rate, maximal delay), and geometrical
tree properties (number of vertices, summary edge length) emerge as special cases.

The main result for multicast trees generated by a branching process is a functional equation
for the p.g.f.’s (probability generating functionals) of the two principal cost functions. It is based
on simple conservation laws for data flows. We also provide conditions for the existence and
uniqueness of a solution and a method for computing it using Picard iterations. In Section 3.4,
we give an application example comparing the analytic results on the multicast/unicast gain
with some experimental studies carried out for the Internet.

The aggregates of a point process are introduced in Section 2.4 to represent connected nodes
of an ad hoc network. They are closely related to clumps in the Boolean model (for definition,
see [17] and Example 2.2). Connectivity and clumping properties of the Boolean model have
been extensively studied in percolation theory; see Chapter 4 of [11], and [14]. In the wireless
context, the sets assigned to the points can be seen as communication areas of individual
nodes; i.e., the areas where others can receive packets from them. Boolean models and more
general coverage processes were used with similar interpretations in [8] and [9] to investigate
the connectivity and the throughput capacity of ad hoc networks, and in [4] for performance
evaluation of CDMA protocols.

As is the case for trees spanning the germs of Boolean clumps, trees generated by point
aggregates have dependent branches, and this makes the analysis of their distributions difficult.
We obtain bounds for multicast performance metrics using the technique of stochastic domi-
nation by Galton-Watson trees. This idea is due to Hall [11], who used it to give sufficient
conditions for clump finiteness (a.s. and in the mean); see also [5|, where higher polynomial
and exponential moments of the clump size were considered. In the special case where the ag-
gregates are generated by clumps of unit balls, we refine the bounds by constructing a tighter
dominating process.

The rest of the paper is organized as follows. In Section 2, we introduce random marked
trees as a model of multicast infrastructure and define the performance metrics associated
with packet flows. Section 3 contains the results on metric distributions for Galton—Watson
trees. Domination results and bounds for trees generated by point aggregates of a homogeneous
Poisson process are derived in Section 4.

2 Multicast flows on oriented trees

2.1 Notions and notation

We model the support of a multicast session by an oriented tree T = (V, E), with vertices
constituting a countable set V' = {i} of an arbitrary nature and edges E = {(i,i2)} CV xV
directed from the root vertex ig. Call j an immediate descendant of i if (i,j) € E, and denote
by D(i) the set of all the immediate descendants of i. We call j a descendant of i if there exists a
sequence of vertices 7(i,j) = (Jo,Jj1,--- ,Jn), » > 0, such that jo =1, j, = j, and (jk_1,Jx) € E,
for k = 1,...,n. This sequence 7(i,j) is called a path from i to j; if exists, it is obviously
unique. Denote by 7T'(i) = (V/(i), E(i)) the subtree of T' generated by the vertex i and by all of
its descendants (hence T'(ig) = T). Let T™ (i) = (V((i), E/™(i)) be the truncation of the tree
T'(i) at the depth n; i.e., the subtree including only those vertices j of T'(i) that can be reached
by a path 7(i,j) with no more than n + 1 vertices, or, equivalently, in at most n hops.

INRIA



Performance Metrics for Multicast Flows on Random Trees 5

Introduce marks m(i) = (r(i),o(i), 7(i)) representing vertex characteristics. Here o(i) €
{0,1} is the indicator of multicast ability; i.e., the ability to replicate a received packet, 7(i) €
{0,1,...} is the number of end receivers at the vertex; i.e., the number of identical packet
copies requested by that vertex, and r(i) € E is the vertex type. We assume E = {1,2,... ¢}
everywhere except Section 4.3, where we consider E = [0, 1].

Throughout the paper we denote by || - || the Euclidean norm in R¢, by vol(-) the d-
dimensional Lebesgue measure, and by b,(z) a closed ball in R? of radius y centered at z.

2.2 Performance metrics and flow conservation laws

Consider a multicast flow on an oriented marked tree 7' = (E,V) in which only multicast-
enabled vertices can replicate packets. As in Section 1, a packet is delivered from iy to the end
receivers at the vertices of T, so that every receiver gets one packet copy and every edge (i, is)
transports exactly as many copies as required to serve all receivers in the subtree T'(iz). Hence,
if 0(iz) = 1 then this number equals 0 or 1 depending on the existence of a vertex i € V(i)
such that 7(i) > 0. If o(iz) = 0 then this number equals 7(iy) plus the number of copies sent
over the edges incident from is.

The principal performance metrics that we consider are K (i), the total number of packets
sent by vertex i to its immediate descendants, and L(i), the total number of packet transfers
within the whole subtree T'(i). Let us provide formal definitions. Denote by R(i) = {j € V(i) :
j #1, 7(j) > 1} the set of all descendants of i that request at least one packet. For every
J € R(i), consider the path 7(i,j) and denote by j* either the first occurrence of a multicast
vertex # i on this path, or j, if such vertex does not occur. It is easy to see that the number of
packet copies sent by i in order to satisfy the requests in R(i) depends on the number of copies
requested by the members of R*(i) = {j* : j € R(i)}. We define

K@) = Y 7()1{o() =0} + 1{o(j) = 1}. (2.1)
JeRx(i)

The dual function K (i) is defined as the number of packet copies received by vertex i in order
to satisfy every packet request within 7°(i). It can be expressed as

K(i) = o) (1 - 1{r(@i) =0}J (1)) + (1 — o) (r(i) + K()) . (2.2)

where J (i) equals 1{K (i) = 0} = 1{R(i) = (}. The total multicast flow volume in 7'(i) is then
given by

Li)= Y (). (23)
jeV(@)\{i}

As a refinement of L(i), consider the total number of packets Ly (i) transmitted within the
tree T'(i) over the subset of edges {(j1,j2) € F(i) : r(ji) =k and r(j2) =1}

Lu()= Y K@){r() =Fk,r() =1} (2.4)
(J1.d2)€E(i)

More generally, let w(i, j, k), k = 1,2,... K(j), be costs associated with individual packets
sent over the edge (i,j). The additive cost Wy(i) of the multicast flow on 7'(i) is the sum of
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6 B. Btaszczyszyn & K. Tchoumatchenko

the costs of all packet transfers. It is given by

K(j2)

Wx(i) = Z [Z w(ji, j2, k } (2.5)

(J1.d2)€E(3)

The multiplicative cost Wii(i) of the multicast flow on 7'(i) is defined by

K(j2)

Wi (i) = H [ H w(ji,J2, k ] - (2.6)

(1d2)€E®{) k=1
Example 2.1 Obviously, if w(ji,jo, k) = 1 then Wx(i) = L(i). If, moreover, o(-) = 1 and
7(-) = 1, then L(i) equals the total number of edges in the tree 7'(i). Suppose that packet
transmissions may fail and let w(ji,jo, k) be the number of tries necessary to successfully
transmit the packet k£ over the edge (ji,j2). Then, Wx(i) is the total number of transmission
attempts for the tree T'(i).
As an example of a multiplicative cost, consider
w(ji,jo, k) = 1(d(Gr, 2, k) < 1), (2.7)

where d(j1, jo, k) is interpreted as a waiting time for the delivery acknowledgment of the packet
k and t is a fixed timeout. In this case, Wiy (i) is the indicator that no timeout occurs for all
packet copies sent within 7'(i).

Multicast flows on oriented trees satisfy several simple conservation laws. The equality
between the number of sent and received packets writes as

K(i)= Y K(j). (2.8)
jeD(i)

For L(i), the following recurrent relation holds
L) = > K()+L(). (2.9)

JeD(i)

Similarly to (2.9), we have a recursion formula for Lg,(i)
Lu(i) = > Hr(i) =k r(5) =1} K() + Lu()). (2.10)
ieD(i)

Denote by K™ (i), K™ (i), J™ (i) and L™ (i) the appropriate cost functionals calculated
with respect to the truncated tree 7™ (i ) Relations similar to (2.8)—(2.9) hold

K@) = Y K@ (2.11)

JeD(3)
where
K®™(i) = o(i)(1 - 1{r()) = 0}J™ (i) + (1 — o)) (r(i) + K™ (1))
J™ () = 1{K™ (i) = 0}
and
L Z K™ (G) + L™ ). (2.12)

INRIA



Performance Metrics for Multicast Flows on Random Trees 7

2.3 Galton—Watson trees

Now, we place ourself in a probabilistic settings and define random trees generated by a multi-
type Galton—Watson branching process with types in E = {1,2,...,/} (for theory of branching
processes see, e.g., [12| and [3|). Individuals of the process constitute the vertices of a random
tree that we denote by Tg, whose edges connect every individual to its direct descendants.
The progeny of an individual i is the vector Z(i) = (Zm(i))mE]E, where Z,,(i) is the number
of direct descendants of i having type m (the root type r(ip) should be defined separately).
We make a standard assumption for branching processes that, for i’s of the same generation,
all Z(i) are mutually independent. Hence, the process is defined by the distribution of Z(i), or
equivalently, by the family of conditional p.g.f’s ¥ = (¥ )rer acting on z = (21)mer

Yr(2) = Eexp[H 2Zm W) (i) = k. (2.13)

meR

The marks of non-root vertices r(-) € E are thus determined by the types of the correspond-
ing individuals. Regarding the multicast ability and the number of end receivers (o(-), 7(+)), we
assume that their joint distribution depends only on 7(-) and is given by the set of probabilities

pf,=P(o() =4, 7(-)=j|r()=k), i€{0,1}, je{0,1,...}. (2.14)

Hence, the distribution of the marked tree Tp = (Vg, E) is completely defined.

2.4 Trees generated by aggregates of a Poisson point process

Trees that we introduce now have their vertex sets embedded in a homogeneous Poisson point
process II = {z;};cy on R? with intensity A\. Assume that the points of II have i.i.d. marks
m(z;) = (r(z;), 0(z;), 7(x;)) taking values in E x {0,1} x {0,1,...}, so that the distribution of
r(+) is given by the set of probabilities

G =P(r()=k), keE (2.15)

and the conditional distribution of (o(-),7(-)) by (2.14). Note that, by this definition, the sets
I, ={z; € Il r(z;) =1}, € E, are independent Poisson processes with intensities Ag;.

Let us define bonds between points of different types using a collection of closed bounded
sets {Gr; C R¢ . k,l € E}. Denote by x; ~ z; the relation z; € =; + Gr(z,)r(z;)- Put
Ao(z;) = {x;} and define by induction the set of n-accessible points A, (x;) as all z; € I, such
that, for some z,, € A,_1(2;), Tm ~> z; and z; & A= (g,) = Z;é Ag(z;). The set of all
points accessible from x; is then given by

A(w) = J An(z:)

and can be seen as a mark of x;. We will call the set A(z;) the aggregate associated with
z;. In what follows, we will be interested in the properties of a typical aggregate; i.e., having
the Palm distribution with respect to the underlying Poisson point process II. By Slivnyak’s
theorem (see, e.g., [17]), its distribution coincides with the distribution of the aggregate A(0)
constructed with respect to the process IIU{0} with an independent m(0) having the common
mark distribution. Considering the Palm distribution, we will write simply A and A,, to refer,
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8 B. Btaszczyszyn & K. Tchoumatchenko

respectively, to the typical aggregate and to the set of n-accessible points with respect to the
origin.

With the typical aggregate A we associate an oriented tree 7c = (A, E¢) rooted at the
origin and having the edge set

Ec = {(v(:),2:), z; € A\ {0}},

where for every z; such that z; € A,, n > 1, the ancestor v(z;) is chosen by independent
sampling from {z; € A, : z; ~ z;} assuming equal probability for all elements. Such
construction yields a tree connecting the origin to every point of A in the least possible number of
hops (v(-) sampling guarantees the uniqueness of ancestors in such tree). Marks {m(z;), z; € A}
become the marks of the vertices of Tg.

Example 2.2 Recall that a classical Boolean model in R? is a random set = = |J,(x; + B;)
generated by a Poisson point process I = {z;};en and a sequence of i.i.d. compact subsets
{B;}ien of RY, where z + B = {y +z € R¢ : y € B}. Maximal connected subsets of Z
are called clumps. Consider a Boolean model with all B; being some fixed B C R¢. Then
(i + B) N (z; + B) is non-empty if and only if z; € z; + G, where G = {y1 — y2; ¥1,y2 € B}.
Hence, when E = {1} and G; = G, the aggregate A(z;) consists of all points of IT covered by
the Boolean clump containing z;.

The following remark will be used in Section 4 for the construction of 7¢.

Remark 2.3 Note that the aggregate A is recurrently defined through its truncations A™ =
Up—o Ak, n > 0. This sequence has the following Markov property: A+ depends on the
previous truncations A®) k < n, only through A™ and A®V. Indeed, A™) =A™ U A,
and all points of A, 1 of types | € E are distributed as independent homogeneous Poisson
processes with intensities Ag; in C’l("H) \ Cl(”), where

o® = U @i+Guy), k=12, (2.16)

€A1

and C’l(o) = (.

3 Flow metrics for Galton—Watson trees

The aim of this section is to characterize the distributions of our multicast performance metrics
of the trees generated by branching processes, introduced in Section 2.3. To simplify the
exposition, we first limit the scope to the two principal cost functions K (i) and L(i) defined
by (2.1) and (2.3), and use the flow conservation laws from Section 2.2 to derive recurrent
equations for their p.g.f.’s. Next, we extend these results to other metrics from Section 2.2.
As a corollary, we derive the first moments of the flow volumes, which we use to evaluate the
efficiency gain of multicast over unicast.

INRIA
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3.1 Recurrent relations between p.g.f’s of multicast metrics

In the settings of Section 2.3, consider a family of functions ¢ = (@x)rer in which the element
Or = ¢r(z1, 22) is the joint p.g.f. of the couple (K (i), L(i)) under condition r(i) = k

¢k(21,22) = E[Zf((i)zg(i)‘r(i) = k] .

Introduce also ¢(™ = ( ,(c"))kE]E as the family of the p.g.f’s of (K™ (i), L™ (i)) given r(i) = k.
Define an operator ¥[-] = (Ux[-])ker acting on the family u = (uy)ger of functions uy =
ug (21, z2) as follows

Tilu] = v (f(u), (3.1)

where f(u) = (fm(u))melE is given by

fm(u) = (1 = 2122) um(0, 22)piy + 2122 U (1, 22) Zpﬁ +
=0

+ um (2122, 22) Z(lez)jpg;- (3.2)

j=0

Proposition 3.1 The family of p.g.f’s ¢™, n = 1,2,..., satisfies the following recursion
relation

¢t = wp™)] (3-3)
with ¥[-] given by (3.1) and (3.2).

Proof: From the relations (2.11)-(2.12) it follows that if 7(i) = k, then K"*V (i) and L"*(i)
can be represented as a sum of Z(i) independent r.v.’s K™ (j) and K™ (j)+L™ (j), respectively.
If we show that

B[ K70 K00+ 0)

r(§) = m| = fn(6™ (21, 2)), (3.4)
then from (2.13) it will follow that

ov (21, 20) = Ui (F(9™ (21, 22)))

and the proposition will be proved. Rewrite the left-hand side of (3.4) using (2.2) and condi-
tioning on the distribution of (o(j), 7(j)) as follows

7™ () m N (s () (3
E [((Zl Z2)1 ! (’])plo + 2122 Zplj + Zpoj(zl 32)J+K (J)) 25 w

=1 =0

(i) =m|

=\ m G m ) (j - i m () (j
=E [((1 — 21 2) T (§) Pl + 212 Zplj + (=1 22)K< )(3) 2(2122)’p0j)22L @)

r(j) = m|

§=0 §=0
= (1 - 21 2) Q%L)(O, 22)plo + 2122 ¢( (1, 2 ZPU + (!5( (21 22, 22 Z 2123) Poj-
7=0 7=0
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10 B. Btaszczyszyn € K. Tchoumatchenko

Comparing with (3.2), we see that (3.4) is true. |

Note that if there is a positive probability that K (i) or L(i) is infinite, then the p.g.f.’s
(¢r)ker are not well defined. A sufficient condition for the finiteness of these functionals is the
a.s. extinction of the branching process generating the tree 75. Denote by A = (Agm)k,mer the
matrix of the first moments

Nem = B[ Zn (i) | (i) = K]
and recall the following standard result (see, e.g., [12])

Proposition 3.2 Suppose that the matriz of the first moments A = (Mgm)k,mer exists and is
positively regqular; i.e., for some n > 0, all elements of A" are strictly positive, and that the
branching process is non-singular; i.e., not all individuals have exactly one descendant. If the
mazimal eigenvalue p(A) < 1 then the branching process becomes extinct a.s.

A weaker sufficient condition for the finiteness of K (i) will be given in Remark 3.10. The
following two statements summarize the influence of p(A) on the distributions of the principle
cost functionals. Consider the space of vector functions u = (uy)xer of the argument (21, z9) €
[0,1]? equipped with the norm

l[tloe = sup luk(21, 22)| -
keR, (z1,22)€[0,1]2

Lemma 3.3 Suppose that the matriz of the first moments A ezists. Then the n-th iteration of
the operator ¥ given by (3.1)-(3.2) satisfies the inequality: for u, u' € {v: ||v||oo <1},

10" () = U™ (u)]loo < [[A"u = Ulloc, m2>1, (3.5)
where |u — u'| = (|ug — u}|)ker- Thus, if any norm of A™ vanishes as n — oo (in particular,
if A is positively reqular and p(A) < 1) then

lim || 9" (u) — ¥™(v)||o = 0.
n—00
Proof: Let © = (zx)rex and o' = (o} )ker be two vectors in R¢ such that maxy |zx| < 1 and
maxy, |z}| < 1. Denoting
Tim = (T1, Ty, - Tyy 1 Ty Tt - - - > )
and using the absolute continuity property of p.g.f.’s (since the first moments exist), we have

[r(2) = (@) < Y [r(@im) = Y (@pmsn) | < Y Aol = 275 -

meR meR

Note that by (3.2),

0 S fm(u) S sup U'm(zla 22)'
(21,22)€[0,1]2

Therefore, for functions v and «' such that ||u||o <1 and ||v/|| <1,

[V (u) = U)o = sup [¢r(fie(u)) — i (fi(u))]

k,21,22
< sup Z Nem| frn (1) = frn (u')]
ky21,22 o cp

§ : !
S sup )\km‘um - U'm‘
k21,20 o

<A

u =]l

INRIA
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where sup, , . is taken over k € E, (21, 22) € [0, 1]°. Using induction by n, we obtain (3.5). M

Proposition 3.4 Suppose that the matriz of the first moments A is positively reqular, nonsin-
gular, and p(A) < 1. Then for any r(i) = k € E, the functionals K(i) and L(i) are a.s. finite,
for any (21, 22) € [0,1)%, ¢x(21,22) = lim gb,(c")(zl,zQ) asn — 0o, and ¢ = (¢g)ker Satisfies the
functional equation

Vig]=¢. (3.6)

Moreover, if p(A) < 1, then the family of p.g.f’s ¢ is the only solution of (3.6), such that
[6]lc < 1.

Proof:The first part of the statement follows immediately from the fact that the functionals
K™ (i) and L™ (i) grow monotonously with n and converge to K (i) and L(i)) a.s. By the
monotone convergence theorem they converge also in the mean, though the latter may be
infinite. The second part follows from Lemma 3.3. [ |

Corollary 3.5 In the special case when o(-) = 1 and 7(-) = 1, ¢x(1,29) is the p.g.f. of the
number of descendants of an individual of type k. Putting z; = 1 in (3.6), we obtain a well-
known system of equations

Ui (2(01(1,2), 601, 2)) ) = Gl 22) k=1,...,L
If o() = 0 and 7(-) = 1, then K(i) equals the total number of edges in the tree T(i) and
L(i) = >5eva) K (). Equation (3.6) thus becomes
(o (2122(¢1(2122,Z2)a e ,¢£(Z1Z2,Z2))) = ¢k(z1,2’2) k=1,...,¢

3.2 Multitype extension

It is straightforward to extend the basic stochastic recursion to the case of type-dependent
functionals L;,,(i) given by (2.4). Put Z = (2im)imer - For a vertex i of Tp, define the family

¢ = (¢r)kex of joint p.g.L’s of K(i) and (Lim(i))ymex given r(i) = k as

oz 2) = Bl @ TT 2 @lr) = k).

l,meE

Define an operator ¥ = (\ilk)keE acting on the family u = (ug)xeg of functions uy, = ug(z, 2)
Uilu] = Pr(f(u)),
where f(u) = ('fm(u))mEE is given by

o0
fn (w(2,2)) = (1 = 22km) m (0, 2)PT + 22km um (1, 2) Y _ P +
=0
+um 2Zkm; Z Z szm pO]'
7=0

Now, relations (2.8) and (2.10) hold and the following is true.

RR n’ 4388



12 B. Btaszczyszyn € K. Tchoumatchenko

Proposition 3.6 Suppose that the matriz of the first moments A is positively reqular, nonsin-
gular, and p(A) < 1. Then, for any i of Tg, the functionals K(i) and Ly,(i) are a.s. finite,
for any (z,Z2) € [0, 1]1“2, QNSk(z,,?) = limgzNS,(cn)(z,E) asn — oo, and ¢ = (gzzk)keE satisfies the
functional equation

U[g] = o. (3.7)

Moreover, if p(A) < 1, then the family of p.g.f’s ¢ is the only solution of (3.7) such that
[8]l% < 1, where

ull = sup luk(z, 2)| .
k€EE, (z,2)€[0,1]1+¢2

The proofs are similar to those of Proposition 3.1 and 3.4.
Suppose now that the link costs w(i, j, k) introduced in Section 2.2 are all independent
r.v.’s having a common distribution for all £ > 1 when r(i) = [ and r(j) = m are fixed. Let

x(z) = (le(z))l’meE be the family of p.g.f.’s
Xim(2) = B[220V | r(i) = 1, 7(j) = m],
and let € = (€4,,)1,mer be the family of the first moments
Elm = E[w(i,j, 1) |7"(i) =1, r(j) = m].

Here is a simple consequence of Proposition 3.6 concerning the additive and the multiplicative
tree costs Wy (i) and Wy (i) given, respectively, by (2.5) and (2.6).

Corollary 3.7 Assume that the conditions of Proposition 3.6 are satisfied. Then
E[ZWE(i)

E [Wn(i)

r(i) = k| = G(1,x(2)) (3.8)
T(l) = k:| = q;k(lag)a (39)

where ¢y is the solution of (3.7).

In particular, when w(i, j, k) is defined as in (2.7), &1, = €um(t) is the probability distribution
function (p.d.f.) of the delay d(i, j, 1) and thus ¢ (1,e(t)) is the p.d.f. of the maximal delay in
the tree.

3.3 First moments of the flow volumes

In this section we provide explicit expressions and upper bounds for the first moments of the
multicast metrics K (i) and L(i). Denote by K = (K})ker the family of conditional expectations
K, = E[K (i) |r(i) = k]; similar notation will be used for the expectations of K™ (i), L(i),
LM(i), J(i), and J™(i). Introduce also the diagonal matrices P;; = diag{p};,pZ, ... ,pl;} and
the vector M = (My), , with My = 322 (jp; + pf;)-

INRIA



Performance Metrics for Multicast Flows on Random Trees 13

Corollary 3.8 The functionals J™, K™ and L™, n =0,1,..., satisfy the following recur-
rent relations

JOH) — o, ((Poo + PlO)J(n)) ’ (3.10)
j=0
LD — gtl) L A7 0, (3.12)

Proof: Formula (3.10) can be easily proved by setting the argument (z1,29) = (0,1) in the
recurrent equation (3.3). To obtain (3.11) and (3.12), take the derivatives of both sides of (3.3)
with respect to z; and 2, at (21, 22) = (1,1). By (3.2), the derivatives of f,,(¢™) are given by

[fm (8], (1, 1) = =pledS) + > oKD + My, (3.13)
§=0

[fm (6™, (1,1) = =Pl IS0 + > o KGO + LG + My, (3.14)
j=0

|

It follows from the definition that J™ converges to J. The next corollary provides conditions
for the limits of K™ and L™ to be finite.

Corollary 3.9 Let |||« be a norm in RE. If||A > i=0 Pojlls < 1 in the corresponding operator
norm, then

1] < [[AML (1= 1A Pyll)

J=0

If ||All« < 1, then
L1 < I (1= fIAT)
and hence J, K, and L satisfy (3.10)—(3.12).

Proof: Since all the elements of A are non-negative, from (3.11) follows the component-wise
inequality

K < A S Pk M| =A 3 (a S Py ) M.
1=0 3=0

7=0

Hence for every n, ||[K"||, is bounded by [|[AM]|,(1 — ||A > s P0j||*)_1. In a similar manner,
the inequalities

L(n+1) < ZAIK(TH»lfl) < ZAlK
=0 =0

imply the second bound. u
Note that p(A) < ||A||, for any norm ||-||.. Suppose that the distribution of the root mark (i)

is such that P(r(ig) = k) = ¢x > O forall k € E. For z € R, define the norm ||z||, as >_, g |2k| -
Corollary 3.9 thus provides upper bounds for EK (i) = || K ||« and EL(ig) = ||L||+. In this case,
the norm || - ||, of a non-negative matrix A = (Ggm)k,mer equals sup,, >, x Gkmk/dm-
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14 B. Btaszczyszyn € K. Tchoumatchenko

Remark 3.10 Branching processes for which p(A) > 1 are usually called super-critical. The
size of the tree 7p generated by such process may be infinite. Suppose that every vertex of 7g
a.s. requests at least one packet. It is easy to see then, that in the unicast mode, when all
py; = 0, the flow volume K (i) through a vertex i may also be infinite, whereas in the multicast
mode, when the share of multicast vertices is such that [[A Y722 Pojll. < 1, the number of sent
packets K (i) is finite a.s. and in the mean.

3.4 Application to multicast efficiency estimation

We conclude this section with an example of an evaluation the efficiency gain of multicast over
unicast in the special case of a Galton—Watson tree matching some real-life multicast networks.

For a fixed tree, denote by N the number of receivers on a tree and let L;, and Ly be
the total number of packet transmissions required to reach all receivers on the tree assuming,
respectively, pure multicast and unicast transition modes (all multicast and all unicast vertices).

The first relation between these characteristics was provided by Chuang and Sirbu |7]. They
introduced a performance metric in the form of the ratio L, /ZU, where Ly = Ly /N is the
average length of a unicast path to a receiver. Using simulations and real network samples from
MBone and Arpanet, they found out that for moderate N, the empirical power law

LM/IUOCNQ (315)

with o = 0.8 adequately describes the efficiency gain for a wide range of network topologies.
Later on, the asymptotics of the ratio Ly;/Ly was explored by Chalmers and Almeroth [6],
who used more MBone data and provided a similar relation

Ly /Ly oc N1 (3.16)

with a ranging between 0.66 and 0.7. They argued that the difference in the scale factors is
due to the inclusion of the last hop in their measurements.

Several analytical explanations of this law have been proposed ever since. In [15]| the asymp-
totics of the metric (3.15) were investigated for k-ary trees. It was shown that for such trees,
Lys/ Ly exhibits a near-linear growth rate with respect to N, independently of the value of k.
To achieve a better accordance with the real-life observations, in |1] it was suggested to replace
k-ary trees with the so-called self-similar k-ary trees, for which, as it was shown there, the
power law (3.15) holds with o ~ 0.88.

Let us examine the asymptotics of Ljs/Ly when the trees are generated by a branching
process. Consider two types of vertices representing two types of Internet hosts: the routers
(r(i) = 1) that can replicate packets, but do not host any receivers, and the end receivers
(r(i) = 2) that do request packets, but can neither replicate, nor forward them. The mark
distribution for the two types is thus defined by the probabilities pl, = 1, p}, = po; = pi; = 0;
and p3, = 1, p3y = pa; = pl = 0, respectively. The elements A\;; and A5 of the matrix
A = (Mgm) correspond, respectively, to the mean number of routers and receivers directly
connected to a router, i.e., to the branching degree of the tree. We assume that the end
receivers are located at the leaves of the multicast tree and hence Ay = A9y = 0.

It is easy to see that A;; < 1 is a necessary and sufficient condition for the mean number of
vertices (A1 + A12)/(1 — A1p) in the tree Tp to be finite. The mean total number of receivers
N = N()\llg )\12) in the tree 723 then equals )\12/(1 - )\11).

INRIA
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Figure 1: Cost ratio L,/ Ly against the number of end receivers N in log-log scale. The straight
lines are the results of the log-linear fitting yielding (3.16) with o = 0.77 and 0.76.

Since we deal with random trees, we consider mean quantities in (3.15) and (3.16). In
the notation introduced in Section 3.3, the cost of multicast Ly, = Lpr(A11, A12) is expressed
as Ly = B[L(i) [r(i) = 1]. By (3.10)—(3.12), L; = (A1 (1 — J1) 4+ A12)/(1 — Aq1), where J; is
the solution of the equation J; = exp(A11(J; — 1) — A12) in the domain |J;| < 1.

To assess the unicast cost, consider the same distribution tree in which routers cannot
replicate packets; i.e., put pj, = 0, pJ; = 1, other conditions being unchanged. In such settings,
L, is the mean of the summary length of all unicast paths Ly. From (3.10)—(3.12), it follows
that L; = Ai5/(1—A11)% The value Lyy/N = 1/(1— A1;) can be considered as an approximation
to the mean length of a unicast path L.

Figure 1 shows two log-log plots of the cost ratio Lj;/Ly against the mean number of
subscribers N with A;; = 0.9 and 0.95, respectively, and Ais ranging in the interval [1,5.5].
The two plots correspond thus to average unicast path lengths of 10 and 20. Characteristics of
real-life multicast trees observed in the MBone network fall within this set of parameters: in
the data set used in [6], the lengths of the unicast paths do not exceed 24 hops, while the mean
number of outgoing links from a router to receivers ranges between 1.28 and 5.21. The straight
lines in the plots are the results of log-linear fitting, which yields (3.16) with & = 0.77 and 0.76.
Thus, in the given range of parameters, we observe good agreement with the asymptotics found
in [7] and in [6] (note that we do count the last hop to the receiver). For higher values of the
branching degree of the multicast tree Ao, the relation L,;/Ly tends to the constant 1 — Aq;.

Assume that every receiver i requests a random number of packets 7(i). In this case, Ao
changes for A;;E7(i) in the expressions for Ly;, Ly, and N. Indeed, every packet request can
be considered as a separate receiver.

In [7], the last hop between a router and a receiver is excluded from the cost of the multicast
tree. As shown above, the number of final hops to receivers equals Aj3/(1 — Aj1). Adjusted by
this value, the cost functionals become L, = A3 (1—J1)/(1—A11) and Ly = A1 h2/(1— A11)?,
from where L), /Ly, = (1 — Jy)/N.
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16 B. Btaszczyszyn € K. Tchoumatchenko

4 Flow metrics in the Poisson point process case

In this section we focus on trees generated by the aggregates of a Poisson point process intro-
duced in Section 2.4. As already noticed, such trees have dependent branches, which makes
the analysis of their distributions difficult. Example 2.2 shows that point aggregates have sim-
ilar structure with Boolean clumps. A usual way of obtaining upper bounds for clump-related
characteristics is to consider a stochastically dominating branching process, whose branches are
independent. The idea goes back to [10], where it was used to obtain a bound for the clump
size of a typical Boolean clump. We adopt this approach to get bounds for cost functions on the
multicast trees generated by point aggregates. For this, in Section 4.1 we introduce stochastic
ordering of random trees. The basic domination result is proved in Section 4.2. Finally, in Sec-
tion 4.3, we show how tighter bounds can be obtained in the special case when the interaction
regions defining point aggregates are all unit balls.

4.1 Stochastic comparison of random trees

For two random vectors X = (X,,)u<y and Y = (¥,,),<y in RY, the definition of a stochastic
ordering is: X <4 Y if Ef(X) < Ef(Y) for every component-wise increasing function f :
RY — R. For two marked oriented trees T} = (Vi, E1) and T, = (Vs, E,), with vertices in a
common space, define the relation of inclusion 77 C 15 if V; C Vs, By C Es,, and the marks of
common vertices coincide. This relation establishes a partial ordering of marked trees. Denote
by Z the class of all real-valued increasing functions on such trees, i.e., of all f for which T} C T3
implies f(T7) < f(T2). For two random trees 7Ty, T2, the definition of the stochastic ordering is:
T 25t T2 if f(T1) < Ef(73) for every function f € T.

4.2 Upper bounds through stochastic domination

Define a marked tree Tz, with the vertex set Vg, C R as follows. Place the root at the origin
and let the distribution of 7(0) be given by (2.15). For every y; € Vg, let the immediate
descendants of y; of types m € E = {1,...,¢} form independent homogeneous Poisson point
processs I1(y;, m) with intensities Agy, in the domain y; + G, (y,)m- Let the joint distribution of
(o(+),7(+)) be given by (2.14). Apart from the fact that Vg, C R¢, there exists a branching
process dual to the tree Tp, as defined in Section 2.3. Indeed, the progeny Z(y;) = (Zm(¥:))meE
of a vertex y; such that r(y;) = k is a vector of independent r.v.’s, where the component Z,,(y;)
has Poisson distribution with parameter A\, = Agy, vol(Ggm). The p.g.f.’s (2.13) of Z(y;) thus
have the form

Ur(2) = exp [ 3 Agnv0l(Gin) (5 —1)|, K EE (4.1)

meR

and A = (Agm)k,mer is the matrix of the first moments.
The following lemma is the main result that we will use for comparing functionals on trees
generated by branching processes and by point aggregates.

Lemma 4.1 Suppose that To is a marked tree generated by o typical aggregate A. Then T¢
and T, can be constructed on the same probability space so that To C Tpy a.s., and hence

76 jst 7~B*
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Proof: Let the tree Tp, be constructed. The construction of 7o = (Vg, E¢) will proceed by
induction on tree truncations. The marks (o(-),7(-)) can obviously be chosen coinciding for

common vertices. For n = 0, the construction is trivial: take Véo) = {0}, Eg)) = (), and 7(0)
the same as for 7p,. Suppose, for some n, the tree ’722") = (V(g"), EgL)) has been constructed so

that 72—5") C 7;;2) a.s. This means that the distributions of V(g") and of the n-th truncation of
a typical point aggregate A(™ coincide. With a slight abuse of notation, let us write A™ for
V" and A, for the set of leaf vertices of 7™

In order to make the induction step, recall (2.16) and define for every y; € A, the descen-
dants of type [ as a subset II'(y;, ) of II(y;,1) (which consists, by construction, of the descen-
dants of y; of type [ in Tp,). Let IT'(y;,[) be obtained by restriction of II(y;, 1) to R? \C’l(") and

subsequent random thinning with location-dependent retention probability pl(") (y) given by

" (y) =1/ card{y; € An : y € y; + Gry}-

From Remark 2.3, it follows that the distribution of |J,\U,,c, II'(¥i,{) is the same as the

conditional distribution of A, ; given (A™, A®=1D) put V"™ = AM U A, the new
generation of the vertex set of 7 is thus constructed. Regarding the edges, it is easy to see
that a retained vertex y; € A,y1 has equal chances to be an immediate descendant of every
element of the set {y; € A, : y; ~ y;}, which corresponds to the definition of 7¢ in Section 2.4.
|

Corollary 4.2 Let T¢ be the tree generated by the typical aggregate A, and Tg, by a branching
process with the distribution given by (2.15) for r(iy), (4.1), and (2.14). Then the multicast
cost functionals on T¢ are stochastically dominated by those on Tg, namely

(K(0), (Lii(0))ker, Wx(0), Wii(0)) =gt (K (i), (Lii(io)) ke, Wx(io), Wr(io)) -

Proof: The multicast cost functionals introduced in Section 2.2 are increasing functions on trees.
The statement thus follows from Lemma 4.1 as the tree 7p, has the required distribution. H

For a tree T = (V, E) such that V C R?, define the total edge length %(T') as
ST = > v -yl
(yiryj)eE
Corollary 4.3 Let To and Tg be the trees defined in Corollary 4.2. Then
Y(To) =st Wx(io),

where Wy (ip) is the additive cost of Tg with independent random weights w(j1, jo, k) having the
same distribution as || X, ||, where Xy € R is uniformly distributed in Gy,.

Note that if the conditions of Proposition 3.6 are satisfied for 7g, the p.g.f. of Wx(iy) can
be derived from Corollary 3.7 using (3.8) and the total probability formula with respect to
the distribution (2.15) of r(ig). Proof: Let T¢ and the corresponding dominating tree 7p. be
defined in the same probability space as in the proof of Lemma 4.1. Then X(7¢) < X(7p«)
a.s. Note that if 7(y;) = k, by the properties of Poisson processes, the distribution of II(y;, ()
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18 B. Btaszczyszyn € K. Tchoumatchenko

coincides with that of a Poisson number Z;(y;) of independently sampled points ;. Since
o() =1 and 7(-) = 1, for every x; € Ep,, we have K(z;) = 1. A single mark w(z;,z;,1) is
thus associated with every edge (z;,z;) € Ep.. Therefore, the edge lengths ||z; — z;|| can be
viewed as independent edge marks w(z;,z;,1). The result follows from Corollary 4.2. [ |

The next example illustrates the special case when point aggregates coincide with subsets
of II covered by Boolean clumps (see Example 2.2) and some cost functionals have known
distributions.

Example 4.4 In the settings of Section 2.4, assume that r(z;) =1, o(z;) =0, and 7(z;) = 1
for all z; € I1. If we put G1; = by(0), then z; ~ z; if and only if b (z;) Nby (x;) is non-empty. For
such choice of parameters, the functional K (0)+1 calculated for 7¢ equals the size of a typical
clump in the classical Boolean model (see Example 2.2) with B; = b;(0). By Corollary 4.2,
K(0) <5 K(ig), where K (iy) is calculated on a tree produced by a unitype branching process
having Poisson progeny distribution with parameter ' = Avol (b5(0)) = A2%7%2/T'(1 + d/2).
Note that K (i) + 1 equals the total population size of this process. If X' < 1, then K (ig) + 1 is
a.s. finite and has the Borel-Tanner distribution (see, e.g., Example 1, p. 188 in [16]) given by

P(K(ip) +1=n)=eX"(Nn)"/n!, n=1,2,....

4.3 Improvement of bounds for trees generated by unitype aggregates

Call a point aggregate unitype if in the definition of Section 2.4 all sets Gy, are unit balls b, (0).
We derive here sharper bounds for multicast metrics on trees T¢ generated by unitype aggre-
gates.

The relation x; ~» z; in this case means simply ||z; — z;|| < 1, therefore, the definitions of
the unitype aggregate A and of the corresponding tree 7¢ do not depend on host types r(-).
Acting as in Lemma 4.1, we will construct a dominating tree 7, generated by a branching
process with type-dependent progeny distribution. However, instead of discrete vertex types,
we will consider here 7(-) € E = [0, 1]. From now on, for 7¢, let the mark r(-) be the distance
from the vertex z; to its ancestor v(z;), i.e., 7(z;) = ||z; — v(z;)||. Such definition allows us to
construct a tighter dominating branching process.

Define a branching process rooted at iy in which every individual i has Z(i) direct descen-
dants, with i.i.d. marks r(-) € [0,1] having the common distribution density

p(t) =dt*t,  telo, 1]. (4.2)
For every vertex i such that r(i) = ¢, let the p.g.f. ¢4(-) of Z(i) be given by
Yi(u) = E[uz(i)|r(i) =1t] = exp(=AS(t)(1 — z)), where

S(t) = T2 /T (d/2+ 1) if i = i, (4.3)
| 7 ¥* " arccos(—t/2) /T(d/2+1) else.

This means that if r(i) = ¢, then Z(i) has Poisson distribution with parameter AS(¢). Note

that if the parameters A and d are such that

N=A[ SHu)dt <1,

[0,1]
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Figure 1: If (x4, z;) € E¢, the descendants of z; are located in by (z;) \ b1 (zk)-

the branching process becomes a.s. extinct. Indeed, the distribution of Z(i) can be viewed
as Poisson with random parameter AS(r(i)). Then Ay = E(Z(i)) < 1 is a standard finiteness
condition.

Lemma 4.5 Let Tc and Tp, be the trees generated, respectively, by a unitype aggregate, and
by the branching process defined by (4.2) and (4.3), with vertices in RS. Then both trees can be
constructed in the same probability space so that Tc C Tpsx a.s., and hence, To <4 Tpx-

Proof: We use a simple observation for a unitype tree T¢: if (z4,2;) € E¢, the descendants
D(xz;) of z; are all located in the domain by (z;) \ b1(xx), see Figure 1. We thus construct a
dominating tree 7z, embedded in R? as in the proof of Lemma 4.1 with the only difference
that the descendants of every non-root vertex y; marked with r(y;) form a Poisson process not
in b1(y;), but in the d-dimensional sector b} (y;) (shaded in Figure 1), with the central angle
2a = 2arccos(—7(y;)/2). Then Z(y;) has Poisson distribution with parameter AS(t), and for
all y; € D(y;), the distances ||y; — y;|| are i.i.d. r.v.’s having common density (4.2). The rest of
the proof is similar to that of Lemma 4.1. [ |

The following corollary follows immediately from Lemma 4.5.

Corollary 4.6 Suppose that T¢ is the tree generated by a typical unitype aggregate A, and Tg,
by a branching process defined by (4.2) and (4.3). Then the multicast cost functionals on Te
are stochastically dominated by those on Ty, namely,

(K(0), L(0), Wx(0), Wi (0)) =5 (K (i), L(io), Wx(io), Wn(io)) -

In the remaining part of this section, we focus on the distribution of the functionals K (i)
and L(i) of the dominating tree 75 defined by (4.2) and (4.3). Let us preserve the definitions

of p.g.f. families ¢ = (¢;)ex and ¢ = (¢§”))teE from Section 3.1 for branching processes with
types t € E = [0,1]. Define operator f(-) acting on a function u(z1, 2z3) as follows

f(u) = (1 = 2122) u(0, 22)p1o + 2122 u(1, 22) ZPU + u(2122, 22) 2(2’12’2)jp0j- (4.4)

Jj=0 J=0

The next statement is an analog of Proposition 3.1.
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Proposition 4.7 The family of p.g.f. (¢§”)) satisfies the functional equation

telk

[ = exp [AS (1) ( F6us)ds - 1)), (4.5)

0,1
where S(t) is given by (4.3), f(-) by (3.2), and pu(-) by (4.2).

Proof: The argument is similar to the proof of Proposition 3.1. First, use the recurrent equa-
tions (2.11) and (2.12) to represent K"V (i) and L("+Y) (i) given r(i) = ¢ as sums of independent
r.v.’s with the number of terms Z (i) having Poisson distribution with parameter AS(t)). Second,
note that relation (3.4) with the right-hand side replaced by f (¢$,? (21, 22)) holds. Integrating
with respect to (4.2), we obtain

E Zlf(n)(j)zf(n)(jHL(n)(j)] _ f(¢gn) (21, ZQ)),U:(S) ds.
[0,1]

Combining the last expression with the p.g.f.’s of Z(i), we get (4.5). |

Recall the notation of Section 3.3. The following proposition provides closed-form expression
for the first moments of multicast cost metrics on 7g.

Proposition 4.8 If Ay < 1, the joint p.g.f. ¢ of K(i) and L(i) satisfies equation (4.5). If,
moreover, A < 1, the first moments of J(i), K (i) and L(i) have the form J, = exp(—AC;S(t)),
K, = A\CkS(t), and Ly = ACS(t), respectively, where C; is the only solution of the equation

Cy=1—(poo + p10)I(Cy) with I(z)= / exp{—AzS(t)}u(t) dt (4.6)
[0,1]
and
I+ > 520 (Ipoj + p1j) — P10l (Cy) I+ > i20(Upoj + p1j) — P10l (Cy) (47)
“ 1— Ao 720 Poj ot (1=20)1 =X 20p0) '

Proof: As noted above, when )y < 1, the tree 7p is a.s. finite, hence K (i) and L(i) are proper
r.v.’s. The first part of the statement can thus be proved as Proposition 4.7 using conservation
laws (2.2), (2.8) and (2.9).

We now use (4.5) for ¢ to prove the second part. We obtain J; = exp(—AC;S(t)) by
putting (z1,29) = (0,1) in (4.5). Plugging again such representation into (4.5) yields (4.6).
The uniqueness of solution follows from the fact that 1 — (pgo + p1o)I(+) is a contraction on
[0,1] when )y < 1. To obtain the expressions for K; and L;, take the derivatives of both sides
of (4.5) with respect to 2 and 23 at (21,2) = (1,1). From (4.4) it follows that [f(¢))],.,
i = 1,2, are uniformly integrable for (21, 23) € [0,1]?, thus the differentiation can be brought
under the integral. Using (3.13) and (3.14), we get closed-form expressions for Cx and C}, from
which (4.7) follows. |

Example 4.9 Since I(z) is a table integral, the constants in (4.6)—(4.7) can be evaluated
analytically in all dimensions. For example, in R?, X\ = A(7/3 ++/3/2) and

4exp(—2mAz) + 2v/3Az exp(—2mAz) — 8exp(—ZAz)
(Az)? +4 '

I(z) = 14 (p10 + Poo)
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Figure 2: Packet flow volume K; at the root of 7c and Tg; see Example 4.9.

Suppose that () and 7(-) are independent, P(7(-) > 1) = 0, and let the parameters P(c(-) = 1)
and P(7(-) = 1) (respectively, the share of multicast and receiver vertices in a tree) vary in
the interval [0, 1]. Figure 2 shows the variation of the mean packet flow volume K; at the root
vertex of T (simulated with A = 0.5) and of the bound (the exact value for the corresponding
tree Tp) obtained using Proposition 4.8.
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