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Inférence de types pour le w-calcul réparti réceptif

Résumé : Nous étudions le probléme de I’inférence de types pour une version étendue du systéme de types de D#7,
un calcul trés proche du bw de Hennessy et Riely. Ces calculs sont des w-calculs répartis comprenant des notions
explicites de localités et de migration ou I’espace des localités est plat (i.e. pas d’imbrication de localités) et la
communication est purement locale. De plus, les noms de localités sont typés et on utilise une relation de sous-typage
explicite sur les types de localités ce qui nous permet de définir une notion de typage principal. On décrit formellement
un algorithme produisant un typage principal pour tout terme typable.

Mots-clés : w-calcul, inférence de types, records
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4 Cédric Lhoussaine

1 Introduction

In [ABLOQ] we presented a sub-calculus of Hennessy and Riely’s distributed b ([HR98]). This calculus is based
on the polyadic 7-calculus, involving explicit notions of locality and migration. In this model, the distribution is one
dimensional: in contrast to the join calculus ([FGLT96]) or the Ambients ([CG98]), locations are not hierarchical in
the sense that locations do not contain sub-locations. This kind of distribution (also adopted in [Ama97]) is said flat.
Moreover, communication is purely local, that is processes have to be co-located in order to be able to communicate.
So, messages to remote resources must be explicitly routed.

In [ABLOOQ] we addressed the problem of how to avoid local deadlocks. Or, more precisely, how to avoid the
situation where a message migrates to, or stays in a locality where no receiver will ever be available. The property
that avoids this situation was called message deliverability and is essentially captured by means of an inference system
proving relations I I+ P where I is a set of variables that is the set of names on which P persistently provides a
receiver. We shown that this relation is not enough to guarantee the message deliverability; indeed processes have
to be well typed. The type system we used is a simplified version of the simple type system of [HR98]; that is we
use location types ({a: v1,...,a: v, }) that records the names and types that may be used to communicate inside a
locality, and we use “located types” (v©) for channels that are sent together with their location instead of the more
expressive existential types of [HR98]. More precisely, located types v© are used for typing “compound names” of the
form x@¢ meaning that x is a channel with type - at location £. Whereas, with existential types @ for a compound
name z@/¢: x has type -y at location ¢ of type +. Existential types permit to give additional informations on the location
being transmitted together with a channel name. The use of location types allows to type channels communicating
location names. For instance, consider the process @ | a(k).P that sends a location name ¢ on channel a and binds ¢
to k in P. In such a process the name a should have a type Ch() (i.e. the type of channels communicating locations
of type +). Then P is allowed to use channels at location ¢ that are defined (typed) in ) and only those ones. However,
it seems natural to allow the location name sent to have a more generous type than these intended by a for k. That is,
for instance, if » = {b: v} and £ has type {b: 1, ¢: v2}. In [ABLOO0], allowing this typing is achieved by means of
implicit subtyping on location types, whereas in [HR98] this subtyping is explicit.

The aim of this paper is to describe a type inference algorithm for an extended version of the type system given
in [ABLO00]. The main extension is the use of existential types 7@ of [HR98]. By this way, we believe that this
algorithm should be easily adapted to the simple type system (without read/write capabilities) of [HR98].

In general, when we are seeking for a type inference algorithm, we expect, given a term, that it provides a most
general typing. That is a “representative” of all the other possible typings. More precisely, all the typing for a term
must be an instance of its principal typing (by substitution of type variables). And, conversely, all instance of the
principal typing is a valid typing. However, this classical definition is not sufficient in presence of location types, and
more specifically with location subtyping. Therefore, in order to retrieve a notion of "representative” typing, we make
subtyping explicit and make use of location type variables (also called row variables in the terminology of record types
of [Wan87]). Therefore we are able to define principal typing together with a set of subtyping assertions that have to
be preserved by type variable instantiation.

This paper is organized as follows. In section 2, we detail the calculus we are considering and we describe the
types. Then, in section 3, we present the type system illustrated by several examples and we define the notion of
principal typing. In section 4, we deal with the algorithm of unification computing the substitution solution of a set of
equations between types and inequations between location types. Next, in section 5, we give the inference algorithm
and the main theorems of this paper. Finally, in the last section, we conclude with a summary of our results and open
issues.

2 A calculus with localities

In this section we introduce the distributed calculus we will consider along this paper, we give the syntax of types and
the inference system. This calculus is a monadic version of the distributed w-calculus given in [ABL00O]. Here, by
monadic, we mean communications of one object, actual and formal parameters of recursions being also submitted
to this form of monadicity. Actually, we would have consider the full polyadic version but we made the choice of
monadicity for the sake of simplicity. Apart from that this calculus is the usual asynchronous w-calculus with some
primitives for spacial distribution and migration of processes organized as a two-levels model: the processes (or thread)
one and the network (or configuration) one. As in [HR98] communication is local, that is we cannot directly send a
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2 ACALCULUS WITH LOCALITIES 5

message from a location £ to a process located at a different location ¢’: we first have to migrate the message to ¢, and
then we can perform the communication.

u,v... = names
a channel
| value
| ¢ location
| a@¢ compound name
PQ,R... == processes
0 inaction
|  au message
| a(u).P input
| (P| Q) parallel composition
| [a=bPQ conditional branching
| (vu)P scoping (restriction)
| gol.P migration
| T(u) parametric process instantiation
T u= parametric processes
A identifier
| (rec A(u).P) recursive parametric process
S = networks
0 empty network
| [¢: P located process
| (S|S) parallel composition

| (va@l)S | w)S| (vp)S scoping (restriction)

Figure 1: Syntax of terms

In order to state the syntax, we consider a denumerable set N of (simple) names, which is assumed partitioned into
three sets: the channel names N, (ranged over by a, b, ¢c,...) , the location names Ny,. (ranged over by 2, k, . . ),
and the value names N,; (ranged over by p,q,r,...). We also set P to be a denumerable set of process identifiers
(ranged over by A, B, .. .) disjoint from N that will be used for explicit recursive definition instead of replication (see
[Mil91, Tur95]). The objects transmitted along channel names may be compound that is a channel name o together
with a location name ¢ denoted by a@¢ and meaning “a has to be used at location £”. The abstraction of a location
name is possible at the network level and it requires to provide its type. The grammar of terms can be found in
the figure 1. We denote by U,V ... a term of any kind — process, parametric process or network. The operational
semantics, given in the “chemical style” of Berry and Boudol [BB90], is reported in the appendix B.

We now define types and type system. We assume the existence of a denumerable set of type variables V partitioned
into three sets: the set of general type variables V.. ranged over by ¢, ¢', . . ., the set of channel type variables ranged
over by h, h', ..., and the set of location type variables (usually called row variables) ranged over by pr, p , ... where
L € Psin(Nehan)- Types are based on the following grammar:

types T,0,... u= 1|y|~yQy|val|t
channel types v == Ch(r)|h
location types Y u= Ha:v,9} e
We denote by var(7) the set of the type variables occuring in 7. We will often note {a1 : v1,...,an : Yn,pL}

for {a1 : v1,{-..,{@n : Yn,pr}}-..}. In [ABLOO] we stated that typing a location name should mean: “recording
the names and types of channels on which communication is possible inside the location”. Therefore, a location type
is just a record of channel names together with their types. Extension of location type is achieved by means of a row
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variable that may be substituted with a location type. The row variable of a location type is obtained by means of the
function pvar (formally defined by pvar(pr) = pr and pvar({a : v, ¥ }) = pvar(y))). We also denote the set of names
defined in a location type ¢ by chan(v) (formally defined by chan(pr) = @ and chan({a : v, ¥}) = {a} U chan(v)).
As for record types we have to be careful with multiply-defined names in location types; in other words in {a; :
Viy---sGn : Vn,pL} the names ay, ..., a, have to be distincts. To this aim, we equip the row variable of a type v
with a subscript, that is a set of names which is meant to contain at least chan(«). Location types ¢ have to satisfy
judgments of form® ¢ :: L (with L € P #in(Nehan)) defined by:

ai,...,ay, all distincts,
{a1:7,- s an Y, pr o Lo L'={a,...,an} UL
{a1,...,an}NL =1

We will say that a location type is well formed if it satisfies ¢ :: L for some L. And we extend naturally this notion
to types. From now all types have to be well formed. For instance, the type {a : v,b : 7', p{a,p} } is well formed
because it satisfies {a : v,b : 7', pa51} = 0. This type can be extended with {c : ’y”,pf{a,b’c}} (that is pyq 5y CaN
be substituted by {c : ’y”,p'{a’b,c}}) because {a : v,b:v',c: ’YII’P'a,b,c}} :: (0. Intuitively, the subscript L of a row
variable pr, allows one to substitute it for a location type defining channels that do not occur in L, thus avoiding to
obtain multiply-defined channel names.

The type of a compound name a@/ is a “located channel type” @) meaning: “a has the type ~ at a remote
location”. This informal definition will become clearer in the next section. We also have the constant type val for
names of N,,; that may be tested only for equality (not used for communication or as a location name). Moreover, we
also allow location names to be tested for equality.

Finally, as in [ABLOOQ] we impose some conditions for terms to be legal :

(z) inaninput a(u).P, u # a.

(¢2) we make the standard assumption that recursion is guarded, that is in (rec A(u).P)(v) all recursive calls to A in
P occur under an input guard.

(¢74) in location types {a1 : V1, ., Gn : Yn, pr} We assume that pr, & var(vyi,...,~,) for some L’.

3 The Type System

In this section we describe a modified version of the type system of [ABL0O]. The main modifications of this type
system are:

1. the extension of located types v© to existential types y@).
2. the elimination of the explicit weakening rule of [ABLO0O] by taking back weakenings in axioms.
3. taking into account type variables.

4. the use of a trivial subtyping relation between location types.

In [ABLOQ], in the body P of an input process a(b@¢). P, we were able to use b at location £ and only b. For instance,
the term a(b@/¢).go ¢.(bv | Tw) was not typable because we use ¢ at location ¢ whereas only b is permitted to be
used at ¢. The extension to the types v@4) enables us to type this term: ~ is a type for the bound channel (here b)
whereas 1) records types for additional unbound channels (here ¢). Those types are called existential types because
~@) should be read as 3b.{b: v, }. The motivation for the second modification is quite intuitive: a weakening rule
can be applied anywhere in the inference tree since it does not depend of the structure of the term being infered. Then
it carries a lot of non determinism that is problematic for a type inference algorithm. That why we reformulate the
inference system by taking back all the weakenings to the axioms. This allows us to keep the whole context along the
inference tree (regarding it bottom-up) while it remains possible to extend it with bound names. The third extension
is very standard and it leads to formulation of a type inference algorithm. Considering type schemes, for instance,
enlightens the possible extensions of locations by explicit substitutions of row variables. The last modification, that
is also nothing but a reformulation of the previous type system, is probably the most important one since it allows us
to define a notion of principal type. In fact, whenever we are interested in providing a type inference algorithm it is
desirable that, given a term, this algorithm will produce a most general type for each free name occurring in that term,
that is whenever a substitution is applied to those most general types, the types obtained are still valid ones for the
term. Unfortunately, this definition of principal type (though intuitive) is not sufficient for our purpose.

1\We assume that the notation :: for these judgments does not confuse with the location constructor of the networks [£:: P].

INRIA



3 THETYPE SYSTEM 7

Example 3.1 For instance, consider the network
S={[¢:al | bp | cp]

where p is a value. Then £ has type {a : Ch(v),b : Ch(val),c : Ch(val), ps, 53} Where ¢ can be either {b :
Ch(val),c : Ch(val),p’{b’c}}, {b: Ch(val),p{{b}}, {c: Ch(val),p{{c}} or py. One might expect {a : Ch(pg),b :
Ch(val),c : Ch(val), pf,5,c3 } to be most general type for £. Obviously this is not the case since, for instance, the
application of the substitution [{b : Ch(Ch(Va|)),p'{'b}}/p6] does not give a valid type for £ where b is used as a
channel of type Ch(Ch(val)) whereas a actually sends ¢ where b has the type Ch(val).

O

We introduce a relation ¢» C v’ on location types (similar to the one of [HR98]) meaning intuitively: “3)’ defines
channel names that are also defined in ¢ with the same types”. It can be seen as a reverse inclusion relation. More
formally,

Definition 3.2 We define the relation C on location types as follows:
o) Cpp
o {a: 7,9} C{a: 9} ify Cyf

This relation defines subtyping assertions. The subtyping assertions of the form« C pr are called atomic. More-
over, we note ¢ = 9" if C ' and ¢’ T 1.

As pointed out in [PS93] and [HR98] by subtyping arguments, the communication is asymmetric. In communica-
tion of location names this means that the input constraints the type of the channel subject of the communication. For
instance, if the body P of the process a(¢).P uses channels ay, ... ,a, at location £ then a must have a type Ch(y)
where ¢ provides at least a type for each a;. Therefore, in P, £ has a type ' such that ¢ C ¢'. Symmetrically, when
outputting a location & on a, the type ¥" of k must provide a type for each a; that are the same as those provided by

P; thatis " T 1.
Example 3.3 Consider the following term:
S=[t:ak | a(l').gol'bp] | [k:: cp]

where p is a value. After an input on a of the location name k& we migrate to this location a message on b. Then any
location transmited on a has to define at least a channel b with type Ch(val). Then, .S can be typed with the following
types for £ and k:

:{a:Ch({d: Ch(val), p(s}}), Play }» Kk {b: Ch(val),c: Ch(val), o, ., }

The channel a may also have the type Ch({b: Ch(val), c: Ch(val), p, ,}) that can be obtained from the previous
type for a by the substitution [{c: Ch(val),p’{’l’,’c}}/p{b}]. Actually, not all substitutions of p;, will give a valid
typing for a (as for instance [{c : Ch(Ch(val)), pss.c} }/pge3] OF [{e : Ch(val), psc.c3 }/pss3]). However, making use
of atomic subtyping assertions, we are able to trivially decide whether or not a substitution applying to the previous
types for £ and k& gives rise to valid types for S. Indeed, any substitution u preserving the atomic subtyping assertion
{c: Ch(val)7p’{’b’c}} C pypy (that is such that p{c : Ch(val),p’{’bm}} C upgyy s still valid), preserves the typing of S.
O

The type system deals with sequents of the form I" -, P, for checking that the process P, placed at the current
location £, conforms to the typing assumption I". We also have sequents of the formI" - Sand I" -, T': ~, respectively
for networks and parametric processes. The system also uses two simple auxiliary systems for typing names, whose
sequents have the form T' -, w: 7 and T F}V «: 7, the second one embedding weakenings. In these sequents the
typing context T' is a mapping from a finite subset dom(T") of N,.; U N, U P into the set of types, subject to the
following requirement;

(2) if p € dom(T") N N, then T'(p) is val.
(47) if £ € dom(T") N N;,. then T'(¢) is a location type.
(¢49) if A € dom(T") N P thenT'(A) is a channel type.
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(iv) if p, £, A € dom(T") then p, ¢, A do not occur in im(T"), that is, p, ¢, A do not occur in any type assigned by T..
(v) if £ # k then pvar(T'(¢)) & var(T'(k))

We will write a typing context as usual, that is as a list of typing assumptions:
T=...,p:val,....0:,...,A:~,...
We make use of a partial operator of union A, T of typing contexts defined, if dom(A) N dom(T") = @, as follows:

[ A(z) ifz € dom(A)
(A, D)(z) = { I(z) ifzedom(T)

where 2 may be a value, a location or an identifier.

In the type system we assume that the contexts satisfy the previous required conditions. We make the usual con-
vention in the rules for binding constructs, that is input, restriction and recursion, that the bound names do not occur
free in the resulting sequent. Moreover, we make use of the notation ¢ C {a: v} if there is some py,; such that

Y E{a:v,par}-

Let us comment the rules of the type system given in figures 2 to 5. In the type system of [ABLO00] an implicit
form of subtyping is involved in output of localities: the judgment

C:{b:yo,c:mt, ki {a:Ch({})} Fr al

was valid, even though the type of ¢ given by the context is more generous than the one carried by the channel a. In
our system this judgment is equivalent (adding row variables) to:

C:{biv0, ¢, ppey b ki {a Ch(pg), Py} e @l

that can be derived with the explicit subtyping relation involved in the weak type system for names (since {b: vo,¢: 71,
Piv,e} ) E pp), in place of the weakening rule of [ABLOO]. Intuitively, in the weak type system for names we derive
judgments T' -}V w : 7 where T provides possibly more than what is necessary for the typing of « : 7 at location £. We
make use of the weak type system for names whenever we have to type actual parameters, that is in the output rule
and in the typing of the application of a parametric process to arguments.

In the case of formal parameters and more generally whenever we have a binding construct, weakening is obvi-
ously not allowed. Therefore, to type the body P of the binding constructs a(b).P, (vb)P, (wbQ{)P, (vb@Q¢)S and
(rec A(b).P) we have to provide a type for the bound name b in the context. This is simply done by extending the
appropriate location with a type for b. For the other binding constructs (that is a(u).P and (rec A(u).P)) we make use
of the strong type system for names. In this system we derive judgments T , u : 7 where T provides exactly what is
necessary to type u : 7 at location ¢ and only that.

In the rules for conditional branching, the side conditions tell that we are allowed to test only both names of values
or of locations, but not channel names. To type a migrating process go ¢.P, one must be able to type P at location Z,
while the resulting current location is immaterial.

Example 3.4 In this example we show that the process a(b@¢).go ¢.(bp | @q) discussed at the beginning of this
section is typed at a location & in the context

T'=k:{a:Ch(vQy),psa}}, p:val, q:val
where v = Ch(val) and ¢ = {c: 'y,p'{c}}.

...,pval,g:val H)Y p,q:val

...,6:{b:fy,c:fy,pf[’b’c}},...l—g (bp | 2q)

ol {biy, e 'y,pf{’b’c}},...}—k gol.(bp | cg)

k:{a:Ch(yQi),pra1},€: {b:,c: 'y,pf{’b’c}},p: val,q:val 4 gol.(bp | 2q)

T k. a(b@l).gol.(bp | €q)

INRIA



3 THETYPE SYSTEM

=9 V=9
p:val b, p:val ki Fokivp k:{a:v,¢'} b aQk:yQy

Figure 2: Strong type system for names

I'(p) = val I'(k)C ¢ L) C{a:v} T(k) Clatv, 9}, ¢ =9
T+ p:val LY ko YV aiy 'Y a@Qk:~vQy

Figure 3: Weak type system for names

IS THY w:r, T() C {a:Ch(r)}
'k, 0 T'Fy gol.P T'kyau
Ak, P, T(0) C{b:Ch(»)} | T,AF, P, Abyu:t, T(f) C {a: Ch(r)}
k
Tt a(b).P Ttsa(u).P
T |_é P ) T |_Z Q ) F(£1)7F(€2> E Po r |_Z P 9 r }_Z Q ) F(p> = F(q) = Val
Tk, [l =6)P, Q Tk, p=4qP,Q
p:VaI,FFgP Ak, P A, P
- - (% — (%
Tty wvp)P Tty wb)P Ty wb@hP

T+ P, THQ TrT:Ch(r), TV u:r T(A)=Ch(r),TFV u:r

'+ P | Q TheT(u) 'k A(u)
A:Ch(r),IAF, P, Atpu:T A:Ch(r),Ak, P )
't (rec A(u).P): Ch(r) Tt (rec A(b).P): Ch(r)

Figure 4: Type system for processes

Th, P TS, TFS  p:valTHS  £:9,TFS AFS
TFO Tr[¢:zP] TH(S|S) Tk wp)S THwhHS Tk wb@ns

*

Figure 5: Type system for networks

(1) withA=Tifb¢fn(P) (and b ¢ fn(S) for the network case); otherwise
A =gomery_e T AW) = [{b: 7 Py} pr]T(€) where pr = pvar(T(£)).



10 Cédric Lhoussaine

with Y
{civply ot =0

£ {b:y,c: ’y,pf[’b’c}} b bQL: yQy

O

In order to establish the definition of principal typing we have to deal with substitutions. A substitution (denoted
I, A, ...)is, as usual, a finite mapping from type variables to types. For

n= [Tl/th---’Tn/tn]

we denote dom(y) the set {t1,...,t.} and vrang(u) the set (¢, .,y var(r:). All the substitutions we consider are
supposed to be idempotent, that is dom(u) Nvrang(x) = . We also make the assumption that substitutions respect the
grammar of types: for instance the substitution of a channel variable is a channel type. Moreover, for all p;, € dom(u),
¥ = ppr and p’, = pvar(y), the condition L C L' must be satisfied. Outside its domain a substitution is supposed
to be the identity. Substitutions are trivially extended to homomorphisms on types. The extension of substitutions to
other objects (as sequents, subtyping assertions, etc.) is left informal since it is completely standard. We note Au the
composition of the substitutions A and u, and @) the empty substitution.

Definition 3.5 Let p be a substitution and A be a set of atomic subtyping assertions, 1 is a A-substitution if it
preserves the assertions of A.

Definition 3.6 (principal typing) Let A be a set of atomic subtyping assertions and I" be a typing context, then
A; T is said to be a principal typing for a system S (resp. a process P at £) if and only if

1. For all A-substitution u, we have uI' = S (resp. ul’ b, P).
2. ForallT' such thatT' - S (resp. T &, P), there exists a A-substitution . such that uT' =dom(r) I

The existence of a principal typing for each typable term is crucial whenever we aim at giving a type inference
algorithm. However, without the principal typing property, one could devise an algorithm computing some type for
any typable term, but this would be quite weak. Principal typing enables us to check that several pieces of code agree
in the use of the names they share.

Example 3.7 Theterm S = [¢;::bp] | [€2::@d) | [k:: @ty | @ls) has principal typing T'; A where
T = f:{b:Ch(val),pp,}, la:{c:Ch(h),d: h,pf, 5}, k:{a:Ch(pg),ple}, p:val

A = {{b:Ch(val),phy} C pg . {c: Ch(R),d: h,p?, 4} E po}

Intuitively, the context I" tells us that, a is a channel that carries any location name of any type pg. And, A tells that
whenever a location name, carried by a, defines a name b (resp. ¢) it is with the type Ch(val) (resp. Ch(h)). As long
as there is no receiver on a, the type of the location carried by a remains unspecified. We can see that, the system

= [k:: a(€).go £.bp] can be composed with S because it agrees with the principal type. Indeed, in S’ the type
of a is Ch({b: Ch(val), p{b}}) and in T this type is obtained by means of the substitution [{b: Ch(val), Y/ pol-
However, this is not sufficient for a valid typing since the type of ¢, does not then agree with the type of a. {ﬁus can
also be noted by the fact that this substitution is not a A-substitution, that is it preserves the validity of the assertion
{b: Ch(val), p{b}} C pp but not the one of {c: Ch(h),d: h,p%cid}} C pg. Then, a correct A-substitution is, for
instance,

[{b: Ch(VaUvP?b}}/Pm » {b: Ch(VaDaP%b,c}}/P%c,d} ]
O

In the next example we see how the set of subtyping assertions can forbid the use of a channel of a transmited
location name.

INRIA



4 UNIFICATION 11

Example 3.8 Consider the following term which is a slight modification of the one of the previous example:
S" =1l bp] | [ba:bd] | [k::aly | als)]

where p is a value and d is a channel. Although b is used with two different types, this term remains typable since the
two uses of b are at two different locations. A principal typing is then

r = gl : {b Ch(val)ap%b}} ’ £2 : {b Ch(h)ad hap%b,d}} ) k: {(1: Ch(p(b)vpj[a}} , D val

A = {{b:Ch(val),p{,} Cpg , {b:Ch(h),d: h,pi. 43} C po}

Now, we are no longer able to compose S’ of example 3.7 with S” because it is easy to see that there exists no
A-substitution (that is, such that it validates both {b: Ch(val), p},,} T pg and {b: Ch(h),d: h, p, , } C pp)- O

In the example 3.7 we implicitly made unification of types (the type of a in S with its type in .S’) in order to find
a typing for the composition (S | S"). In other words, we infered a typing for (S | S’) from those of S and S’. As
well known, unification is the basis of type inference. This is the subject of the next section.

4 Unifi cation

In this section we give a unification algorithm in terms of a rewriting system. The usual problem of unification is:
given a set of equations between types, does it exist a substitution for type variables that equates types ? As for
unification of record types, we use equational unification, that is syntactic equality of terms is replaced by equality
modulo an equational theory defined by a set of identities . This equational theory is the least congruence relation
on the type algebra that is closed under substitution and contains E. For our purpose, this set is reduced to a single
equation meaning that the ordering of the fields of location types doesn’t matter. For instance, {a:v,b: 7', p{ap}}
and {b: 7', a: 7, prapy} define the same location type. Therefore, the equation E is:

{a:h,{b:h,pr}}=p{b:h {a:h,pL}}
From now on all type equality is assumed to be modulo E.
Definition 4.1 A typing problem is a set C' of equations between types {Ty = o1,...,T, = o,}. We say that a

substitution y is a solution of C (or a unifier for C) if it unifies all pairs of types in C, that is such that uz = uo; for
alli e {1...n}.

In the syntactic theory, following the terminology of [Rob65], whenever two terms « and 3 are unifiable, there
exists a most general unifier p, that is such that for all solution A of a = 3, there exists p’ such that A = p’p. In
general, in equational theories, a more general substitution does not exist as it is shown in the following example (for
instance, see also [BS99] for more on unification theory).

Example 4.2 Let f be a binary commutative function and E. be the equation

f(.’L‘, y) =E. f(y,a:)

establishing the commutativity of f. In this equational theory, the problem f(z,y) = f(a,b) where a and b are
constant symbols, has the two solutions p; = [a/x,b/y] and p2 = [a/y,b/x]. However, there is no p' such that

pa = W' g OF pig = i’ i 0

Nevertheless, we can define a quasi-ordering on substitutions. We note i =« A where X is a set of type variables
if ut = At forall ¢t € X, and we say, as in [JM93], that p is equal to A with respect to X.

Definition 4.3 Let u, \ be substitutions and X a set of type variables. p is more general on X than X iff there exists
a substitution p' such that A = p' . In this case we write pn <5 A.

Given a problem C' and a set of type variables X such that var(C) C X, we do not then consider a most general
solution but a minimal complete set of solutions 8§ of C satisfying:

1. for each X solution of C, there exists u € 8¢ such that u <y A.
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2. two distinct elements of 8¢ are incomparable w.r.t. <x.

We say that a problem C' has type unitary if and only if it has a minimal complete set of solutions of cardinality 1.
An equational theory has type unitary if for all problem C, its minimal complete set of solutions has a cardinality of at
most 1. In [Rém93b, Rém93a], Rémy stated that unification in the record algebra is decidable and unitary. Since our
location types are nothing but record types, this result is also valid for our purpose. Then, all typing problem that has
a solution, has a minimal complete set of solutions reduced to a single element. Then, this one can be called a most
general solution w.r.t X.

In order to find a most general typing for the terms of our distributed calculus, we also have to deal with subtyping
problems whose definition is the following.

Definition 4.4 A subtyping problem is a set A of subtyping inequations between location types

We say that a substitution p is a solution of A if it validates the inequations of A, that is such that uy; T !} for all
i € {1...n}. We use the notation y)=1' as aN abbreviation for ) C ' A ' C .

We call problem a pair (C, A) consisting of a typing problem and a subtyping problem. In the next section we will
see that the type inference problem reduces to the problem of finding a most general solution of a problem (C, A).

In figure 6 we define a reduction relation — on tuples (C', A, u) where (C, A) is a problem and y a substitution.
We make use of the abbreviation ¢ < p, for [pr/pvar(¢)]y. The idea is that starting from a problem with the empty
substitution (C', A, @) we apply the reduction relation until we reach either a configuration (¢, A", p) where p is a
most general solution for the problem (C, A)?, or the failure configuration L if (C, A) has no solution. This relation
is quite usual: it almost consists of the decompositions of pairs of types until one of these is a type variable. Then,
the current substitution . is composed with the substitution of the type variable for the non-variable type (this last one
being also applied to the remaining typing and subtyping problems, see rule (elim)). The side condition ¢ ¢ var(7)
of rule (elim) ensures that there will not remain occurrences of the type variable being eliminated in the resulting
problem, thus avoiding possible infinite reductions. If this condition is not verified, the rule (oc) (occurs check)
applies and leaves us in the failure configuration. The rules (trivial) and (trivial,5|) remove trivial equations (that
is for which all substitution is a solution) from the typing problem. The rules (chan) and (at) decompose types in an
obvious way (since, for instance, all the solutions of Ch(7) = Ch(¢) are also these of 7 = ¢). The rule (loc) says that
to unify {a: v, ¥} with {a: +', %'}, we have to unify v with +' and ¢ with ¢’. It is justified by the following lemma
that is proved in the appendix.®

Lemma 4.5 The following holds:
1. wisasolution of {{a:~,v} ={a:+',¢'}}UC iffitisasolutionof {y =+, =4¢'}UC.

2. Letv and v’ be location types such that chan(vy) Nchan(y') = 0, pr. = pvar(«y) and p%, = pvar(¢'); w unifies
{v =9 tucCiff

(@) pr ¢ var(y') — p7, and ply, ¢ var(y) — pr;
(b) chan(y)) N L' = @ and chan(¢')NL = §;

(c) forany X', for any p’f ,;, & X U X' (where X is the set of type variables occurring in {) = ¢'} U C),
there exists A such that ;i =xyx: A’ and A unifies (lC where

w=Wpup /., ¥ <Pl /prl-

This lemma also justifies the side conditions of the rule (loc_end). Intuitively, to unify two location types v and
1’ that type disjoint sets of channel names (that is, such that chan()) n chan(y)’) = @), we have to extend % with
channels defined in ¢’ by substituting its row variable with a location type typing channels as in ’. And the converse
for extending ’. In the rule clash, we fall in the failure configuration if two non variable types do not match.

The rules (st_ok) and (st_wrg) are used to resolve subtyping inequations. The first one asserts that {a : 7,1} C
{a:~',4'} has a solution if we can unify - with 4 and if 1) C ¢’ has a solution. Indeed, a condition for location types

2more precisely p is most general solution for C and a solution for A
3A more general version of this lemma is also established in [JM93].
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4 UNIFICATION 13

(trivial) {t=t}uC,A,p) — (C,A,n)
(trivial,,5)) ({val=val}ucC,A,u) — (C,A,pn)
(elim) {t=1YuC, A, p) — ([7/4C, [T/4A, [T/tw)
if 7 is not a location type, t € var(7),and ¢t ¢ dom(u)
(chan) ({Ch(r) =Ch(a)}UC, A, u) — ({r=0}UC,A,pn)
(at) ({n@yr =@} UuC, A, ) — ({n =729 =1}UC, A, p)
(loc) {{a:r ¢} ={a:y 9} uC, A ) — ({(v=71U{Y=¢IUC, A, p
(loc_end) ({1 =2} UC, A, u) — (AC, AA, \p)

where pr, = pvar(y1) and p’, = pvar(ys), p7 ., fresh row variable and
P =1 < pIII,ULU Py =12 < plLluL' and A = [wi/Pllewé/PL] and if

e chan(+1) Nchan(y2) = 0

e L' Nchan(¢) =P and L Nnchan(tyy) =0

o pr ¢ var(ys) — pi, and p7, € var(vr) — pr

(clash) {o=71}uC, A, u) — L

if o and 7 are not variables and have not the same top symbol, or are location types
with disjoint sets of channels but one of the conditions of (loc_end) is not satisfied.

(oc) {t=rtuC, A, p) — 1L
if t € var(7).

(st_ok) (C, {{aiy, ¥} C{a:y ¥} UA ) — ({y=931UC, {YEY}IUA, p)

(st_wrg) (C, {1 E}UA, ) — (AC, {¢ <plyp Ep} UXA, Ap)
where p;, = pvar(y1), p7, = pvar(yz), p/f 1. a fresh row variable, 15 is not a row variable,
A= [P2<p7 1 /pr] and if chan(yy) Nchan(ys) = @, L N chan(ys) = @ and py, & var(ys) — pf..

Figure 6: Reduction relation for unification

to be in subtyping relation is that they assign the same types to common channel names. The second rule applies on
1 E 1" when all the channels defined in " are not in 7). Obviously, 1) and %)’ are not in subtyping relation. Therefore,
we have to extend ¢» with the channels typed in v’

Now, we give the main results of this section validating our reduction relation. Their proofs are reported to the
appendix C. The first one establishes the termination of —, and the second one the preservation of the solutions along
the reductions.

Lemma 4.6 (Termination) Given a problem (C, A), a sequence of reductions
(C7A7 w)q(claAla:ul)_’-‘-

terminates either with L or with (9, A", u) where A’ is a set of atomic subtyping inequations and . is a substitution.

Lemma 4.7 (Preservation) If(C, A, u) — (C', A’, u') then
e either = p' and X is a solution of (C, A) iff it is a solution for (C', A’),
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(m) o TR kig}uda, O, A) — (L, Ju, O, AU{D(R)E9))

(n2) PR aiq}ude, O, ) = (L, Ja, CU{T(O) = {a 7, 00031}, )

(ns) (,_,{THY a@k:7}U T, C, A) — (_,_, Ju, CU{T(k) = {a: h,pray}, h@pj = 7},
{pray Epp} U A)

(na) Cy DY pir}U T, C, ) = (L, Ju, CU{D(p) =val, 7 =val}, )

(nc) Co ATV wir}UJn, _, ) — L

if I is not well formed.

Figure 7: Generation of constraints for names

e orp = p'p and X =var(c,ay X', for some X and X', then X is a solution of (C, A) iff X' is a solution for
(C',A").
The following proposition shows that our reduction relation is sound, that is starting from a problem, if the reduc-
tion ends on a substitution then it is a most general solution for the initial problem.

Proposition 4.8 (Soundness) If (C, A, ®) —»* (@, A’, ) and (0, A", u) does not reduce anymore, then p is
a most general solution w.r.t. var(C, A) of C and is a solution for (C, A).

Lemma4.9 (C, A, @) —*L iff(C, A) has no solution.

The last proposition of this section states the completeness of —.

Proposition 4.10 (Completeness) If(C, A) has a solution, then (C', A, 0) —* (0, A", u) where A’ is atomic.

5 Type Inference

In this section we describe the process of type inference, that is we wish, starting from a network term and a minimal
typing context, to generate a problem whose solution applied to the initial context will give a principal typing. By
initial context, for a term S, we mean the set of location names and value names occurring free in S, associated with a
row variable or val as type. Since such a context can be easily computed we do not give the corresponding algorithm.
The idea of the type inference is to incrementally build the inference tree of the typing of a term. That is the inference
tree in the inference system described in section 3. This is done by means of a rewriting system which acts on tuples

(Jss Jp, Jn, €, A)

where J; (resp. J, and J,,) is a set of sequents T' + S for networks (resp. T -, P for processesand T +}V w : 7
for names) and (C, A) is the problem being generated. The reduction is very closed to the inference system. Indeed,
given a sequent in the tuple, the reduction will mostly consist in replacing it by the sequents that are premises of
the corresponding rule in the inference system. Eventually, constraints will also be added accordingly. For instance,
suppose that J; = {T'+ S | S’} U J., the rule for typing parallel composition of networks is

TS TFS
THS| S

Then the reduction will simply be

{TrS|SYUJ, Iy, Jn, CLA) - ({TFS, TFSYUTL, Ty, Jn, C, A)

el S
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(po) AT R0} U Ty ) = (s oy 0)

(p1) (G {Thau}Udp, Ju, C, ) = (L, Jp, {THY wit}ud,, CUuC’, )
C"={L(¢) = {a: Ch(t), play }

(p2) (s {TFea(u).PYUJp, _,C,A) — (L, {AF, PYUJ,, _,CUuC'UC" AUA")

if u=bthen A =gompy_, I's A) = [{b: s prugsy }/pr]L(6), pr = pvar(I'(€))
C" ={t=h,pL = ppypm}, A =0; otherwise A =T, I when gen(u: t,¢) = (I',C", A")
and C' = {I'(¢) = {a: Ch(1), p{..}}

(p3) (_’{I‘FZPlQ}UJPa_a_a_) - (_1{F|_ZP5F|_ZQ}UJP5_a_:_)

(P1a) (AT Felp=qPQ}U T, _,C, ) — (L {ThP,THQIUL,, _,
CU{I'(a) =val, I(b) =val}, )
(Pss) (AP [6=0]PQYUL,, ,C, ) — (L {lFe P, THQIUJ,, _,
CU{T(t1) = pg, T(L2) = py}, )
(0s) (ke wa)P}UJ,, _,C, ) — (L, {AF P}UJ,,_,CUC', )
C'={pr = pLugay} @A A =gomery_, Ts A(0) = [{a ks pLugay}/pL]T(€) Where pr = pvar(T'(£))
c,) = (L{AF,P}UJ,, _,CUC", )

(Ps) (L AT b wa@fPYU J,, _,

same side condition as for (ps)

(p) G {ThewpPtU L, o, ) — (L {piva,TH PO, , )
(ps) G {PrewkhPUTp, s ) = (L {kipo, T PYU Ty, 5 )
() U hegokPtUSp, o, ) — (A PRUJ, )
(P10) (AT AU T, Jn, O, ) = (L, Jp, {TFY wi t} U Jn,

CUA{T(A) =Ch(®)}, )
(pll) (_a {F Fe T(u)}UJP’ Jna_a_) - (_1 {F e T Ch(t)}UJP’
{THFY wit} UJn, _, )
ifT &P
(p12) (L {THFerec A(u).P:Ch(m)}UJ,, , C, A) — (_,{A:Ch(1),At¢ P}UJ,,_,
cuc"u{t=r},AuA’)

same side condition as for (p2)

(pC) (_’ {Fl—l P}U‘]P’_a_a_) - L
if I" isnot well formed or if none of the previous rules can be applied to this sequent.

Figure 8: Generation of constraints for processes




16 Cédric Lhoussaine

(neto) {rro}ude, _, _,_, ) — (Js,_ =)
(nety) {TrE=PIUI, S, _,_, ) — (L, {TF.PYUTp, _,_, )
(netz) fr+sS|sruds, ., _,_,) — ({°FS,THES}YUJI, _,_,_,)
(nets) T+ wa@p)S}u s, _, _,C, ) —- ({AFRS}UJ,_,_,CUC", )

C' = {pr = prugay} A A =gomypy_, Ty A0 = [{a: ks prugar}/ prIT(€), pr = pvar(I'(£))
(netq) (Trrw@wHSYuds, ., _,_, ) — {tipp,TESYUIs, _,_,_,)
(nets) {TFrepSYtUJe, _, _,_,) — ({p:va,T+-S}YUJ., _,_,_,_)
(net_clash) {r+syude, _,_,_,) — L

if T isnot well formed or if none of the previous rules can be applied to this sequent.

Figure 9: Generation of constraints for systems

Let us comment the reduction rules are collected in figures 7 to 9. An underscore denotes a meaningless compo-
nent. In figure 7, the rules concern sequents for names. We can remark that the rules (n;) and (n3) add a subtyping
inequation to A. The rules (n2) to (n4) generate constraints between the typing of the name given by the context and
the one expected. For instance, in the rule (n3) we expect a type 7 for the channel name a at remote location k. Then,
in accordance with the corresponding rule of the type system, we constraint the type for & in I to type a with a variable
h and 7 to be unifiable with h@pj. Moreover, the type given for & in " have to assign types to at least the channels
expected by 7 for k. In these rules h, pj and py,; are supposed to be fresh that is they have no occurrence in the initial
tuple.

Sequents in J,, are added when applying rules of figure 8. For instance, (p;) generates, from a judgment for a
message au, a sequent in J,, for typing the object » with a type variable ¢. A constraint (C’) is also generated to
specify that the context must provide at least a type for the current location that types a with Ch(t). The rules (p1o)
and (py1) for typing the application of a recursive process are very similar.

In the presence of an input process, the type system uses the auxiliary strong type system for names. Since this
one is very simple and completely deterministic, given a name «, a type = and a location £ we can easily determine
the context " such that " -, w : 7. Actually, for our purpose we only need 7 to be a type variable. This is done by the
function gen(w : ¢, £) that provides a context and a typing problem.

Definition 5.1 We define the functiongen(u: t,¢) = (T, C, A) as follows:

gen(p:t,l) = (p:val {t=val},0)
gen(k:tvg) (k:p@,{tip@}7@)
gen(a@k: t,0) = (k:{a:hypyh{t = hGph}, {0h = pray})

where £ # k and p, p’ and h are fresh.

The typing problem associated with the context provided by this function is intended to force the type variable to
have a valid form. For instance, to type a@Fk, the type variable must unify with a located type. Therefore, the idea is
that if gen(u: ¢,¢) = (T',C, A), and (C, A) has a solution y then uI" F, w : ut is expected to be valid in the strong
type system for names.

In the rule (p2) we make use of this function when the received name is not a simple one. In this case we type the

body of the input in the initial context extended with the context provided by gen. This extension does not give rise to
any problem since the name(s) received does not already occur in the context and all type variables of the extending

INRIA
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context are assumed to be fresh. For instance, if u = a@F then, the extending context is & : {a : h, p{,}} and, since
k was a bound name, T" does not assign a type to k. Finally, the typing problem C' is completed with the one of the
function gen and a constraint on the typing of the current location assigned by T" as in (p1).

When the name received is simple (say b), as in the type system, the type « assigned by T" for the current location £
have to be extended with a type assignment for b. This extension is performed by the substitution of the row variable
pr of ¢ for a location type assigning a type to b. The final context A by this way obtained is described in side
condition of (pz). In order to keep the coherence between the new row variable of the type assigned by A to ¢ and the
one previously assigned by I'" and possibly still occurring in the remaining tuple, we add a constraint equating these
two row variables (C” in side condition of (p2)).

Example 5.2 As a small example, suppose we want to generate a problem for the network
S = [0::ab]
Starting with the minimal context £ : py the sequence of reductions is the following:
({€:pg - 1[C::ab)},0,0,0,0)
— (0, {l:ppteab},0,0,0) (nety)
— (0,0,{t:pp )V b:t}, {pp = {a: Ch(t),pf[a}}} , 0) (p1)
= (0,0,0,{pg ={a:Ch(t),p},3},p0 ={b:t,0],;}},0)  (n2)
Thus, the problem generated ({pg = {a: Ch(t),pf{a}},p@ = {b: t,pf['b}}},@) has the following most general solution
w.rt {t, pg, p’{a} , p’{’b}}:
pw=[{a:Ch(t),b:t, 07, 13}/ py, {01, pf{"'l,b}}/p:{a} , {a: Ch(t)vpﬂffz,b}}/pf{’b}]
Applying p to the initial context we obtain the valid sequent:
€:{a:Ch(t),b:t, py py } F [£:: @b]
O

Now, we can turn to the main results concerning the reduction relation we have described. The first one shows the
termination of the rewriting system.

Lemma 5.3 (Terminaison) Given(J, J,, J., C, A), a sequence of reductions
(Jsy Jps In, Cy A) = (J0, T, Ty, O AT) —
terminates eitheron L oron (9, 0, 0, C", A").

The following lemma establishes the preservation of the solutions of the tuples along the reduction steps. By
solution ofatuple (J, , J,, Jn, C', A) we mean a substitution that is solution of the problem (C, A) and that validates
the sequents of J;, J, and J,,.

Lemma 5.4 (Preservation) Let u solution of (Js, J,, Jn, C, A)and X of (J;, J,, J,, C", A").
If(Js, Jp, In, C, A) = (Jg, Jp, J,,, C", A”) then

1. thereis X' =x p solutionof (J;, J,, J;,, C", A"),and X = var(Js, Jp, Jn, C, A),
2. Xisalso solution of (J, , Jp,, Jn, C, A).

We informally spoke about initial contexts in the introduction of this section. In order to state the theorem of this
paper, we give the formal definition.

Definition 5.5 Aninitial context for a system S is a context

F:{Klzpé,“.,ﬁn:pg,pl :val,...,pn, val}

such that location and value names and row variables are distincts.
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Theorem 5.6 (Soundness) Let S be a network and T be an initial context for S, if
({T'F5S},0,0,0,0)—"(0,0,0,C,A)and(C, A,0) =" (0, A, p)
then uT'; A’ is a principal typing for S.

Finally, we state the completeness theorem for networks.

Theorem 5.7 (Completeness) LetS be a typable network and T be an initial context for S’ then

({THS},0,0,0,0)—"(0,0,0,C, A)and(C, A, 0) =" (0, A", p)

6 Conclusion

In this paper we studied the problem of type inference for the type system of bz ([ABLO0O0]) a distributed 7-calculus
with code migration and local communication. We first motivated some modifications of the original type system. We
also extended it with existential types y@q) in order to be able to type more systems and to be closer to the type system
of [HR98]. The use of an explicit subtyping relation on location types involving location type variables allowed us to
define a notion of principal typing. The latter being a typing context assigning type schemes to names together with
a set of atomic subtyping assertions. Next, we addressed the problem of unification of type schemes. As we were
interested in solving equations between types, we were also interested in solving inequations between location types.
We then defined an algorithm, by means of a rewriting relation, that, given a set of equations and inequations (that we
called a problem), provides their solution, that is a most general substitution. We saw that unification of location types
is very close to unification of record types (see for instance [Rém93a, Rém93b, IM93]). Finally, we gave a algorithm
that, given a system S together with its initial context, computes a problem whose solution applied to the initial context
is a principal typing for .S. We stated the soundness and completeness properties of this algorithm.

For the sake of simplicity, in this paper we considered the type system for a monadic version of the calculus.
However, an implementation of the algorithms have been made for the full polyadic calculus.

We believe that this work should be easily adapted to the type system of [HR98]. Moreover, the presentation
of algorithms we adopted, that is by means of reduction relations, and the fact that we compute a principal typing,
should be useful for a formal definition of dynamic typing (and thus for type checking) and its integration in process
reduction. For instance, Hennessy and Reily in [RH98], study partial typing for open systems of mobile agents where
only some sites may be typed. When an agent intends to move from a location & into a well typed location , its code
is dynamically type checked with respect to the typing context embedded for ¢ (called a filter). The latter represents
partial knowledge of ¢ of the rest of the world and in particular of the location k. However, on one hand, they informally
assume the existence of a type checker and, on the other hand, terms involve typing information. We think that their
work could be extended to allow dynamic computation of type information.
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A General Definitions

In this section we give some formal definitions needed for the proofs given in the next sections. We define

[ {a,t} ifu=aar o {a} ifu=a@r
nm(u)—{ {Z} otr?erw?se SUbJ(“)_{ {Z} ot;ferw?se

We use z, v, . . . to denote simple names of any kind.

Definition A.1 We note fn( P) the set of free names occuring in the (possibly parametric) process P and defined as
follows:

fn(0) 0
fn(au) = {a}unm(u)
fn(a(u).P) = ({a}Ufn(P))—nm(u)
P | Q) = m(P)uQ)

e =9lP.Q) = {z,y}UM(P)UM(Q)
fn(ww)P) = fn(P) — subj(u)
fn(gol.P) = {{}ufn(P)

(T (w)) = nm(u)
fn(rec A(u).P) = fn(P)—nm(u)

We also note fn(.S) the set of free names occuring in the network S and defined as follows:

fn(0) = 0
fn([¢::P]) = {Lufn(P)
fn(S | S) = f(S)ufn(s)
fn(wa@t)S) = fn(S) - {a}
fn(wpsS) = (S) - {p}
fn(w6S) = n(S)—{¢}

Definition A.2 We note bn(P) the set of bound names occuring in the process P and defined as follows:

bn(au) = bn(0) = bn(A) = §
bn(a(u).P) = bn(rec A(u).P) = nm(u) U bn(P)
bn((vu)P) = subj(u) U bn(P)
bn(P | Q) =bn(jz = y]P,Q) = bn(go £.P) = bn(P)
bn(T'(u)) = bn(T)

We also note bn(S) the set of bound names occuring in S defined as follows:

bn(0) 0
bn((va@f)S) = {a}Ubn(S)
bn(wp)S) = {p}ubn(s)
bn(w6)S) = {£}ubn(S)
bn([¢::P]) = bn(P)
bn(S | Sy = bn(S)ubn(s’)
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B Subject Reduction

B.1 Operational Semantics

We define the structural equivalence as the least equivalence* = containing the following axioms:

o0|U) = U
IV Iiw)y = ((U[V)|W)
UvV) = (V|U)
(wU | V) = @w(@ | V)  subj(u) (V)
P | Q] = [(=P]][£:Q]
[£:@wwP] = @u@il: P £ ¢ subj(u)

where

L@l = a@Qf ifu= a
u otherwise

and satisfying the following rules
U=,V v=v,vVv=Ww U=V
v=Vv uv=w E[U] = E[V]
where E is any evaluation context, given by the following grammar:

E:=0|(E|U)| owE | [¢: E]
Reduction is defined up to structural equivalence and may occur in any evaluation context:
V=U,U->U,U=V U—U
V-V E[U] — E[U]

B.2 Substitutions

21

A name substitution is a mapping S from a finite subset dom(S) of N into N, such that Vz € N¢nan (resp. Nyar, Nioe),
S(z) € Nenan (resp. Nyai, Nioe). We denote by [S]U the application of S to U if im(S) N bn(U) = . We give the

definition of the substitution for the binding constructs, where by convention S(z) = z if x ¢ dom(S):

[Sla(w).P = S(a)(u).[S']P S" =S | (dom(S) — nm(u))
SwaP = walS]P §' =5 | (dom(S) — {a})

[S](rec A(u).P) = (rec A(uw).[S'1P) S' =S| (dom(S)—nm(u))
[SleoU = wbls'|U §'=S [ (dom(S) —{¢})
SlopU = wp[S|U S' =S [ (dom(S) — {p})
[Slwa@QOU = (wa@QSU)H[STU S =S 7] (dom(S)—{a})

The substitutions also apply to row variables so that S(p) = ps(z). Moreover, we assume that a substitution preserves
well-formedness, that is if 4 :: L is valid then so is S(+) :: S(L). To this aim, substitutions applied to location types

may involve implicit contractions as described by the following:

[a/t{a:y,b:7", 9} = {a:7",[a/0]y}

if v = [a/b]y = [a/b]~'. Substitutions on typing contexts may also involve implicit contractions:

[C/k)(C: k9", T) = £, T ifp Ty
[P/gl(p:val,g:val,T) = p:valT

The relation =, of a-conversion is the least congruence satisfying the following axioms:

“there should be no confusion with the equivalence on location types.
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a(u).P =, a().[v/u)P nm(z) N (nm(P) U {a}) =0
(vo)U)  =a  @y)y/2lU y ¢ nm(U)
(va@QOU) =, (wbQhH[b/q)U b¢ nm(U) U {¢}

(recA(w).P) = (recB(v).[B/Al[v/u]P) B ¢nm(P), nm(v)nnm(P) =0

Lemma B.1 (Substitution) The following holds:

1. ifT kpu: T (resp. T H)V w: 7) is provable, then so is S(T' 4 w: 7) (resp. S(T F) w: 7)) for any substitution
S such that S(T") is a typing context and S is injective on nm(t);

2. ifT by P (resp. T' b, T': Ch(7)) is provable with a proof of heigth h, then so is S(T +, P) (resp. S(T I,
T': Ch(r))) for any substitution S such that [S]P (resp. [S|T) is defined and S(T") is a typing context (and S is
injective onnm(r));

3. ifT S is provable with a proof of heigth h, then so is S(T + S), for any substitution S such that S is injective
onnm(S), [S]S is defined and S(T") is a typing context;

4. ifT g T:Ch(r) and A: Ch(7),T" k¢ P (resp. A: Ch(7),T" k¢ T" : o) are provable, and A does not occur inT,
thenT t, [T’/ A]P (resp. T b, [T/ AJT" : &) is provable, provided that no free name of T is bound in P (resp.
7).
Proof Sketch: (1) It relies on the fact that C is preserved by substitution.
(2) By induction on h, and by case on the last rule used to infer the sequent. If P is a(b).R and T -, a(b).R and
A Fy R where
A =dom(T)—¢ T and A(E) = [{b 7> pLU{b}}/pL]F(E)
andT'(¢) C {a: Ch(v)}, then S’(A) k4 [S'|R is provable by induction hypothesis, where S’ = S [ dom(S) — {b} and
¢ = S'(¢£). We observe that substitutions preserve C and

S'(A) =dom(s'(r))—¢ S(T) and S'(A)(¢') = {b: S'(7), ps(yugs} }/ psi(1)]S' (T)(£)

because b ¢ dom(S’). Then, since b ¢ im(S) we may infer S(T" -, a(b).P).

If P = a(u).R where u is not a channel name, I" +, Pand I', A -, RwhereI' C {a: Ch(7)} and A F, w: 7, then
S'(T', A k4 R) is provable, by induction hypothesis, where S’ = S | (dom(S) — nm(w)). Since S'(A) F, u: S'(7),
we may the rule for typing the input construct to conclude. O

Lemma B.2 LetS be an injective substitution such that T , [S]P (resp. T + [S]S) is provable, with a proof of
height h. Then so is S~'(T') Fg-1(y) P (resp. S(T') F S).

Proof Sketch: By induction on the inference of sequent, and by case on the last rule used this inference. We examine the
case where [S]P = a(b).R,T" -, a(b).R and A k¢, R. We have P = a’(b).R' with o' = S(a) and R = [So] R’ where
So = S | dom(S) — {b}. Since we are assuming that [S]P is defined, we have b ¢ im(S). By induction hypothesis
Sy M (A) Fer R where ¢/ = S~1(¢). Since b does not occur in T and T' C {a: Ch(7)}, we have [S; '] = [S~!]r and
S ' (T) = S~1(T"). Let @ = [S—']r. Then, we can observe that

S5 (A) =gom(s-1ry)—e STH(T)

and
So H(A)(€) = [{b: 6, Py} prISTHINC)
where L' = S~(L). Moreover, S~1(T)(¢') C {a’: Ch(6)}, therefore we can infer S=}(T") ko P. O

LemmaB.3 IfP=,Q (resp. S =, S')andT' +, P (resp. '+ S) thenT' +, Q (resp. T' + S’).

Proof Sketch: By induction on the definition of =,. Since, the rules of the type system only depend on the form of
the terms being typed, we just deal with the axioms of a-conversion. We show that if T" F, a(u).P and [v/4] is a
substitution such that nm(v) N (nm(P)U{a}) = 0, then T+, a(v).[v/u]P. LetS be an injective substitution such that
dom(S) = nm(v) and the names in im(S) are fresh. Then by the lemma B.1 (2), S(T') k¢ a(u).P where ¢’ = S(¢), is
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provable. We first consider the case where u = b, v = cand S = [d/(] considering d as a fresh channel name (note
that in this case ¢' = ¢). By the input rule we have S(T")(¢) C {a: v} and A F, P, where

A =gom(sry—e) S(T) and A(0) = [{b: 7, Prugey}/ pr]S(T)(L)
and by the lemma B.1 (2), [¢/b]A b, [¢/b] P is provable. Moreover, since b ¢ L and does not occurs in S(T'), we have
[€/b]A =dom(s(r)—e) S(T) and [¢/B]A(0) = [{¢: 7, Py} pL]S(T)(E)

Since we have chosen S such that ¢ does not occur in S(T"), we may infer S(T") F, a(c).[¢/b]P. Therefore, T +,
a(c).[¢/b] P by the lemma B.2, since a(c).[¢/b]P = [S]a(c).[¢/b] P.

In the case where w is not a simple name, we have S(T'), A -y P where Ak, w: 7and S(T') C {a: Ch(7)} and the
names in nm(w) do not occur in S(T'). By the lemma B.1 (1), we have [v/4]A Fu v : 7 (the names of u cannot occur
in 7, since they do not occur in S(T')), and by the lemma B.1 (2) we may infer S(T'), [v/u]A ko [v/u]P. And we
conclude has in the previous case.

To prove the symmetric case, that is T' +, a(v).[u/v]P implies T +, a(u).P, we proceed in a similar way, first
renamming the names of u (which do not include @) in T with fresh names, and using the lemma B.2. The cases for
restrictions are similar. O

Definition B.4 T' C A iffdom(A) C dom(T') and V¢ € dom(A).T'(¢) T A(¥).
Lemma B.5 IfI" and A are typing contexts such that

A =gomry—¢ T and A(0) = [{a:7, i3}/ prlT ()

where pr, = pvar(I'(¢)), then A CT.

Lemma B.6 (Weakening)
1. IfT'+, P,ACT andbn(P)nnm(A) = ( then A +, P.
2. IfTH, T:7, ACTandbn(T)nnm(A) =@ then A+, T: 7.
3 IfTFS,ACTandbn(S)nnm(A)=0then A+ S.

Proof Hint: We proceed by induction on the inference of the sequent. We also have to show that if A -}V «: 7 and
TCAthenARY w:T. O

When we write 2 ¢ (T F, P) we mean that = does not occur in T' (either in the domain or in the types assigned hy
the context), nor in P and that x # /.

Lemma B.7 (Strengthening) Given I with T'(k) = {a:~,¢} and A such that A =gomr)—r T and A(k) =
P/ pru (o} With prugay = pvar(y), pf, freshand a € L; the following holds

1. IfT &, Pisprovableanda & (A &, P) then A+, P is provable.
. IfT, 0 ' 4 P is provableand ¢ ¢ fn(P) U {¢} thenT +, P is provable.
. IfT,p:val b, P is provableand p ¢ fn(P) thenT -, P is provable.
. IfT T :7isprovableanda & (A b, T:7) then A &b, T : 7 is provable.

2
3
4
5 IfT, ¢ ' by T: 7 is provableand ¢’ ¢ fn(T') U {¢} thenT &, T : 7 is provable.
6. IfT,p:val b, T: 7 isprovableand p & fn(T) thenT &, T : T is provable.

7. IfT & S isprovableanda ¢ (A + S) then A+ S is provable.

8. IfT, ¢': 4"+ S is provable and ¢' ¢ fn(S) thenT | S is provable.

9

. IfT",p:val + S is provable and p & fn(S) thenT - S is provable.
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Proof Sketch: (1) We proceed by induction on the inference of the sequent. The cases of typing rules for go ¢.P,
parallel composition and replication are straightforward. We first remark thatifa ¢ (T F}Y w: 7) then A F)V w: T

(out) Suppose that T F bu, thenT C {b: Ch(7)} and T -, u: 7. Since a & (T F, bu) and T C {b: Ch(7)} we have
a ¢ (Dhpu:T), therefore A kg u: 7. Also, a # b, then A C {b: Ch(7)}, and finally A -, Gu.

(in) SupposethatI' F, b(c).P and c € fn(P), thenI’ +, Pand I C {b: Ch(~y)} where
T’ =gomry—e T and T'(0) = [{c: 7, PLugey}/pr]T

with pr, = pvar(T'(¢)). Since a # b we still have A(¢) C {b: Ch(v)}. Since a # b, by induction hypothesis,
we have A’ +, P where

A’ =dom(I")—k I"and A'(k) = [plfil'/pzlu{a}]rl(k)

where p’L’,U{a} = pvar(I"(k)). It remains to show that we can infer A” F, b(c).P where A" is equal to A up
to renaming of row variables depending on whether k = £ or k # £.

Now suppose that " F, b(c@Qk’).P, then T, k': {c:v,¢'} ko Pand T C {b: Ch(yQq)} where ¢’ = ¢ and
having chosen pvar(¢') # p’.. We conclude directly, applying the induction hypothesis. The case of input of a
location name is similar.

(v) The cases for restrictions are similar to the ones of input.

(2) We remark that if T, k: ¢ F)V w:7and k & nm(u) U {¢}, then T +, w: 7. We proceed by induction on the
inference of the sequent. |

We define the relation < as follows :

P<sQ & VIVATH P = T+ Q)
T<sT" & VIVNT(ThH,T:7 =Tk T':7)
S8 & VI(THFS =TFJS)

We denote by = the associated equivalence relation.

Lemma B.8 The relation < contains the structural equivalence relation =.

Proof Sketch: We already proved that =4 contains the a-equivalence (lemma B.3). Moreover it is easy to see that =+
is a congruence. So, it is enough to show that for each axiom U = V we have U <5 V and V <4 U. We just consider
two axioms, the others are trivials. LetT b, ((vu)P | Q) withu = a € Nepan and a & fn(Q). We may assume that
a does not occur in T. The proof of this sequent has the following form:

Ab, P
Thowa)P THQ

Tk, (va)P | Q)

where A =gom iy, T and A(¢) = [{a:7,pLu1ayH/ pr]T(€) where p, = pvar(T(¢)). Sincea ¢ (T k¢ Q), by
the lemma B.6 (1) we also have A F, @Q, therefore " F, (va)(P | Q). The cases where u & Ncpan are similar.
Conversely, a proof of I' F, (va)(P | Q) has the following form:

AF, P AF,Q

A+, P | Q

Tk va)(P | Q)

where A is defined as previously. Since a ¢ (T +, @), by the lemma B.7 (1) we deduce that T I, @ is provable,
therefore ' F, ((va)P | Q) is provable. The other cases are similar.
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For [¢:: (wuw)P] = (vu@0[¢:: P] (and w = a), let us assume that " - [£:: (va)P]. The proof of this sequent has the
following structure:

Ak, P
'k wa)P
Tk [4: (va)P)
We can then infer the following:

Ab, P
AF[¢: P

T+ (va@o)[e:: P)
For the symmetric case, and the other restrictions, the proofs are similar. O

Theorem B.9 (Subject Reduction) U -V = U<xgV

Proof: by induction on the definition of U — V. Since < is a precongruence containing the structural equivalence
relation, it is enough to consider the axioms of reduction. The cases [k:: gol.P] — [¢:: P], [z = z]P,Q — P and
[x = y]P,Q — Q are trivial.

For the case of communication law (ac | a(b).P) — [¢/b]P, let T be a context such that T" +, (ac | a(b).P).
Then the proof of this sequent has the following structure:

I‘I—ZV cly Ak, P
T'kpac It a(b).P

Tty (ac | a(b).P)

with [(¢) € {a: Ch(y)} and where A =qq0 1y, T and A(¢) = [{b: 7, Py 3}/ pIT(0) and b does not oceurs in
T, and therefore notin . From T ¥ c: v, itis easy to see that [¢/b]A = [pT,/p,]T. Moreover, by the lemma B.1(2),
we have [c¢/p]A I, [c/b) P therefore [p7/p]T Fe [¢/b]P and T+, [¢/b] P.

Let us now consider the case where a location name is communicated (ak | a(k’).P) — [k/k']P and let T be a
context such thatT' . (@k | a(k').P). Then, the proof of this sequent has the following form:

I'(k) T _
THY ko Tk 24"y P
T'Fpak 'k, a(k’)P

T+, (@k | a(k').P)

where I'(¢) C {a: Ch(y)")}.
FromT +}V k: 4’ we deduce that there are some I'" and 1 such that T' = I, k : ¢ and ) C ¢)’. Therefore, we have
IV, k:4,k" 14" +y P and by the lemma B.1(2), IV, k: ¢ b, [k/k']P. Then, T+, [k/k’] P is provable.

The other cases of communication simply use B.1(2).

Let us now study the unfolding, that is the case of (rec A(u).P)(v) — [rec A(u).P/ A][v/«]P and assume that the
sequent T k-, (rec A(u).P)(v) is provable. We only look at the cases where « and v are simple channels. The proof
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has the following structure:

A:Ch(7),Ak, P

T F, rec A(b).P: Ch(y) THY ciy

T+, (rec A(b).P)(c)

where I(¢) T {c: v}, A =gomer)_, I and A(¢) = ({07 oy} pLIT(€) with pr = pvar(T(€)) and pl,,, is
fresh. As previously, the sequent A : Ch(y),T F, [¢/b] P is provable. Moreover, since I F, rec A(b).P : Ch(~) and
by the lemma B.1(4), we conclude that T -, [rec A(b).P/ A][c/p] P. O

C Unifi cation Proofs

Lemma C.1 The following propositions hold:
1. wis asolution of {{a:~,v} ={a:+',¢'}}UC iffitisasolutionof {y =+, =4¢'}UC.

2. Lety and®)' be location types such that chan(+)) N chan(y') = 0, pr = pvar(¢) and p’;, = pvar(¢'); p unifies
{o =9 tucCiff

(@) pr ¢ var(y') — p7, and ply, & var(y) — pr;
(b) chan(y)) N L' = @ and chan(¢')N L = §;

(c) forany X', forany p'} .. ¢ XUX' (where X is the set of type variables occurring in {1 = '} UC), there
exists \ such that i =xyx A’ and X unifies (lC where i/ = [ < pf 1.0/ P s V' <pf o /pL]-

Proof:
1. The proof is straightforward.

2. (=) We easily prove (a) reasoning by contradiction that is arising the inexistence of a unifier for ¢ and ¢’
whenever (a) is not satisfied. For (b), assuming there is some k£ € {1...n} such that a;, € L', there is no
substitution substituting a location type 1" for p'., with a;, € chan(¢"), that is unifying ¢ and ¢’. To prove (c),
assume ¢ ={a1: V1, »Qn Yn,prtand ¥’ = {b1 11, . .., bm I v, P+ Since p unifies ¢ and ¢ we have

{ar v,y @n s pYn, upr} = {b1: pYls - ooy bm T 1Yi,, o'y}, @and since {ag, ..., an} N {b1,...,bm} =0,
there is some ¢ such that

oz = b1 py1s e bm g " = e pyns s @ v, "} = ol
Let A be defined as )
At = Pt =y
“ | wt otherwise

Then, since pr, p, & (var(¢') Uvar(y)) — {pr, p. } itis easy to see that ppr, = A\p'pr and pp’,, = ' pl,
and M =xux’ )\/Ll.
(<) Straightforward. O

Lemma C.2 Givena problem (C, A), a sequence of reductions
(C,A,0)—=(Cr, A1, 1) — ...
terminates either with L or with (9, A’ , u) for A’ being of atomic subtyping inequations and y be a substitution.
Proof: Let ny and nq be defined as follows:
+ n is the number of distinct variables occurring in (C', A);

* no is the sum of the sizes of the types in (C', A) (assuming the size of type variables and constants being of size
1);
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Associating the pair (0,0) to L, the following table shows the strict decreasing (for the lexicographical order) of
(n1,n2) for each rule except (st_wrg).

(trivial(Va|))/(chan)/(at)/(loc)/(st_ok) (loc_end)/(clash)/(oc)/(elim)

ni = <
N2 <

The rule (st_wrg) may seems problematic since while n; remains unchanged, it may increase n2. Actually, we can
show that this rule can be applied only a finite number of times. The number of assertions in A being constant along
the rewriting, it can be ordered as 1o E 41, . .., %, 1 C1b,. We note that if (C', {0 C1,...,%n 1 EUn}, p) —
(C", {Yh Ty, ..., Eat}, ') then for all 4, if pvar(y;) = pr and pvar(y)) = p), we have L C L. In
particular, if the rule applied is (st_wrg) to an assertion ; C 1;.1, then the inclusion is strict (that is L C L'). Since
we add only names occurring in (C', A, u), such an increasing of L is bounded that proves that we can apply (st_wrg)
to an assertion only a finite number of times. Then, after a finite number of steps we reach a tuple for which all rules
apply except (st_wrg) strictly decreasing (n1,n2) that is terminating on (0, 0) which corresponds either to L or to
(0, A, ). It easy to see that A is necessarily atomic. O

LemmaC.3 If(C, A, p) — (C', A", u') then
o either u = p' and X\ is a solution for (C, A) iff it is a solution for (C', A"),

e orp' = p"pand X =yar(c,ay X', for some X\ and X', then X is a solution for (C, A) iff X' is a solution for
(', AN.

Proof: The case x4’ = p corresponds to the rules (trivail val))- (chan), (at), (loc) and (st_ok) and is easily proved. We
prove the other case for the rules (elim) and (st_wrg) (for (loc_end) we simply use lemma C.1).

(elim) (=) Let u” = [7/t], and from X solution of {¢ = 7} U C we deduce that A has the form
[71/t15. s Tn/tn, AT /1]
that is A = M'[r/t] where ' = [r1/t1,...,7n/ts]. Since A is solution of (C', A), A’ is obviously solution of

([r/1C, [r/1]A).

(<) Straightforward.
(st_wrg) (=) Let X be a solution of (C', {1; C1»} U A) and
Pr={a1: M, s0n oL}y Y2 = bV, b Iy, P}

Pl @ fresh row variable and S” = [ < pYf ./ /pL]. Since A is a solution of ¢ T, We have Ap, =
{b1: A1, ., bm : Ayh,, 13} and we deduce that A has the form

[Tl/tla‘“aTk/tka{bl : A'Y{a"‘abm:)"ﬂnaw3}/pll]

that is A = Xp" where X' = [r/t1,...,7k/tk,¥3/pp ] and it is trivially a solution of (u"C', {11 <
Prur Epp U’ A).
(<) There is no difficulty. O

Proposition C.4 (Soundness) If(C', A, ) —* (@, A’, u) and (0§, A", u) does not reduce anymore, then p is
a most general solution w.r.t. var(C, A) of C and is a solution for (C, A).

Proof: From the lemma C.2, A’ is a set of atomic subtyping assertions. According to lemma C.3, if X is a solution for
(C, A) then there exists A" solution of (3, A") such that A =var(c, 4y A’ . Moreover, the identity substitution Id being
a solution of (@, A"), u = Idp is a solution of (C, A) and we conclude that x is a mgu w.r.t. var(C, A) for C. O

LemmaC.5 (C, A, 0) —*L iff (C, A) has no solution.

Proof: (=) It is straightforward.
(<) By contradiction using proposition C.4 and lemma C.2. O

Proposition C.6 (Completeness) If(C, A) has a solution, then (C', A, §) —=* (0, A", ).

Proof: It is corollary of lemmas C.5 and C.1. O
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D Type Inference Proofs

Lemma D.1 Let u be a (possibly compound) name and t be a type variable, { € Ny,., and T, C, A such that
gen(u:t,0) = (T,C, A), then

1. for all solution p of (C, A), we have ul' b, w: ut.

2. forallT, T suchthatT' \, u: T, there exists a solution u of (C, A) such thatT' = uT" and T = pt.

Lemma D.2 Given(J,, J,, J., C', A), asequence of reductions
(Jos Jpy Jn, CyA) = (Jg, Ty, Ty, €T AT — o
terminates eitheron L oron (9, 0,0, C", A").
Proof Sketch: We define
* nq : the sum of sizes of terms in J,;
* n : the sum of sizes of terms in J,;
+ n3 : the number of sequents in J,,;

Associating the triple (n1,n2,n3) to each tuple (Js , J,, J., C, A),and (0,0,0) to L, it is easy to see that this triple
is strictly decreasing along the reduction steps for the lexicographical order. This shows the terminaison of —. O

Lemma D.3 (Preservation) Letp solutionof (Js, J,, J., C, A)andXof(Jg, J,, J,, C", A"),if(Js, Jp, Jn, C, A) —|
(Je, Iy Ty, C', A') then

1. thereis ' =x p solutionof (J¢, J,, J;,, C", A"),and X = var(Js, Jp, Jn, C, A),
2. Xisalso solution of (J5 , Jp, Jn, C, A).
Proof: (1) We prove the lemma for some relevant rules. Let x be a solution of (J,, J,, J,, C', A).

(ng) Let J, = {T' H}Y ¢ :9} U J. then in particular g is solution of T' -}V ¢': ¢, that is uT" F}¥ ¢': uy and
uT(¢') € pap; then X' = pis asolution of (J,, J,, J',, C, AU{T(¢)Cv}).

(n2) Let J, = {T FV a:~} U J,, then in particular p is solution of T' F}V a:~, thatis uI' +}¥ a: py and
ul'(€) C {a: m,p{{a}}. From this assertion we deduce that uT'(¢) = {a: uy,} for some 9. Let A’ be defined
as g on X and X' pray = 1, then X' is obviously a solution of (J , J,, J;,, CU{T'(£) ={a:~,pa}}}, A).

(n3) Let J, = {T F}V a@¢: 7} U J!, then p solution of T' +}V a@¢: 7 implies that there are some ~ and 4 such
that ur = vQe and pI'(¢) C {a: v,v}. Therefore, there is also some ¢’ such that uI'(¢) = {a:~,%¢'} and
Y" E 9. We set X' such that \' =x pand \'h = v, N'pjy = ¢ and )\',0{,1}.: ', Then, we easily see that \’ is
solution of (J, , J,, J),, CU{T(€) = {a: h,psay }, hQpy = 7}, {pra) Epp} U A).

(p1) Let J, = {T k¢ au} U J!, p solution of T' +, @u means uI' +, @u, that is uT' F}V w:pr and pT'(€) C
{a:Ch(uT), pray}. Then, there is some 1+ such that uI'(¢) = {a: Ch(uT),1}. Therefore, defining A’ as x on
X, Nt = N7 and A’p{{’a} = 4, This substitution is solution of (J, J!, J, U{T F}¥ u:t}, CU{T(() =

{a: Ch(t)v pj[la}}} ) A)
(p2) LetJ, ={T t;a(u).P}uU J., we have ul’ F; a(u).P.
o ifu=>bthen uI'(¢) = {a: Ch(y),¥} and A’ -, P where A’ is defined as
A’ =dom(r)—¢ pI and Al(ﬁ) = [{b : 'Y;plL”/U{b}}/pZ,]/LF(é)

for some «y and ¢, and where p/, = pvar(uI'(¢)). Defining A" as pon X, N't = N h =+, )\'p‘{la} =1 and
Nor =Npoay = [Plowy/ el luew, itis easy to show that A’ = XA, then that A" is solution of

(JS ’ {A e P} U J;,ﬂ Jna cu {t = hvpL = pILU{b}vr(e) = {(L: Ch(t),p:%a}}} P A)
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©ifu & Nepan, then uTy A by Pand A by w: 7. Let (T, C") = gen(u: t, £), from the lemma D.1 there
exists a substitution X solution of C" such that A = AI" and 7 = At. Since we can choose I'" such that
var(I") nvar(I'") = (), we can define A’ as u on X and as A on var(C").

(P4s) We define A" as pon X and X' py = pT'(a) and X' py = ul'(b).

The remaining cases are trivial or are quite similar to (p1) and (p2).

(2) We prove this point for only two relevant rules, the other cases being either trivial or similar to those ones. Let
A be a solution of (J , J,, J;,, C", A"). The proof for (n;) to (nc) are straightforward.

(p1) We have J, = J, U{T Fp u:t}and ' = C U{T'(€) = {a: Ch(t), p(oy}} then AT H}V w: At and AT'(¢) T
{a: Ch(\t), p'{a}} for some fresh p'{a}. According to the inference rule for the output ) is therefore a solution
of " k, qu.

(p2) We have J, = {A b, P} U JJ and C' = {T(¢) = {a: Ch(t), p/,, }} UC" UC.

* Considering the case wherew = b, C" = {t = h,pp, = p'LU{b}} and A is defined as

A =gom(ry—e I and A(E) = [{b: 7, PLugey }/ pLIT(0)
and pr, = pvar(I'(€)). A(¢) is of the form {b: h,a1:v1,...,an: ’yn,p'LU{b}} if

F(é) = {al:’YIP"?an:’Yn?pL}

and
AAW) = {b: Ahya1 i M1,y G s MYy D12V ey b ’y;n,p'fi',u{b}}

if /\p'LU{b} ={br:v],-- bm Y, pg',u{b}} = Apr, (because A unifies pz, and prg3). Then we have
)\F(ﬂ) = {a1 s )\’)/1, RNy )\’yn,bl . ’7{, .. .,bm s ’Y;n,pllllllu{b}}
then, since b & nm(AT),

[{0: AR, 0500y H AT g JAT(E) = (00053 /P10y ]AA(0)
Also
(0L 03/ PT0 AT =domry e P1roge/PLogey]AA

We can easily see that, since A is a solution of A b P, [p7,,4,,/7' 1] is also a solution of that
sequent. Therefore AT k-, a(b).P.

* In the other case A = T'\T"', A’ = AU A" and gen(u:t,¢) = (I',C", A"”). From the lemma D.1 and
since A is solution of (C"', A”), we have A\ F, w: A\t and we can see that AT', AT -, P therefore A is a
solution of T k; a(u).P. O

LemmaD.4 Let S be a typable network, N = fn(S) N (Nya U Nioe) and T' a context such that T' + S then
N c dom(T') andT')x = S (where T, is the restriction of T' to the domain N ).

Theorem D.5 (Soundness) Let S be a network and T be an initial context for S, if
{T+S},0,0,0,0)—="@0,0,0,C,A) and(C,A,0)—"(0,A, pn)

then uT'; A’ is a principal typing for S.

Proof:

1. We first have to show that for all A’-substitution A\, A\uI" - S. Since X is a A’-substitution, it is a solution for
(@, A") and, from the lemma C.3, it is easy to see that Ay is a solution for (C, A). Then, by the previous lemma,
Ap isasolutionforT' - S.
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2. Secondly, let IV be a context such that I’ + S. From the lemma D.4, we have F’/N F uS and it is easy to

see that there exists a substitution x’ such that F’/N = u'T. We can assume, without loss of generality, that
dom(p') C var(T). Let X be defined as follows

w't if, t € var(T)
M= -
ut  otherwise.

From the assumptions, we can deduce that u'T" = AT, then AT I- S, that is A is a solution of T" - S. Therefore,
from the lemma D.3, there exists a substitution A’ =yar) A solution of (C, A). Since y is a most general
solution w.r.t. var(C, A), there exists some A’-substitution A" such that A" =var(c,4) A" p. Moreover, since
A =var(r) p’ and var(T') C var(C, A), we deduce u' =var(c,a) A" u. Therefore, T =dom(r) AN ul, O

LemmaD.6 Let(Js, Jp, Jn, C, A) be a tuple that has a solution, then (J, , J,, J., C, A) A*L.

Proof: By the lemma D.2 we know that there is no infinite sequence of reductions. Then, the proof is simply by
induction on the length of the sequence of reductions. O

Theorem D.7 (Completeness) Let S be typable network and T" be an initial context for S, then

({THS},0,0,0,0)—"(0,0,0,C, A) and (C, A, 0) =" (8, A", p)

Proof: Since S is typable, there is some IV such that I’ + S. By the lemma D.4, we know that F’/N F S (where

N =

fn(S) N (Nya U Nioe)). Moreover, following the assumptions it is easy to define a substitution ' such that

u'T = P’/N, that is p’ is a solution of T"  S. Then, by the lemmas D.2 and D.6 there exist some C' and A such
that ({T+S},0,0,0,0) —* (0,0,0,C, A)and, by D.3, a substitution 41" =yarr) ' solution of (C, A). By
the lemmas C.4 and C.6, (C', A, 0) —* (0, A", u) and there exists a substitution A such that " =varc,a) M.
Therefore, 1’ =varry Ap. O
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