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Abstract: Hidden Markov random fields appear naturally in problems such as image seg-
mentation where an unknown class assignment has to be estimated from the observations for
each pixel. Choosing the probabilistic model that best accounts for the observed data is an
important first step for the quality of the subsequent estimation and analysis. A commonly
used selection criterion is the Bayesian Information Criterion (BIC) of Schwarz (1978) but for
hidden Markov random fields, its exact computation is not tractable due to the dependence
structure induced by the Markov model. We propose approximations of BIC based on the
mean field principle of statistical physics. The mean field theory provides approximations
of Markov random fields by systems of independent variables leading to tractable computa-
tions. Using this principle, we first derive a class of criteria by approximating the Markov
distribution in the usual BIC expression as a penalized likelihood. We then rewrite BIC in
terms of normalizing constants (partition functions) instead of Markov distributions, which
enables us to use finer mean field approximations and derive other criteria using optimal
lower bounds for the normalizing constants. To illustrate the performance of our partition
function-based approximation of BIC as a model selection criterion, we focus on the prelim-
inary issue of choosing the number of classes before the segmentation task. Experiments on
simulated and real data point out our criterion as promising: it takes spatial information
into account through the Markov model and improves the results obtained with BIC for
independent mixture models.
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Critéres de sélection de modéles de Markov cachés basés
sur des approximations de type champ moyen.

Résumé : Les modéles de champs de Markov cachés apparaissent naturellement dans des
problémes tels que la segmentation d’image ou il s’agit d’attribuer chaque pixel a une classe
a partir des observations. Pour cela, choisir le modéle probabiliste qui prend le mieux en
compte les données observées est primordial. Un critére de sélection de modéle communément
utilisé est le Bayesian Information Criterion (BIC) de Schwarz (1978) mais dans le cas des
champs de Markov cachés, la structure de dependance dans le modéle rend le calcul exact du
critére impossible. Nous proposons des approximations de BIC qui se fondent sur le principe
d’approximation en champ moyen issu de la physique statistique. La théorie du champ
moyen fournit une approximation des champs de Markov par des systémes de variables
indépendantes pour lesquels les calculs sont alors faisables. A I’aide de ce principe, nous
introduisons d’abord une famille de critéres obtenus en approximant la loi markovienne
qui apparait dans I’expression usuelle de BIC sous forme de vraisemblance pénalisée. Nous
considérons ensuite une réécriture de BIC en termes de constantes de normalisation (fonctions
de partition) qui a ’avantage de permettre 'utilisation d’approximations plus fines. Nous en
déduisons de nouveaux critéres en utilisant des bornes optimales des fonctions de partitions.
Pour illustrer les performances de ces derniers, nous considérons le probléme du choix du
bon nombre de classes pour la segmentation. Les résultats observés sur des données simulées
et réelles sont prometteurs. Ils confirment que ce type de critéres prend bien en compte
I'information spatiale. En particulier, les résultats obtenus sont meilleurs qu’avec le critére
BIC calculé pour des modéles de mélanges indépendants.

Mots-clés : Segmentation d’image, Champs de Markov cachés, Sélection de modéles, Cri-
tére d’information bayésien (BIC), Approximation du champ moyen, Fonction de partition.
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1 Introduction

Problems involving incomplete data, where part of the data is missing or unobservable, are
common in image analysis. The aim may be to recover an original image which is hidden and
has to be estimated from a noisy or blurred version. More generally, the observed and hidden
data are not necessarily of the same nature. The observations may represent measurements,
e.g. multidimensional variables recorded for each pixel of an image while the hidden data
could consist of an unknown class assignment to be estimated from the observations for each
pixel. This case is usually referred to as image segmentation. In the context of statistical
image segmentation, choosing the probabilistic model that best accounts for the observed
data is an important first step for the quality of the subsequent estimation and analysis.
In most cases the choice is done subjectively using expert knowledge or ad hoc procedures
and there is a striking lack of systematic data-based approaches. We recast this choice as a
problem of probabilistic model comparison and use the standard approach of Bayes factors.
Evaluating the Bayes factor of one model against another involves calculating the ratio of
the integrated likelihoods for each model, i.e. the likelihoods of the data integrated over the
respective model parameters. For a lot of models of interest, these integrated likelihoods
are high dimensional and intractable integrals so that most available software is generally
inefficient for their evaluation. Various approximations have been proposed. In particular
the Bayesian Information Criterion (BIC) approximation of Schwarz (1978) is based on the
Laplace method for integrals. It leads to an equation giving the log-integrated likelihood as
the maximized log-likelihood minus a correction (or penalization) term and an O(1) error
(as the sample size tends to infinity). BIC can be compared to other selection criteria. One
of them is AIC (Akaike Information Criterion of Akaike 1973) which differs from BIC in the
correction term but has been shown to overestimate the number of parameters in practice.
The criterion proposed in Rissanen (1989) is based on stochastic complexity and is similar to
BIC, and methods using cross validation (Zhang 1993) seem promising but their tractability
in our context is not straightforward due to the dependence structure in the data. Many
other approaches can be found in the literature on model selection (see for instance the list
of references in Kass and Raftery 1995).

BIC has become quite popular due to its simplicity and its good results in cases where
p-values and the standard model selection procedures based on them were unsatisfactory.
In BIC, the O(1) error does suggest the approximation to be somewhat crude. However

empirical experience has found the approximation to be more accurate in practice than the
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Hidden Markov Models Selection Criteria based on Mean Field-like approrimations 7

O(1) error term would suggest. As regards model selection, Kass and Raftery (1995) observe
that the criterion does not seem to be grossly misleading in a qualitative sense as long as
the number of degrees of freedom involved in the comparison is relatively small relative
to sample size. In this paper, we consider Markov model-based image segmentation and
focuse on the use of BIC for the underlying issue of choosing a model from a collection of
hidden Markov random fields. In this case, we have no specific results on the quality of BIC
as an approximation of the integrated likelihood and this choice as a selection criterion is
arguable. However, the question of the criterion ability to asymptotically choose the correct
model can be addressed independently of the integrated likelihood approximation issue. As
an illustration, Gassiat (2001) proved recently that for the more special but related case
of hidden Markov chains, under reasonable conditions, the mazimum penalized marginal
likelihood estimator of the number of hidden states in the chain was consistent. This estimator
is defined for a class of penalization terms that includes the BIC correction term and involves
an approximation of the maximized log-likelihood which is not necessarily good, namely the
maximized log-marginal likelihood. In particular, this criterion is consistent even if there is
no guarantee that it provides a good approximation of the integrated likelihood. The choice
of BIC for hidden Markov model selection appears then reasonable and we will show that
criteria with good experimental behavior can be derived from it.

The difficulty in the context of hidden Markov random fields lies in that the maximized
log-likelihood part in BIC involves Markov distributions whose exact computation requires
an exponential amount of time. As regards observed Markov random fields selection, Ji and
Seymour (1996) propose a consistent procedure based on penalized Besag pseudo-likelihood
(Besag 1975) and mention few other previous works (see the references therein). When the
fields are hidden, little has been done to address the selection problem. Two approximations
of BIC are proposed in Stanford and Raftery (2001): for the PLIC (Pseudo-likelihood In-
formation Criterion) the required maximized distribution is approximated by the Qian and
Titterington pseudo-likelihood (Qian and Titterington 1991), while a simpler approximation,
MMIC (Marginal Mixture Information Criterion) is based on the marginal distribution of
pixel values. In practice, good results are reported for PLIC in Stanford and Raftery (2001)
whereas MMIC is less satisfactory. In this paper, we propose approximations of BIC based
on the mean field principle. Mean field theory of statistical physics (Chandler 1987) is an
approach providing an approximation of a Markov random field by a system of independent
variables and leading to tractable computations. We use a generalization of the mean field

principle presented in a previous work (Celeux, Forbes, and Peyrard 2002) and derive a class
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of criteria that includes PLIC as a particular case and as a result gives some new insight
on its nature. We also show that the straightforward use of the mean field approximation
can be improved by rewritting BIC in terms of normalizing constants (partition functions)
instead of Markov distributions and then using optimal mean field lower bounds (Gibbs-
Bogoliubov-Feynman bounds) for the normalizing constants. We derive this way an other

CYBY " Questions of interest relevant to model selection

tractable criterion denoted by BI
include choosing the Markov field neighborhood or more generally its energy function and
choosing the number of classes in which to segment the data. They can all be addressed
straightforwardly in our framework but we focus on the latter because of its practical impor-
tance. Experiments on simulated and real data point out BICYBY as a promising criterion.
It is easy to compute and shows good and stable performance. It takes spatial information
into account through the Markov model and improves the results obtained with BIC for in-
dependent mixture models. In particular, it seems to avoid the overestimation of the number
of classes observed in Biernacki, Celeux, and Govaert (2000).

The complete parametric models for the observed and unobserved data are specified in
Section 2 and the basics for BIC are recalled in Section 3. The mean field approximation
principle is briefly presented in Section 4 and in Section 5 we show how we propose to use
it to compute approximations of BIC and derive new computationaly tractable criteria for
hidden Markov model selection. Experiments are reported in Section 6 and a discussion

section ends the paper.

2 Hidden Markov models

Let S be a finite set of sites with a neighborhood system defined on it. Let |S| = n denote
the number of sites. A typical example in image analysis is the two dimensional lattice
with a second order neighborhood system. For each site, the neighbors are the eight sites
surrounding it. A set of sites C' is called a clique if the sites are all neighbors. Let V'
be a finite set with K elements. Each of them will be represented by a binary vector of
length K with one component being 1, all others being 0, so that V' will be seen as included
in {0,1}*. We define a discrete Markov random field as a collection of discrete random
variables, Z = {Z;, i € S}, defined on S, each Z; taking values in V', whose joint probability

distribution satisfies the following properties,

Vz, Pg(zi|zs\tiy) = Palzi |z, j € N(3)), (1)
Vz, Pg(z) > 0, (2)
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where zg\(;; denotes a realization of the field restricted to S\{i} = {j € S,j # i} and
N (%) denotes the set of neighbors of i. More generally, if A is a subset of S, we will write
z4 for {z;, i € A}. In words, property (1) means that interactions between site i and the
other sites actually reduce to interactions with its neighbors. Property (2) is important for
the Hammersley-Clifford theorem to hold. This theorem states that the joint probability
distribution of a Markov field is a Gibbs distribution (for which we use the notation Pg)
given by

Polz) = W' exp(~H(2)), (3)
where H is the energy function
> Velze). (4)

The sum is over the set of cliques and the V.’s are the clique potentials which may depend

on parameters, not specified in the notation, W = Z exp(—H(z)) is the normalizing factor
also called the partition function. We will write Z (resp Z) a sum over all possible values

of z (resp. z4). The computation of W 1nv01ves all poss1ble realizations z of the Markov
field. Therefore, it is in general exponentially complex and not computationally feasible.
This can be a problem when using these models in situations where an expression of the
joint distribution Pg(z) is required. An approximation of the distribution (3) is the pseudo-
likelihood introduced by Besag (1975) and defined as

ieS
Each term in the product is easy to compute,
exp(— L Ve(zc))
Pa(z i) = = ; 6
c(zi | Zn(i)) > exp(~ X Vil]) (6)

>

with z, = {2],2;,j € ¢, j # i}. Expression (5) is a genuine probability distribution only when
the variables are independent but it can be used to obtain estimates of a Markov random
field parameters. It has been used by Stanford (1999) in the model selection context (see
Section 5). In Section 5, we will use other approximations based on systems of independent
variables. Their factorization properties simplify computations as (5) and they correspond

to valid probability models.
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10 Florence Forbes , Nathalie Peyrard

Image segmentation involves observed data and unobserved data to be recovered. The
unobserved data is modeled as a discrete Markov random field, Z, as defined in (3) with
energy function H depending on a parameter 8. In hidden Markov models, the observations
Y are conditionally independent given Z, according to a density f which is assumed to be

of the following type (6 is a parameter and the f;’s are given),

flylz 0) = Hgfi(yi | 2, 0) (7)
= eXP{ZIngi(yi | 2, 0)},

assuming that all the f;(y; | z;, 6) are positive. This makes the model similar to an indepen-
dent mixture model (¢f. McLachlan and Peel 2000). An independent mixture model could
be seen as a hidden Markov model where the hidden field Z is one of independent identically

distributed variables. In the general case, the complete likelihood is given by

Po(y,z|0,8) = [f(y|z,0) Pa(z]pB)

= W) Hgfi(yi | 2z, 0) J] exp{~Vi(z. | 8)} (8)
= W) exp{~H(z| p) + Y log fiyi | z, 6)}.

Thus the conditional field Z given Y =y is a Markov field as Z is. Its energy function is
H(z|y,0,8) = H(z|B)—)Y logfi(yi |z, 0). 9)
i€S
In the following developments, we will refer to Markov fields Z and Z given Y = y as the

marginal and conditional fields and denote by ¥ = (6, ) the vector parameter.

3 Bayesian Information Criterion

In a Bayesian framework, a way of selecting a model among R models M, M, ..., Mg
consists of choosing the model with highest posterior probability. By Bayes theorem, the
posterior probability of M, (r € {1,..., R}) given the data y is

PG(y|MT)P(MT)
> Pa(y|MoP(Ms)

P(M,ly) =

where Pg(y|M,) is the integrated or marginal likelihood of model M, and P(M,) is its prior
probability. Assuming that all models have equal prior probabilities, choosing the model with

INRIA



Hidden Markov Models Selection Criteria based on Mean Field-like approrimations 11

the highest posterior probability is equivalent to select the model with the largest integrated
likelihood,

Poly|My) = [ Poly|Or, M) P(¥,|M,)d¥,, (10)

where W, varies in the model M, parameter space and P(V,|M,) is the prior distribution
on VU, for the same model. Computing (10) is not usually tractable. A simple and often
reliable way to approximate the integrated likelihood is provided by the Bayesian Information
Criterion (BIC) of Schwarz (1978) (see for instance Kass and Raftery 1995),

2log Pg(y|M,) ~ BIC(M,) = 2log Pg(y | ¥™) — d, log(n), (11)
where U™ is the maximum likelihood estimate of W,
UM = argmax Po(y | Ur, M),

and d, is the number of free parameters in model M,. It has been widely used in the context
of selecting the number of components in independent mixture models (Fraley and Raftery
1998, Roeder and Wasserman 1997). In this context BIC limitations have been pointed out
and in particular, it has been observed that in practice the criterion can tend to overestimate
the right number of components when the true model is not in {Mj,....Mg} (see Biernacki,
Celeux, and Govaert 2000).

For Hidden Markov models the difficulty comes from that ¥™ and Pg(y | ¥™) are not
available. For BIC, methods using simulations have been investigated in Newton and Raftery
(1994) while Stanford (1999) proposed using the pseudo-likelihood (5) as an approximation
to the intractable Markov distribution. In this paper, we suggest using the mean field approx-
imation principle to derive a class of other tractable criteria. As for the pseudo-likelihood
approximation, it consists of replacing the original Markov distribution by a product easier
to deal with. We recall the mean field principle in the next section and describe applications

in the model selection context in Section 5.

4 Mean field Theory

4.1 Mean field approximation principle

The mean field approximation (e.g. Chandler 1987) is originally a method of approximation

for the computation of the mean of a Markov random field. It can be used to provide an
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12 Florence Forbes , Nathalie Peyrard

approximation of the distribution of a Markov random field. The idea when considering a
particular site 7 is to neglect the fluctuations of the sites interacting with 7. The resulting sys-
tem behaves as one composed of independent variables for which computation gets tractable.
More specifically, for all j different from ¢, the Z;’s are fixed to their mean value E;(Z;).
However, these mean values are unknown and it is actually the goal of the approximation
to compute them. Therefore, the method depends on a self-consistency condition which is
that the mean computed based on the approximation must be equal to the mean used to
define this approximation. The mean field approximation P™ (z) of the Gibbs distribution
is then defined by replacing the exact mean values by the mean values in the approximation,
denoted by z = {z;,7 € S},

P™(z) = ] P™(z), (12)
i€S
where P™ (2) = Pa(z | ZNG))-
Applying the self-consistency condition leads to

91({z,5 € N(1)})
z = g(z) = {: : (13)
gn({z,5 € N(n)})

with Vi € S, g:({z;,j € N(1)}) = ¥ zP™ (%).
2
The mean field approximation consists of solving this fixed point equation and taking
the solution z = {Zz;,7 € S} as an estimate of the exact mean field. More details are given

in Chandler (1987). In particular, it can be shown that P™ minimizes the Kullback-Leibler

P(Z)
Pg(Z)

field approximation can also be presented using the concept of thermodynamic perturbation

divergence IEp[log( )] over the set of probability distributions P that factorize. The mean
theory and a variational principle. This approach presents the mean field approximation
above as a zeroth-order approximation and provides a natural first order approximation for
the partition function. We specify this first order in the following section. In Section 5.1, we
derive BIC approximations based on P; ~ P™ while in Section 5.2, we use the first order

approximation of the partition function.

4.2 First order Mean field approximation of the partition function

Let H™ W™ and IE™ denote respectively the energy function, the partition function

and the expectation under model (12). An approach consists of performing a perturbation

INRIA



Hidden Markov Models Selection Criteria based on Mean Field-like approrimations 13

theory with the mean field model (12) as the reference model or zeroth order model. In this
approach, we assume that the fluctuations about the mean field energy H™/ are small, i.e.
the difference AH = H — H™/ is small. The starting point is the following exact factorization

of the partition function,

W = Zexp(—(Hmf(z) + AH(2)))
= W™ IE"[exp(~AH(Z))] . (14)

Since AH is small, the second factor in (14) can be expanded,

IE™ [exp(—AH(Z))] E™[1 - AH(Z)+..

= 1- E[AH(Z)]+...

The first terms of the right-hand side above are the first terms in the expansion around zero
of exp(—IF™[AH(Z)]) so that neglecting the second and higher orders terms in AH leads
to the following first order pertubation theory result. It gives an approximation of the exact

partition function W,
W ~ WOUBE —wm exp(—IE™ [H(Z) — H™ (Z)]) . (15)

The quality of this approximation can be investigated through the following inequality, also
called the Gibbs-Bogoliubov-Feynman (GBF) bound (Chandler 1987),

W > W™ exp(—E™[H(Z) - H™(2)]) . (16)

Therefore, we always have W > W%BF  As a first order approximation, we can expect
WEBF t0 be a closer approximation than W™ which corresponds to the zeroth order. This
is illustrated by the example in the Appendix where we compare the three quantities for a
2-color Potts model. Note that the same inequality is valid for any energy other than H™/.
However, the mean field model (12) is optimal among models with factorization property, in

the sense that it maximizes the GBF bound in (16) for such models.

5 Mean field like approximations of BIC

The mean field approach consists of neglecting fluctuations from the mean in the environment
of each pixel. More generally, we talk about mean field-like approximations when the value
at site ¢ does not depend on the values at other sites which are all set to constants (not

RR n" 4371



14 Florence Forbes , Nathalie Peyrard

necessarily the means) independently of the value at site ¢ (Celeux, Forbes, and Peyrard
2002). In Section 5.1, we apply this idea to release the computational burden when dealing
with the intractable distribution Pg(y | ¥) in BIC computation. This approach is the most
straightforward considering expression (11) of BIC and includes criterion PLIC introduced
in Stanford (1999) and recalled below. However, we will show that in practice, this does
not always lead to satisfying results. In Section 5.2, we show that approximating the whole
distribution is actually not necessary and we derive alternative criteria approximating BIC
using the first order partition function approximation (15). Experimental results confirm
the superiority of this method.

As regards the notation, we consider a model M, among R hidden Markov models (r =
1,..., R) as defined by (3) and (7) with parameters ¥, = (6,, 3,).

5.1 Approximating the Gibbs distribution

A mean field like approximation of a Gibbs distribution can be defined as follows. Given a
configuration Z, set the neighbors to Zy(;y and replace the marginal distribution Pg(z | ;)
by

Py(z | 8,) = IIPa(zi|2na),B) (17)

€S

It corresponds to an observed likelihood of the form
Prpy | %) = Y f(y|20.)Ps(z | 5)
VA
= TI> fi(vi | 2,6:) Pe(zi | Zna, Br)

i€S 2

= [l Pe(yi | Zngy, O5)- (18)
i€s

We consider P;(y | U,) as a candidate for an approximation of the intractable Pg(y | ¥, )
involved in expression (11) of BIC. The flexibility of our proposition is then in the choice of
the values z. A natural candidate would be one that leads to a reasonable approximation
of Pg(y,z | ¥,). In our model, Pg(z | B,) and Pg(z | y,V,) are not available while
fly | z,60,) is. Knowing f(y | z,6,), it is enough to approximate one of the unknown
quantities, either Pg(z | 5,) or Pg(z | y,¥,), to derive an approximation of the other and
of the joint distribution. Therefore, our selection of z can be driven by the quality of the
corresponding approximation of Pg(z | 8,) or Pg(z | y,¥,). As regards the Kullback-Leibler
divergence, the approximations cannot be both optimal and satisfy the Bayes rule. It seems

INRIA
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more reasonable to base our choice on the conditional field distribution rather than on the
marginal field distribution. It has the advantage of taking the observations directly into
account. Moreover, the study of the case of the homogeneous isotropic Potts model gives
reasons disuading from using the mean field approximation on the marginal field (see Archer
and Titterington 2000 and Celeux, Forbes, and Peyrard 2002).

For computing BIC, it then remains the problem of computing the maximum likelihood

estimator U™, Let U, be an approximation of U™ An approximation for BIC is then,
BIC%(¥,) = 2log Py(y | ¥,) — d, log(n). (19)

As regards the quality of such an approximation, it is not clear whether z and U, must be
chosen independently or not. As an example, the Pseudo-Likelihood Information Criterion
(PLIC) of Stanford (1999) is a particular case of BICZ(\TIT). Indeed, if the unsupervised ICM
algorithm is used to get an estimate WM and a restoration z/°™ and then ¥, and # set to

these values, approximation (19) becomes

BIC " (U}]°M) = 2log(Pyom(y | W) — d, log(n)
= PLIC(M,). (20)

In this case ¥, and Z were computed using a single iterative procedure (ICM) which alternates
between estimating ¥, and estimating z so that the final estimates can be deduced from
one another. In this paper, we propose to use for U, the output of the EM algorithm-
based procedures described in Celeux, Forbes, and Peyrard (2002) and referred to as mean
field like algorithms in what follows. Like ICM, the algorithms alternatively produce a
configuration z and using (18) an estimation W,. We then found natural to set z to the
ones used in our procedures, corresponding either to an approximation of the conditional
mean, the conditional mode or to a simulated realization of the conditional distribution.
Based on the study in Celeux, Forbes, and Peyrard (2002), we chose simulated z through
the simulated field algorithm which showed good performance as regards hidden Markov
random fields parameter estimation and outperformed ICM in this task in most cases.
PLIC shows promising results when used to select the number of components in tests on
synthetic and real images reported in Stanford (1999). In Section 6, we report additional
results for z and WU, set to values provided by the ICM algorithm (PLIC). The results when
z and U, are obtained via mean field-like algorithms are not reported but can be found in
Peyrard (2001). They were satisfying for real data but surprisingly unstable, as regards the
number of components, on simulated data (simulated Potts models as in Section 6.1).
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In this first approach, the use of the simulated field algorithm for ¥, appears reasonable
and we will keep this estimation procedure in the next section. As regards the quality of the
approximation of Pg(y | ¥,) by Py(y | ¥,), it is not easy to assess but in what follows we

will propose a more satisfying alternative.

5.2 Approximating the partition function

In this section, the idea is to use an expression for BIC that involves only partition functions
so that the problem of approximating the Markov distributions can be replaced by that of ap-
proximating the partition functions. The advantage is that the partition function first order
approximations presented in Section 4.2 can be used and results in better approximations.
Let W(y, ¥) and W (5) be the partition functions for the conditional and marginal fields

respectively,
W(B) = > exp(—H(z|B))
W(y,¥) = ;exp(—H(Zly,\I’))-

Using notation of Section 2, it comes from

Poly | vy = 6021 0) _ [y |26) Po(z | f)

Ps(z |y, ) Ps(z |y, ¥)
that
Iy |2,0) exp(-H(z|5)) Wly, ¥)
fol 1 exp(-Hlzly, ¥) W) |
which using (9) simplifies into
Paly | ) = T (21)

Therefore expression (11) of BIC is equivalent to the following one which uses only the
partition functions W (y, ¥) and W(5),

BIC(M,) = 2logW (y, ¥™) — 2log W (B8™) — d, log(n). (22)

Let H™ (z|3) and H™ (z|y, V) denote the mean field expressions for the marginal and

conditional field energies. Using the first order approximations for the partition functions, a
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new approximation of BIC is:

BICGBF(‘i’T) = 2log I/me(y7 \i],r) — 2]Emf[H(Z\y, \i’r) - Hmf(Z|Y: ‘i’r)‘y]
—2log W™ (3,) + 2IE™ [H(Z|B,) — H™ (Z|B,)]
—d, log(n). (23)

As before, U, must be estimated and we used mean field-like algorithms and more specifically,
the simulated field algorithm (Celeux, Forbes, and Peyrard 2002). The marginal and condi-
tional mean field approximations were then computed, using this value of the parameter, by
solving the corresponding fixed point equations (13).

The expression of BIC“?¥ (23) is more satisfying than approximation BICZ (19). A way

to see the improvement is to rewrite Pyz(y | ¥,) in (18) using partition functions as in (21),

Pyly | ¥,) = %

Expressions for both quantities in the ratio are easily deduced from (17) and (6). The ratio
(21) is thus better approximated in BIC?” than in BICZ since as explained in Section 4.2,
it uses the best lower bound (16) for each partition function. Therefore, there are some

CGBF

theoretical and experimental reasons to believe that our BI is a better approximation

of the true BIC than PLIC. BIC“P¥ is based on a better approximation of Pg(y | ¥,)
and the procedure it uses to compute U, has shown to be as reliable if not better than
ICM in practice (Celeux, Forbes, and Peyrard 2002). However, note that as regards model
selection, this does not necessarily ensure that the resulting criterion would lead to better

results although the experiments reported in Section 6 tend to confirm this.

6 Experiments

In this section, the gain in approximating the partition functions (BICGBF -like criteria)
rather than the whole Markov distribution (PLIC-like criteria) is investigated. We examine
the performance of the two approaches as regards the problem of choosing the number
of classes in the segmentation. We report experiments on three types of images. For all
examples, the observed images are considered as realizations of the simple following hidden
Markov model. The distribution of the hidden field is supposed to be a K-color Potts
model where each z; takes one of K states, which represent K different class assignments or

colors. Recall that each of the states is represented by a binary vector of length K with one
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component being 1, all others being 0. The distribution of a K-color Potts model is defined
by,

Palz|§) = W(B) " exp(8Y ), (24)
inj
where (8 is a real non-negative parameter and the notation 7 ~ j represents all couples of
sites (7,7) which are neighbors.

For the f;’s we considered Gaussian distributions. If site 7 is in class k, f; is the Gaussian
distribution with mean p; and standard deviation o,. The parameter to be estimated is
then {3,0} with 0 = {(ux,0x),k = 1,...,K}. Let Mg be the model defined above when
the number of colors is K. To assess its ability to select a relevant number K, the criterion
is computed for model My with K = K,,;, to K = K,,,,. The required estimations of
Uy for each value of K considered were obtained with the simulated field algorithm and
BICYBF (W) was computed as defined in (23). We also report values of BIC when the
images are seen as realizations of independent mixture models in order to measure the gain
of taking spatial information into account when selecting the number of classes. The EM
algorithm was used to estimate the parameters and the criterion (computed exactly in this
case) is denoted by BIC'YP. We also compared with PLIC based on the ICM algorithm as
an alternative criterion assuming a spatial model.

When not otherwise specified, the algorithms (Simulated field, EM and ICM algorithms)
were initialized using the same segmentation computed by simple thresholding. We divided
the pixel values range, in the degraded image, into regular intervals and assigned each of
them to a component. The algorithms were all stopped after N = 100 iterations.

The images used for the experiments are described below. In Section 6.1, we first compare
the criteria on fully simulated data. The models used for the simulations are the models
used for the segmentations. In Section 6.2, we consider synthetic images degraded with
some simulated Gaussian noise. The true K is known but the images are not realizations of

a known probabilistic model. In Section 6.3 real-life images are considered.

6.1 Hidden K-color Potts models

We first tested the criteria on images simulated from hidden Potts models for which the
true parameters 5 and 6 were known. We created 100 x 100 images by simulating (Gibbs
Sampling of Geman and Geman 1984) 2D K-color Potts models (24) for K = 2,...6 and

different values of 5, and then adding a Gaussian noise. We chose 3 so that the simulated
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Figure 1: Simulations of a K-color Potts model for different values of K and §: (a) K =2,
B=078,(b) K=38=09,(c) K=4,8=1,(d) K=5,8=1.

images present homogeneous regions and some spatial structure (e.g. Figure 1) for in other
cases we cannot really expect the criteria to recover the true K. For smaller values of
B typical realizations look much noisier and are visually close to independently distributed
colors. For larger values, the simulations lead to close to monocolor images whatever the true
K used for the simulations. We considered a first order neighborhood, i.e. four neighbors
for each pixel. The simulated data correspond to hidden K-color Potts models for which
0 = {(pk,0r),k = 1,... K} with gy = k and o, = 0.5, for £ = 1,... K. We used our
knowledge of a constant variance, for the K states, to fit a model and recover the true
image. For each model considered, 100 simulations were carried out. The corresponding
criteria results are reported in Table 1. It appears that criteria BICY2Y and PLIC perform
well and outperform BIC'V? which shows degradation in selecting the right number of colors
when K is larger than 4. This confirms the advantage of using spatial models even through
approximations but does not enable to differentiate BIC“ZY from PLIC. More differences

appear in the next two sections.
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K=2 6=0.78 K=3,6=09 K=4(8=1
selected K | 2 selected K | 3 selected K | 3 4 |5
BIC™P [ 100 BIC™P [ 100 BICT"P [38] 62 |0
PLIC 100 PLIC 100 PLIC 01000
BIC“BF | 100 BICYBF | 100 BIC®PT [ 0] 99 |1
K=53=1 K=6 =11
selected K | 4 5 |6 selected K | 4 | 5 | 6 |7
BIC™P [79] 21 |0 BIC'™P [13]8 | 7 |0
PLIC 0 [100]0 PLIC 021980
BICYBF | 0| 92 |8 BICPT [ 0] 0]99]1

Table 1: Degraded K-color Potts model: Selected K using BIC for independent mixture
models (BIC'?), pseudo-likelihood (PLIC) and mean field-like (BICS®") approximations
of BIC. The reported values are the number of times a given K is selected out of 100
experiments.

6.2 Noise-corrupted synthetic images

In this section, we consider noise-corrupted images corresponding to known values of K.
Image (b) of Figure 2 is a 128 x 128 image obtained by adding some Gaussian noise to the
4-color image (a) of Figure 2. The noise parameters are given by 6 = {(ug, 0x), k =1,...,4}
with py = k and o, = 0.5 for k = 1,...,4. The other example (Figure 3) is a 133 x 142 noise-
corrupted 2-color image. We used Gaussian densities with class-dependent variances so that
the true noise parameters are (y1,01) = (51,130) and (u2,02) = (255,300). These images
before degradation are not realizations from a known Markov field model. For estimation,
we assumed a model with second order neighborhood (i.e. the eight closest neighbors for
each pixel). The selected K are reported in Table 2. In these experiments, BICYBF and
PLIC behave differently. We observe that BIC“B¥ is better in selecting the right number of
colors for images presenting thin features (e.g. Figure 3) while they both perform well when
images are made of larger regions (e.g. Figure 2). Additional experiments were carried out

with other images containing thin lines and showed similar results in favor of BIC“?¥

6.3 Grey-level images

We eventually tried the criteria on real images for which it does not exist a true value for
K (in real-life, it is usually part of the problem to assess its value) but for which intuition

or expert knowledge could give an indication of what would be a reasonable value. As an
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(c)

Figure 2: Checkerboard image : (a) original image, (b) noise-corrupted image, (c) 3-color
segmentation using EM for independent mixtures, (d) and (e) 4-color segmentations using
the simulated field and ICM algorithms.

Figure 3: Logo image: (a) original image, (b) noise-corrupted image, (c¢) and (d) 2-color
segmentations using EM for independent mixtures and the simulated field algorithm, (e)
3-color segmentation using ICM.

RR n" 4371



22 Florence Forbes , Nathalie Peyrard

Checkerboard image Logo image
criterion | selected K criterion | selected K
BICTVP 3 BICTNP 2
PLIC 4 PLIC 3
BICCBF 4 BICCBF 2

Table 2: Noise-corrupted synthetic images: Selected K using BIC for independent mixture
models (BIC'VP), pseudo-likelihood (PLIC) and mean field-like (BIC“?") approximations
of BIC.

illustration, Figure 4 (a) is an aerial 100 x 100 image of a buoy against a background dark
water and Figure 5 (a) is a 128 x 128 PET image of a dog lung (see Stanford (1999) for more
details on their nature and origin).

For the first image, we suspect that 2 is a relevant value for K. Image 4 (a) presents
some artifact (horizontal scan lines from the imaging process). Some pre-processing step to
remove this known artifact could be carried out as in Stanford (1999) but we tested here
the criteria on the raw data. The selected K are shown in Table 3 and the corresponding

CYBE performs much better than PLIC which selects a too

CIND

segmentations in Figure 4. BI
large number of components while BI probably suffers from not taking into account the
spatial information, as can be seen on segmentation (d). These results were obtained using
basic thresholding to produce initial segmentations for the estimation algorithms (simulated
field and ICM algorithms). We tried BIC®®¥ and PLIC with more refined initializations
using the independent mixtures EM algorithm segmentations as first images. This can be
seen as a pre-processing step. The selected K was then 2 for BICYZY (Figure 4 (c)) but still
too large (7) for PLIC which leads to a meaningless segmentation (Figure 4 (f)).

For the dog lung image, the aim is to distinguish the lung from the rest of the image
in order to measure the heterogeneity of the tissue in the region of interest. Only pixels in
this delimited area will then be considered to compute a heterogeneity measure, such as a
coefficient of variation. PLIC and BIC“P¥ select rather different K with again a too large
value for PLIC (Table 3). The corresponding segmentations are shown in Figure 5 (b) and

CYPF and the simulated field algorithm is

(f). The 3-color segmentation obtained using BI
the more satisfying as regards interpretation. It shows one color for the background and two
for the lung itself. This is not surprising since the image is constructed based on radioactive
emissions from gas in the lung. The two segments account for the high gas density in the

interior of the lung and the somewhat lower gas density around the periphery. BIC!NP

INRIA



Hidden Markov Models Selection Criteria based on Mean Field-like approrimations 23

(d) (e) (f)

Figure 4: Buoy image : (a) original image, (b) and (c) 3 and 2-color segmentations using
the simulated field algorithm respectively initialized by thresholding and EM for indepen-
dent mixtures, (d) 4-color segmentation using EM for independent mixtures, (e) and (f) 6
and 7-color segmentations using ICM respectively initialized by thresholding and EM for
independent mixtures.

Buoy image Dog lung image
criterion | selected K criterion | selected K
BIC™VP 4 BIC™VD 3

PLIC 6 PLIC 6
BIC“FF 3 BIC“PF 3

Table 3: Grey-level images: Selected K using BIC for independent mixture models (BIC'V?),
pseudo-likelihood (PLIC) and mean field-like (BIC“?¥) approximations of BIC.

also selects 3 colors but the corresponding segmentation is rather different focusing more
on the artificial background circle. We then also computed BIC®®¥ and PLIC using the
independent mixtures EM segmentations instead of the ones obtained via thresholding as

initializing images but noticed no significant difference.
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Figure 5: PET Image of a dog lung: (a) original image, (d) 3-color segmentation using EM
for independent mixtures, (b) and (e) 6-color and 3-color segmentations using ICM, (c) and
(f) 6-color and 3-color segmentations using the simulated field algorithm.
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7 Discussion

In the context of Markov model selection, starting from BIC as our selection criterion, we
proposed using mean field-like approximations to deal with the computation of the intractable
Markov distribution in BIC expression. More specifically, one of our contributions was to
notice that BIC could be rewritten in terms of partition functions for which a first order rather
than zeroth order mean field approximation was available (Section 5.2). The advantage is
that the quality of the approximation is easier to assess since it uses the best lower bounds
for the partition functions. We introduced a class of new criteria among which we chose one,
the so-called BIC®5* (equation (23)) based on these theoretical considerations regarding the
quality of the approximation of the intractable likelihood and based on previous experimental
results as regards parameter estimation for a various types of images. First it appears that
taking spatial information into account leads to some improvements when compared to BIC
for independent mixture models (BIC'™?). Then, our criterion differentiates from PLIC
(BIC approximation based on the pseudo-likelihood) in its ability to deal better with thin
features in images. It also shows good performance on real images although we can suspect
decreasing performance in the presence of artifact (like scan lines) that the criterion may
consider as relevant information instead of noise. However this is likely to be handle by some
pre-processing step using reasonable initializations (EM for independent mixtures).

After carrying out various experiments, it appeared that a sensible procedure for model
selection would be to first perform simple procedures. For example, for selecting the number
of components into which to segment an image, a natural procedure is the EM algorithm for
independent mixtures models easy to implement and for which BIC values can be computed
exactly. In some cases, this could lead to reasonably satisfying selection and segmentation
so that users may choose not to go further. If not, as it is likely to occur for images with
significative spatial structure, the corresponding procedure could possibly be further used
to initialize more refined algorithms based on spatial models. For example, Stanford and
Raftery (2001) studied ICM and used the pseudo-likelihood approximation while we propose
to use the simulated field algorithm of Celeux, Forbes, and Peyrard (2002) and the mean
field approximation principle to compute criterion BICYBY. On the set of images tested in
our experiments, our procedure showed much better performance especially on real data. We

believe that this is mainly due to a better approximation of the likelihood in BIC¢BF (

see
the Appendix for an illustration of the superiority of the first order approximation) coupled

to a satisfying estimation of the parameter provided by the simulated field algorithm.
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This study remains somewhat limited in that it is mainly exploratory and based on ex-
periments. We did not address the question of the consistency of the various criteria. As
far as we know no such results are currently available for hidden Markov random fields. In
some recent work, Gassiat (2001) consider a maximized penalized marginal likelihood crite-
rion for estimating the number of hidden states in hidden Markov chains. Gassiat (2001)
proves a consistency result for this criterion although the marginal likelihood involved is
not necessarily close to the likelihood (they are equal only when the variables are indepen-
dent). This suggests that a good approximation of the maximized log-likelihood is not a
strong requirement to obtain consistent criteria. A key point in Gassiat (2001) seems to be
the decomposition of the criterion as a sum of identically distributed terms. The criteria
proposed in this paper can also be written as sum because of the factorization property of
the distributions involved. The generalization is not straightforward but our next step is

therefore to investigate if consistency results can be deduced in a similar way.
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Appendix: Zeroth and first order approximations for the
partition function of a 2-color Potts model

The notation is that of Section 4.2. Considering simple Potts models, our aim is to illustrate
that WEBE (equation (15)) can be a better approximation of W than the standard mean

field approximation W™/ . The energy of a Potts model can be written

- 8T dn=53d T 5.

i~ JEN(E)

it follows the zeroth order mean field approximation

H™ (2 __ﬁzz > Z

=1 jEN()
with z; = IE™/[Z;]. Then
/ Bt N 5 Lpmsgms
EYHEZIS)] = -5 Y% ¥ 7= 3BV H™(28)),
=1 jEN()
so that .
Wl = Y exp(—H™ (2]8)) = Y Y exp(Bz] Y %),
i=1 z FEN(G)
and n
WEBE — Wl exp(IE™ [H(Z|B)]) = Wmfexp(—éz:?; > 7).
2 =1 jEN(7)
Using symmetries, for all 7+ = 1,...,n, we can write Z; = m with m being, in the two-

color case, the two-component vector (mq, my)" satisfying m; + my = 1 and the following

consistency conditions,
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— exp(BNm,)
exp(BNmy) + exp(BNmy)
S exp(BNmMy)
* 7 exp(BNmy) + exp(BNmy) ’

where N = |N(7)| is the number of neighbors assumed the same for all sites.

This is equivalent to solve

exp(BNm;)
exp(BNm1) + exp(BN(1 — my))
1
T o1x exp(BN(1 —2my)) (25)

Note that if m, satisfies (25), then 1 — m; is also solution. For f < K/N, i.e. f < 2/N

there is only one solution m; = 1/2. For § > 2/N there are two additional solutions m; and

1 — my with m; > 1/2. We focus on solutions m; # 1/2. Such a solution is a non-constant
function of 8 whose closed form expression is not available. However, using (25), 8 can be

expressed as a function f of m; given by

1 1—m1

1
N(l — 2m1) Og( ma

B = flm) = )- (26)

It is easy to check that f(1—m) = f(m1) so that two symmetric solutions lead to the same
B as expected. We can also check that f(m;) tends to 2/N when m; tends to 1/2 and to
infinity when m; tends to 1. The graph of m; wrt § is shown in Figure 6.

The quantity m; appears in the expressions of W™ and W%BF  while the true W depends
only on 3. However, when W is available in closed form, using (26), the three quantities can

be expressed and compared as functions of m;. For periodic boundary conditions, it comes

W™ = (exp(BNmy) + exp(BN(1 —my)))" (27)
and
WOEE = W exp(=5 Nn(m? + (1 m)?) (28)
It follows, using (25)
log(W™) = BNnmy +nlog(l + exp(BN(1 — 2my4))) (29)

= BNnmy — nlog(m,)
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Figure 6: 1-dimensional 2-color Potts model: solutions (my,1 — m;) of the mean field con-
sistency conditions as (3 varies.

and

log(WEBF) = gNn(zxml—2m§—1)+n10g(1+eXp(5N(1—zm1))). (30)

As regards W, a closed form is not available in general. However, in the 1-dimensional

case for which N = 2 an expression of W is

W = (exp(8) +1)" + (exp(5) — 1) .
It is then easy to compare the logarithms. For N = 2,
log(W™) = 2nm B+ nlog(l + exp(26(1 — 2m4)))
log(WBF) = n(dm; — 2m? — 1)B + nlog(1 + exp(2B(1 — 2m;)))

nB -+ nlog(l + exp(—B)) + log (1 + (“ex—l’(:g)» |

log(W) 1+ exp(—f)

For 8 < 1, m; = 1/2, it comes

log(W™) = ng+nlog(2),
log(WYBE) = ng + nlog(2) .
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Figure 7: 1-dimensional (N = 2) 2-color Potts model with n = 100 sites: exact partition
function logarithm (middle curve) and two approximations for 5 > 0. The closer curve
corresponds to log W%BF and the other one to log W™/.

The corresponding graphs are shown in Figure 7.

When £ > 1 there are no analytical expression for m; as a function of § but we can plot
the graphs by inverting (26) (See Figure 7). Note that log(W™/) and log(W“PF) remain
the same when m; is changed to 1 — my. It appears clearly on the plot that log(W¢BF) is a
far better approximation of the exact log(W) than log(W™/).

For dimension greater than 1, the mean field approximation expressions (27) and (28)
are still valid but the computation of the true W is exponentially complex. We restricted
then to a 3 x 3 grid, i.e. n = 9 sites and considered successively N = 4 and N = 8 neighbors.

For N = 4, the exact partition function is,
W = 102exp(63) + 144 exp(85) + 198 exp(1085) + 48 exp(123) + 18 exp(145) + 2 exp(1853) .
For N =8, it comes

W = 252exp(165) + 168 exp(1803) + 72 exp(220) + 18 exp(285) + 2 exp(3613).

The partition function logarithm and its approximations are shown in Figures 8 and 9.
In the general case, when $ tends to infinity, W behaves (if K denotes the number of colors)
as K exp(nN(/2), which is the dominant term in the sum over all possible configurations.
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Figure 8: 2-color Potts model on a 3 x 3 grid, N = 4 neighbors: exact partition function
logarithm (middle curve) and two approximations for § > 0. The closer curve corresponds
to log WEBF and the other one to log W™/,

The term nN/2 is the maximum number of homogeneous cliques. It occurs for each of
the K monocolor configurations. Therefore, when § tends to infinity log(1W) behaves as
nNB/2 + log K. When looking at expressions (29) and (30) it appears that when 3 tends
to infinity, m; tends to 0 or 1 and in both cases log(W™/) behaves as nN3 and log(W“BF")
as nN(3/2. This suggests ways to improve the approximations. The log(2) = 0.69 difference
between log(W) and log(W“BF") appears more clearly on Figures 8 and 9. Again, log(W “BF)
appears to be a much better approximation of log(W) than log(W™/).
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Figure 9: 2-color Potts model on a 3 x 3 grid, N = 8 neighbors: exact partition function
logarithm (middle curve) and two approximations for 8 > 0. The closer curve corresponds
to log WYBF and the other one to log W™/,
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