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Modéles Auto-Associatifs et Analyse en Composantes
Principales Généralisée

Résumeé : Dans cet article, nous proposons les modéles auto-associatifs (AA) comme can-
didats a la généralisation de ’analyse en composantes principales (ACP). Les modéles AA
ont été introduits en analyse des données du point de vue géométrique. Ils reposent sur
I’approximation du nuage des observations par une variété différentiable. Nous proposons
ici une interprétation en termes de modéles de poursuite de projection en régression adaptés
au cas auto-associatif. Nous établissons leurs propriétés théoriques et montrons comment
elles étendent celles de ’ACP. Nous proposons également un algorithme de construction
itératif dont nous illustrons le fonctionnement sur données simulées d’une part et données
réelles issues de ’analyse d’images d’autre part.

Mots-clés : Modéles auto-associatifs, analyse en composantes principales, poursuite de
projection, régression.



AA Models and Generalized PCA 3

1 Introduction to auto-associative models.

Principal component analysis (PCA) [23] is a widely used method for dimension reduction
in multivariate data analysis. It benefits from a simple geometrical interpretation. Given a
set of points from R? and an integer 0 < d < p, PCA builds the d-dimensional affine sub-
space minimizing the Euclidean distance to the scatterplot [29]. Starting from this point of
view, many authors have proposed nonlinear extensions of this technique. Principal curves
or principal surfaces methods [19, 7] belong to this family of approaches. PCA can also be
interpreted in terms of Projection pursuit [22, 24]. It builds the d-dimensional affine sub-
space maximizing the projected variance [21]. Indeed, the introduction of other criteria than
the variance leads to various data exploration methods [12, 28]. In PCAIV-Spline (Princi-
pal component analysis of instrumental variables [9]) and curvilinear PCA [1] approaches,
the introduction of nonlinear transformations of the coordinates is combined with a criteria
of projected variance on the transformed data. Finally, it is also possible to associate a
Gaussian probabilistic model to PCA [30], the affine subspace is then obtained through a
maximization-likelihood estimation. This approach can lead to new dimension-reduction
methods by considering some non Gaussian models, such as mixture models.

The extension of PCA to the nonlinear case without losing these interpretations is a difficult
problem. Moreover, the definition of a satisfying probabilistic model is often impossible
without specifying the observations distribution. As a consequence, such a method would
be very specific and thus of little practical interest. Besides, the introduction of nonlinearity
can lead to lose the geometrical interpretation of the model and the related concepts of
principal variables, principal directions or residual inertia. Furthermore, the introduction of
nonlinearity often yields existence, unicity and implementation problems.

We propose the auto-associative (AA) models as candidates to the generalization of PCA.
A A models have been introduced in [15] from a geometrical point of view. They are based on
the approximation of the observations scatterplot by a manifold. We show here that these
models can also be interpreted as Pursuit Projection Regression models (PPR) [11, 25]
adapted to the auto-associative case. Consequently, we propose a simple algorithm, similar
to an iterative PCA, to implement them. We propose as well a probabilistic framework
permitting to prove many theoretical properties.

First, we consider PCA from the Projection Pursuit point of view. If X is a R? random
vector with finite second order moment, it can be expanded as a sum of d orthogonal random
variables and a residual by applying iteratively the following steps: [A] computation of the
Axes, [P] Projection, [R] Regression and [U] Update (for a proof, see Section 3.1) :

RR n° 4364



4 Girard € Iovleff

Algorithm 1.1
e For j =0, define R® = X —E[X].
e Forj=1,...,d:

. P i—1\2
[A] Determine o’ = arg ;ré%]E[@,R] ) ]

u.c. |lz]| =1 and (z,a*) =0, 1 <k < j.

[P] Compute Y7 = (a’, RI1).

[R] Determine b/ = argfel%ng [HRFl - Yj:cH2] uc. (z,a7) =1,
(we find b = a’ ) and define s7(t) =tb/, t € R.

[U] Compute RI = RI~1 — s3(Y7).

The vectors a’ are called the principal directions, the random variables Y7 the principal
variables, the functions s/ the regression functions and the random vectors R the residuals.
Step [A] consists of computing an axis perpendicular to the previous ones maximizing a
given criteria: Here the projected variance. In our opinion, this is an arbitrary choice when
X is not Gaussian. Step [P] consists of projecting the residuals on this axis to determine
the principal variables, and step [R] is devoted to the search of the linear function of the
principal variables best approaching the residuals. Moreover, the limitation to a class of
linear functions can be a too restrictive choice as soon as X is not Gaussian. Step [U]
simply consists of updating the residuals.

AA models extend the previous algorithm by considering more general steps [A] and [R].
Step [A] is considered as a Projection Pursuit step, where many different criteria can be
implemented. Step [R] is seen as a regression problem that can be addressed by general
tools such as spline or kernel estimates. We show that this kind of generalization benefits
from PCA main theoretical properties (construction of an exact model, decrease of the
residuals, ...) or extends them (approximation of the scatterplot by a manifold instead of a
linear subspace).

This article is organized as follows. In Section 2, auto-associative models are defined and
their main properties are given. Two particular AA models are presented in Section 3 and
their characteristics are studied. In Section 4, we review different criteria coming from Pro-
jection Pursuit algorithm and adapted to the framework of AA models. Several methods to
estimate the regression functions are also presented. Finally, some illustrations are provided
in Section 5 both on simulated data and for an application to image analysis.

2 Auto-associative models.

In a first time, we define auto-associative models as well as some related objects. In a second
time, we propose an algorithm to compute them and establish its theoretical properties.

INRIA



AA Models and Generalized PCA 5

2.1 Definitions

Definition 2.1 An application F: R? — RP is auto-associative of dimension d, if there
exist d unit orthogonal vectors a’ and d functions s?: R — RP such that

1
F = (IdRp — st OPad) o...0 (IdRp — st OPa1) = H (IdRp —s* OPak) ,
k=d
P,iosl =1Idge and P, os? =0, 1 < k < j <d, with P,;(z) = (a’,z). The vectors al
are called the principal directions, the functions s? are called the regression functions and
we note F' € Ais.

In the following, for sake of conciseness, the product will represent the composition. The
proof of the following lemma can be found in [13].

Lemma 2.1 Consider F € A%, and suppose that the s, j = 1,...,d are C*(R,RP). Then,
the equation F(z) = 0 defines a differentiable d-dimensional manifold.

Consider a square integrable random vector X € RP defined on a probability space (2, F, P).
We note Px the law of X on RP, and L% (R, R?) the set of the functions s from R to R?
such that s o P, is Px square integrable for every normed vector a € RP.

Definition 2.2 X wverifies a d-dimensional auto-associative model with principal directions
(a',...,a%), regression functions (s',...,s%) and residual ¢, if X verifies F(X —p) = ¢
where F' € A;{s, 1 € R and where € is a centered random vector.

Besides, we say that X verifies a linear AA model when the regression functions are linear.
Let us give two simple examples of auto-associative models:

e Every X satisfies a 0-dimensional AA model (choose F = Id, p = E[X] and € =
X —E[X]). We then have Var [||e||2] = Var [||X||2].

e Similarly, X always satisfies a p-dimensional AA model. In this case F = 0, y = 0 and
€ =0 yield Var [”E”Z] =0.

In practice, it is important to find a balance between these two extreme cases by constructing
a d-dimensional model with d < p and Var [||6||2] < Var [||X ||2] For example, in the case

where X is centered with a covariance matrix ¥ of rank d, it satisfies a d-dimensional linear
A A model with a null residual. Indeed, note a?, j = 1,...,d the eigenvectors of ¥ associated
to the positive eigenvalues. We show in Corollary 3.1 that

1 d

F(z) = H (Idg» — Ppra*) (z) = 2 — Z (a*,z) a*

k=d k=1

RR n° 4364



6 Girard € Iovleff

with € = 0 P-.a.s. define a linear auto-associative model for X. This is the expansion of X
obtained by PCA.

We now propose an efficient algorithm to build some auto-associative models which are
not necessarily linear, with small dimension and small residual variance. In this aim, we
introduce two definitions:

Definition 2.3 A set S(R, R?) of measurable functions from R to RP is admissible whenever
it is a closed subset of L% (R RP) and it verifies the following condition:

(R) : { VbeRP se€SRRP)=s+be S(RRP)

’ Idrb € S(R,R?).

(R) can be interpreted as an invariance condition with respect to translation. A possible
choice of S(R,RP) is the set of affine functions from R to RP. This example is treated in
detail in Section 3.1.

Definition 2.4 Let a € RP be an unit vector. An index I: R — R is a functional measuring
the interest of the projection of the random vector X on a (i.e. {a, X)) with a non negative
real number.

A possible choice of I is I({a, X)) = Var [(a, X)], the projected variance. Some other exam-
ples are presented in Section 4.2.

2.2 Construction of auto-associative models

Let S(R,R”) be a set of admissible functions and d € {0,...,p}. Consider the following
algorithm:

Algorithm 2.1
e For j =0, define uy =E[X] and R® = X — p.
e Forj=1,...,d:
[A] Determine o/ = arg gé% I(<x,RJ‘*1>)
we ||z|| =1, (z,a*) =0, 1 <k < j.
[P] Compute Y7 = (a/, RI"1).

[R] Choose s? € argseg(lnizr,lw)E [HRJ'*I - S(Yj)Hﬂ u.c. P,josi =1d.

[U] Compute R = RI-' — s3(Y7).
We prove in Theorem 2.1 that this algorithm builds a d-dimensional auto-associative model.
We also show that it builds an exact representation of X in p iterations.

It is clear that step [R] strongly depends on the choice of S(R, RP). The existence of a solution
to the minimization problem is established thanks to the conditions imposed on S(R,R?).

INRIA



AA Models and Generalized PCA 7

In particular, condition (R) ensures that there exist some functions in S(R, R?) verifying
the constraint of the minimization problem. The unicity of the solution is not established
without an additional convexity condition. In this paper we focus on two extreme cases.
The choice S(R, R?) = A(R, R?), the set of the affine functions from R to R? is examined in
Section 3.1, and the choice S(R, R?) = L% (R, RP) is considered in Section 3.2. The choice
of the index I is discussed in Section 4.2.

Theorem 2.1 Algorithm 2.1 builds a d-dimensional AA model with principal directions
(a',...,a%), regression functions (s',...,s%) and residuals ¢ = R%. Moreover, when d = p
then ¢ = RP = 0 and the exact expansion holds:

p
X =E[X]+)_ s*(V*), P—as.
k=1

Note that these properties are quite general, since they do not depend neither on the index I,
nor on the subset of admissible functions S(R, R?). We provide in Section 3 a few additional
properties corresponding to some particular choices of I and S(R, R?).

We first prove the following proposition:

Proposition 2.1 The residuals and the regression functions obtained with Algorithm 2.1
verify the following properties :

(i) Forall1<j<d,E[RI| =E[YI] =E[s/(Y7)] =0.
(ii) For all1 <k <j<d, (a*,R7) =0, P-a.s.
(iii) For all1 <k < j <d, (a*,s7(Y?)) =0, P-a-s.
(i) The sequence of the residual norms is P-a.s. non increasing.
Proof :
(i) The proof is done recursively on j. Let us note H; the hypothesis E [Rj] =0. It is

clear that Hg is true. Suppose H;_; is verified. We thus have,
E[RI] =E[R '] —E[s/(Y7)] = —E[s (Y7)].

Now, s/ is a solution of step [R] and then E[s7(Y7)] = 0. This last equality can
be proved by contradiction. If E[s7(Y7)] # 0, then introduce p/ = E[s/(Y7)] and
s = s —pd. Since (a’,s’) =1d and E[Y?] = E[(a’, R"~')] = 0 by H;_;, we have
(a?, ) = 0 and thus we also have (a/,s”) = Id. Moreover, from condition (R), we
have s/ € S(R,RP), and therefore

B[R -] <E[|R -5 (0]

since R/~! is centered. This contradicts the hypothesis of minimality of s/, As a
conclusion, E[RI] = —E [s/(Y7)] = 0.

RR n° 4364



8 Girard € Iovleff

(ii) and (iii) The proof is also done by induction on j. Note H; the hypothesis V& < j, (a*, R7) = 0.
H; is true since

(a',R*) = (a*,R°) — {a,s'(¥")) =Y -Y! =0.
Suppose H;_; is verified and let us prove H;. For k = j, we have
(a/,R7) = (!, R ") = (a?,s? (V7)) =Y! - Y7 =0.
For k < j, we have with H;_;:
(a*, R7Y = (a*, R77") — (a*, 87 (Y7)) = (a*, 87 (Y7)).
Now, s/ is a solution of step [R] and thus minimizes

| R~ - sj(Yj)H2 = (a*, 77! — sj(Yj)>2 + E (a', RI~' — sj(Yj)>2 .
itk
From H;_; and condition (R), the minimum is reached for a function s’ such that
(ak,s7) = 0 (the proof is done by contradiction as in (i)). To conclude, (a*, R7) =0
and (ak, s’) = 0, which both prove H; and (iii).

(iv) Consider j > 1 and s € S(R,R?) given by s = (s/,a’) a’. We have

IR = R - s o))
< P -So))
= i (a*, RI7 — (V7)) 4 (af, RI~ — 9 (V7))
k=1
+ z”: (a*, RI7T — 5 (Y7))?.
k=j+1

The first term is null in view of (ii). Condition (a’,s’) = Id entails that the second
term is null too. Finally, in view of the definition of s'7:

p P
I < 3 (@R -y = Y ) <
k=j+1 k=j+1

|
The proof of Theorem 2.1 is now straightforward. It only remains to show that R? = 0
P-a.s. In view of (ii) and Proposition 2.1, R? is orthogonal to a R? basis, and therefore it is

P-a.s null.
The following corollary will reveal useful to choose the dimension of a model.

INRIA
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Corollary 2.1 Let Q4 be the information ratio represented by the d-dimensional AA model:
2
Qu=1-E[|R|] /var [IxIP] .

Then, Qo =0, @, =1 and the sequence (Qq) is non decreasing.

3 Two particular auto-associative models.

We consider two important cases in practice where step [R] has an explicit solution: the
linear auto-associative models (LAA) and the auto-associative regression models (AAR).
Clearly, these models inherit from the properties established in the previous section. In
both cases, we precise these general properties by giving some further characteristics.

3.1 Linear auto-associative models

We focus on the case where S(R,R?) = A(R, R?). From Proposition 2.1(i), it is straightfor-
ward that we can restrict ourselves to linear regression fonctions s i.e. such that s(t) = tb,
t € R, b € RP. Thus, step [R] can be rewritten as:

[R] Find ¥/ = arg Hé%a]E IR~ = Y7z|]*], ue (af,z) =1,

and we have a result similar to Theorem 2.1:

Theorem 3.1 Algorithm 2.1 builds a d-dimensional LAA model with regression functions
si(t) = tbi. Moreover, for d = p, the following expansion holds:

p
X =E[X]+ ) Y**, P-as.
k=1
and the principal variables Y*, k=1,...,p are orthogonal.

We first prove the following properties.

Proposition 3.1 Let X7 be the covariance matriz of R7. The regression functions and the
principal variables obtained with Algorithm 2.1 share the following properties :

(i) For all1 < j <d, b =%¥I"1al /(taISI~1ad).
(ii) For all1< i< j<p, E[YiYi] =0.

RR n° 4364
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Proof :
(i) Let L£(z, ) be the Lagrangian associated to the minimization problem of step [R]:

L(x, \) [”R’ ! Yj:c||2] +A({al,z) —1).
Annulating its gradient with respect to z, we obtain the equation
2B [R1Y7] - 2:2E V7] + Ao/ =0,
and projecting on the axis a’, it yields A = 0 leading to

v =E[R Y] /E[Y7?] = %9 1ad (el ST Tad).

(ii) The result can be proved by induction by noting Hy : E[YY/] =0,1<i < j <k.
H; is straightforwardly true. Let us suppose that Hy is true and prove Hy4;1. The
random vector X can be expanded as :

k
X =E[X]+ > Y + R*. (1)
i=1
Hence, by projection,
k
(X _E[X] ,ak+1> _ Zyi <bi,ak+1> p YR
i=1
and for 1 < j < k + 1 we thus obtain:

E[YIY*] = E[Y/(X -E[X],a"")] - i E[Y*Y7] (b, ak 1)

i=1
= E[v/(X -E[X],a"")] —E[V7’] (¢/,a"*""),
by Hy. Taking into account (i), we have b/ = E[RI='Y7] /E [Yj 2] , and consequently,
E[Y/Y*'] =E[Y ("', X —E[X] - R/ ")].

An expansion similar to (1) yields

X -E[X]-R™' = ZYbz

and then -
o
E[YIY*] =Y E[YY] (a*,b') = 0
i=1
by Hy, since j — 1 < k. [ ]

INRIA



AA Models and Generalized PCA 11

Theorem 3.1 is then an immediate consequence of Theorem 2.1 and Proposition 3.1. Let us
note that, from the part (i) of the proof, the constraint of step [R] is always satisfied and
thus inactive.

Corollary 3.1 If, moreover, the index I of step [A] is the projected variance, i.e. I({z, RI')) =
Var [(m,Rj_1>], then Algorithm 2.1 computes the PCA model of X .

Proof : It is well-known that the solution a’ of step [A] is the eigenvector associated to the
larger eigenvalue A; of £9=1. From Proposition 3.1(i), we then obtain ¥ = a’. Introducing
AJ = g’ ta? we consider the induction hypothesis

k k
Hy: S =x0->"NA/, RE =R - AR

=1 =1

Hy is straightfowardly true. Supposing Hy, is true we now prove that Hy; is also true. We
have on one hand :

Rk+1 — Rk _ <ak+1,Rk> ak-l—l — Rk _ <ak+1,X> ak+1,
and on the other hand :
Ek+1 — Ek +t ak+12kak+1Ak+1 _ Ak+12k _ EkAk+1 — Zk _ )\k+1Ak+17
and thus Hyy; is true. It yields

k
Appraltt = Shah+l = 50gk+1 Z A (a?, a1y = 20gk 1
i=1

which proves that a**! is also the eigenvector of X9 associated to the eigenvalue Agyi.

Introducing the Jordan’s expansion

d
20 =" Ak,
k=1

we deduce from Hy that ¥¢ = 0 and thus that R? is almost surely constant. Since the
residuals are centered, we have R? = 0, P-a.s. and

d
X =E[X]+)_(a*, X ~E[X])a*, P-a.s. (2)
k=1
which is the expansion produced by a PCA. [ |

Remark that the auto-associative function F' associated to a PCA by (2) is linear. It is
possible to show that, conversely, PCA is the only AA model associated to a linear function
F [14].

RR n° 4364
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3.2 Auto-associative regression models

Herein, we consider the case where S(R,R?) = L% (R,R?). In this case, step [R] has an
explicit solution:

[R] s(Y7) = E[RI-HYV],

since the conditional expectation is an orthogonal projector in L% and it satisfies the con-
straint. We thus have the following result:

Theorem 3.2 Algorithm 2.1 builds o d-dimensional auto-associative model. Moreover,
when d = p, we have the exact expansion:

P
X =E[X]+ > s(Y7), P—a.s.
i=1
where the principal variables Y7 et Y11 are orthogonal, j =1,...,p—1.
We first prove the following proposition:

Proposition 3.2 The residuals and the principal variables obtained with Algorithm 2.1 ver-
ify the following properties :

(i) For all1 < j<d, E[Rj|Yj] =0, P-a.s.
(ii) For all 1 < j <d, E[YIYI*l] = 0.
Proof :

(i) Since R = RI~! — si(Y7), we have E[R? |Y?] = E[R/ ! |Y7] —E[s/(Y7) |Y7] and
consequently E [R/|Y7] =0, P-a.s.

(ii) We have E[YIYI*t!] = E[Y7 (a/*!, R7)] = E[Y7 (a/*!,E[R/|Y7])] = 0 from (i). m

Theorem 3.2 is a direct consequence of Theorem 2.1 and Proposition 3.2(ii).

4 TImplementation.

Consider a sample (X,...,X,) iid from an unknown distribution Px. The parameter p is
estimated by the empirical mean X = 1/n )" X;. The two crucial steps in Algorithm 2.1 are
[A] and [R]: the determination of the principal directions and the estimation of the regression
functions. The choices of the index I and of the class of functions S(R, R?) both determine
the nature of the obtained model and the complexity of the computation associated to the
optimization problems [A] and [R].

INRIA
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4.1 Estimation of the regression function

Remark that, when S(R, R?) is the set of linear functions from R to RP then, from Proposi-
tion 3.1, a unique solution exists and is given by ' = X9 1a?/(ta? T 1a?) where X791 is the
covariance matrix of the residual R~!. Then, b’ is estimated by replacing in this formula
¥7=1 by its empirical estimate and a’ by the estimation obtained at step [A].

In the case of AAR models, the problem reduces to estimating the conditional expectation of
RI~1 given Y. This standard problem [18] can be solved (for example) by kernel regression
[2] or spline regression [16].

Here, we have chosen a kernel estimate to deal with the simulated and real data. For an
example of the use of spline regression in a similar context, we refer to [5]. Compared to
a classical regression problem, we have a additional constraint on the function to estimate.
At iteration 7, it has to verify P,; o s/ = Id. Fortunately, in the orthogonal basis BJ of R?
obtained by completing {a',...,a’}, step [R] reduces to (p — j) independent regressions.

Hence, each coordinate k € {j +1,...,p} of the estimate can be written in the basis B’ as:
n

F(u) =Y R Kp(u—YY) ZKhu—w (3)
i=1

where R{;l represents the k-th coordinate of the residual of the observation 4 at the (j —1)-

th iteration in the basis B7, Yij represents the value of the j-th principal variable for the
observation i and the kernel K}, is for example the density of a Gaussian variable with zero
mean and standard deviation h, called window in this context. More generally, any Parzen-
Rosenblatt kernel is convenient. For an automatic choice of h, we refer to [20], chapter 6.

4.2 Computation of principal directions

The choice of the index I is the key point of any Projection Pursuit problem where it is
needed to find "interesting" directions. We refer to [22] and [24] for a review on this topic.
The meaning of the word "interesting" depends on the considered data analysis problem.
For instance, Friedman et al [10, 12], and more recently Hall [17], have proposed an index to
find clusters or use deviation from the normality measures to reveal more complex structures
of the scatterplot. An alternative approach can be found in [4] where a particular metric is
introduced in PCA in order to detect clusters. We can also mention the indices dedicated to
outliers detection [28]. We plan to combine those indices with LAA models in a next article.
In the framework of AAR models, we are interested in finding parametrization directions for
the manifold to be estimated. In this aim, Demartines [8] proposes an index that favours
the directions in which the projection approximatively preserves distances. From a similar
principle, Girard [5] proposes an index revealing the directions in which the neighbourhood
structure is invariant with respect to projection. Both criteria require complex optimization
algorithms.

We have chosen an approach similar to Lebart one’s [26]. It consists of defining a contiguity
coefficient whose minimization allows to unfold nonlinear structures. In terms of index, at

RR n° 4364



14 Girard € Iovleff

each iteration j, we have to maximize with respect to x the ratio of quadratic functions:

n

I((z, RI71)) = zn: (= R{’1>2 /Zn: > me (@, B - R}fl>2 : (4)

i=1 k=1 {=1

The matrix M = (my,) is a contiguity matrix of order 1, whose value is 1 when Rg_l is the

nearest neighbor of Ri_l, 0 otherwise. The resulting principal direction a’ is then given by
the eigenvector associated to the largest eigenvalue of the matrix Vj*_le where

n n

Vi=30 ) mu (B - RTO(RET - R
k=1 ¢=1

is proportional to the local covariance matrix. The matrix

V=3 RCR
k=1

is proportional to the empirical covariance matrix of RI~!. Vj”‘_1 should be read as the
generalized inverse of V* since it is not invertible, RJ being orthogonal to {a,...,a’} from
Proposition 2.1(ii). Note that this approach is equivalent to the one of Lebart when the
contiguity matrix M is symmetric.

5 Examples.

We first present two illustrations of the construction principle of AAR models on low di-
mensional data (Section 5.1 and 5.2). Second, AAR models are applied to an image analysis
problem in Section 5.3. In all cases, the principal directions are computed thanks to the con-
tiguity index (4). Similarly, we always use a Gaussian kernel method (3) for the regression
step [R].

5.1 First example on simulated data

The data are simulated from a distribution whose support is a one-dimensional manifold in
R3. The equation of the manifold is given by

z — (z,sinz,cos ). (5)

The first coordinate of the random vector is uniformly distributed on the interval [—3m, 37]
and n = 100 points are simulated. We use only one iteration of Algorithm 2.1. The square
cosine between the natural axis of parameterization (the x-axis) and the axis estimated in
step [A] is as high as 0.998. The window of the kernel estimate is chosen equal to h = 0.3.
After the first iteration, the residual variance equals 0.03%. The theoretical manifold, the
simulated scatterplot and the estimated manifold are represented on Figure 1 for comparison.
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Figure 1: Representation of the manifold (a), the simulated scatterplot and the estimated
manifold (b).

5.2 Second example on simulated data

The data are simulated from a distribution whose support is a two-dimensional manifold in
R3. The equation of the manifold is given by

(2,9) = (w9, 008(n /2% +y?)(1 — exp{—~64(a + y*)})) . (6)

The first two coordinates of the random vector are uniformly distributed on [-1/2,1/2] x
[—1,1] and n = 1000 points are simulated.

We limit ourselves to two iterations. The square cosine between the first natural axis of
parameterization (the y-axis) and the first estimated axis a' is as high as 0.998 and the
square cosine between the second natural axis of parameterization (the z-axis) and the
second estimated axis a? is 0.999. The window of the kernel estimate is chosen equal to
h = 0.12. After the first and second iterations, the residual variance is respectively equal to
15.9% and 2.38%.

The manifold (6) and the simulated scatterplot are represented on Figure 2(a)—(b). The first
regression function s! is plotted in blue on Figure 2(c). It approximatively represents the
shape of the scatterplot in the y-direction. It can be noted that it does not take into account
the hole induced by the exponential function. The corresponding residuals (after the first
iteration) are represented on Figure 2(e). Remark that, accordingly to Proposition 2.1(ii),
they are orthogonal to the first principal direction a!. The second regression function is
drawn in red on Figure 2(c). Figure 2(d) shows the estimated manifold after 2 iterations.
The associated residuals are represented on Figure 2(f). They are orthogonal to the two
principal directions a' and a?. In fact, they are a consequence of the poor reconstruction of
the hole due to the non additive nature of the manifold equation (6).
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5.3 Example in image analysis

Image analysis is a privileged application field for multivariate analysis [6], since an image
with M x M pixels can be represented by a vector of RP with p = M?2. Even with images of
moderate size, this yields data in spaces of extremely large dimension. PCA is a tool usually
very efficient to reduce the dimension of such data [27, 31]. However, even some very simple
deformation in the image space can lead to consequent nonlinearities in the space RP. In
such situation, the PCA efficiency is significatively decreased. This remark is the starting
point of the work of Capelli et al [3] who propose a "piecewise" PCA. The idea is to split
the nonlinear structure of R? into approximatively linear sub-structures. We study here a
database of 45 images of size 256 x 256 taken from the archive of Centre For Intelligent
Systems, Faculty of Human Sciences and Faculty of Technology, University of Plymouth. It
is composed of images of a synthesis object viewed under different elevation and azimuth
angles. A sample from the database is presented on Figure 3.

Figure 3: A sample from the image database. (a) reference image, (b-e) rotation using the
elevation angle, (f-i) rotation using the azimuth angle.

Each image is represented as a vector of dimension M? = 2562. We then obtain a scatterplot
of n = 45 points in dimension 65536. However, a simple rotation of axes allows to represent
this set of points in dimension p = 44. In the following, our aim is to compare the modelling
results obtained by a classical PCA and by AAR models. For those last ones, we select
h = 200 for the smoothing parameter. Figure 4 shows the compared information percentage
100Q4 represented by AAR and PCA models of increasing dimension d = 0,...,10 (see
Corollary 2.1).

The one-dimensional AAR model allows to represent more than 96% of the information.
As a comparison, a linear model built by PCA should be of dimension 4 to reach this
percentage. Moreover, the elbow in the curve associated to AAR models seems to indicate
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Figure 4: Evolution of the percentage of information represented with respect to the model
dimension (blue : PCA model, green: AAR model).

that d = 1 is a convenient choice. The projection of the corresponding manifold in the
linear subspace spanned by the first three PCA axes is represented Figure 5(a) where it is
superposed to the scatterplot projection. Modelling this scatterplot by a two-dimensional
manifold could also be justified since the image database is generated by rotating the object
in two orthogonal directions. The projection of the two-dimensional manifold estimated and
sampled is presented on Figure 5(b).

It is worth remarking that the principal variable Y'! associated to the one-dimensional AAR
model has a simple interpration. It corresponds to the rotation with respect to the elevation
angle. As an illustration, we simulate uniform realizations of this variable and represent
the corresponding images obtained with the one-dimensional AAR model (Figure 6). The
variable Y2 is not so easily interpretable. For this reason, the one-dimensional AAR model
should be prefered.

6 Conclusion and further work.
As a conclusion, AA models offer a nice theoretical framework to the generalization of PCA.

Moreover, they benefit from a simple implementation thanks to an interative algorithm. Its
behaviour has been illustrated by building AAR models on simulated and real data from

INRIA



AA Models and Generalized PCA 19

830

55
-720
-1300

-2000 -2000

3000

(a) (b)

Figure 5: Projections in the subspace spanned by the first three PCA axes : (a) the one-
dimensional manifold estimated and superposed to the scatterplot, (b) the two-dimensional
manifold estimated and sampled.

Figure 6: Simulation of 4 images with the one-dimensional AAR model. The variable Y! is
simulated uniformly on the interval [min ¥;', max Y;'].
(2 K3

image analysis. We also plan to compare PCA and LAA models in real situations. From a
theoretical point of view, it would be also interesting to establish the asymptotic properties
of the estimates (3) and (4) in order to propose some tests.
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