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Abstract: Various methods to derive new formulas for the Laplace transforms of some
quadratic forms of Gaussian sequences are discussed. In the general setting, an approach
based on the resolution of an appropriate auxiliary filtering problem is developed; it leads
to a formula in terms of the solutions of Voterra type recursions describing characteristics of
the corresponding optimal filter. In the case of Gauss-Markov sequences, where the previous
equations reduce to ordinary forward recursive equations, an alternative approach provides
another formula; it involves the solution of a backward recursive equation. Comparing
the different formulas for the Laplace transforms, various relationships between the corre-
sponding entries are identified. In particular relationships between the solutions of matched
forward and backward Riccati equations are thus proved probabilistically; they are proved
again directly. In various specific cases, a further analysis of the concerned equations leads
to completely explicit formulas for the Laplace transform.
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Nouvelles formules autour des transformées de Laplace
de formes quadratiques de suites gaussiennes générales

Résumé : Diverses méthodes pour obtenir de nouvelles formules pour les transformées
de Laplace de certaines formes quadratiques de suites gaussiennes sont discutées. Dans
le cas général, une approche fondée sur la résolution d’un probléme de filtrage auxiliaire
approprié est développée; elle conduit & une formule en termes des solutions de récurrences
de type Volterra qui décrivent les caractéristiques du filtre optimal correspondant. Dans le
cas des suites gaussiennes markoviennes, ot les récurrences précédentes se réduisent a des
récurrences progressives, une approche alternative fournit une autre formule; elle met en
Jeu la solution d’une récurrence rétrograde. La comparaison des différentes formules pour
la transformée de Laplace fait apparaitre des relations entre les solutions des récurrences
progressive et rétrograde correspondantes. En particulier des relations entre les solutions
d’équations de Riccati progressive et rétrograde appariées sont ainsi démontrées de maniére
probabiliste; elles sont redémontrées de maniére directe. Dans différents cas particuliers, une
analyse détaillée des équations concernées conduit & des formules complétement explicites
pour la transformée de Laplace.

Mots-clé: Suites gaussiennes. Formes quadratiques. Transformée de Laplace. Martingale.
Filtrage optimal. Erreur de filtrage.



Laplace transforms of quadratic forms of Gaussian sequences 3

1 Introduction

Quadratic functionals of Gaussian processes have been given a great deal of interest over
the last decades. Numerous results have been already reported both in the general setting
of abstract Gaussian spaces and in various specific models. Concerning continous-time
processes, specially around the Brownian motion, Laplace transforms of such functionals
have been extensively investigated further to the pioneer paper [1] of Cameron-Martin (see,
e.g., [2] - [6], [8] - [9] and references therein). Here we concentrate on Laplace transforms of
quadratic forms (Ltaf for short) of Gaussian sequences.

In what follows all random variables, vectors and sequences are defined on a given sto-
chastic basis (Q, F,P) and [E denotes expectation with respect to IP. Let us start with
the well-known fundamental formula which tells that when X is a n-dimensional Gaussian
vector with mean p and covariance matrix A, then for any n X n non negative symmetric
matrix R:

1 1 1
Bexp{— L X'RX) = {det{F, + RA}}™* exp{—Lu/[1, + RAI™ Rur) (1)

where I, stands for the n x n identity matrix. Now let (X;, ¢ = 0,1,...) be an arbitrary
one-dimensional Gaussian sequence with mean function (m;, t = 0,1,...) and covariance
function (K(¢,s), t,s =0,1,...), i.e.,

EX; =me; E(X, —m) (X, —m,) = K(2,s),

and let (Q(¢), t = 0,1,...) be any fixed (deterministic) sequence of nonnegative real num-
bers. Then of course, from the formula (1), we get immediately that for all £ > 0

1< _1 1
Eexp{—3 D Q()X7) = {det[Lyr + QiKi]} 3 exp{—gm;[le41 + QK] Qim,},  (2)

s=0
where Q, stands for the (¢ 4+ 1)-dimensional diagonal matrix with Q(s), s = 0,1,...,t as
diagonal entries, Ky denotes the (t 4+ 1) x (£ + 1) matrix ((K(r,s),r,s =0,1,...,t)) and m,

is the (¢ 4 1)-dimensional vector with components m,, s =0,1,... 1.

Here we investigate alternative forms of the expression (2) for the Laplace transform and
various methods to derive new formulas are discussed. The paper is organized as follows. At
first, in Section 2, an approach which applies to arbitrary Gaussian sequences is developed;
it is based on the matching of an appropriate auxiliary filtering problem and it leads to
a formula in terms of the solutions of Voterra type recursions describing characteristics of
the corresponding optimal filter. Then, in Section 3, the case of Gauss-Markov sequences,
where the previous equations reduce to ordinary forward recursive equations, is considered;
an alternative approach provides another formula which involves the solution of a backward
recursive equation. Comparing the different formulas for the Laplace transforms, various
relationships between the corresponding entries are identified. In particular relationships
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4 M. Kleptsyna, A. Le Breton and M. Viot

between the solutions of matched forward and backward Riccati equations are thus proved
probabilistically; they are viewed within the scope of the usual mathematical duality bet-
ween optimal control and optimal filtering. Section 4 is devoted to various specific cases
where a further analysis of the concerned equations leads to completely explicit formulas for
the Laplace transform. Finally, the auxiliary results, which are themselves of independent
interest, are investigated in Appendices A and B: the filtering problem introduced in Section
2 1s solved and identites connected with the Riccati equations are proved again directly.

2 Ltqf of arbitrary Gaussian sequences — A filtering ap-
proach

Here we continue with the general setting introduced in Section 1. From now on we use the
following notation for the Ltqf corresponding to the Gaussian sequence (X, t = 0,1,..))
and the given deterministic sequence (Q(¢), t =0,1,...) :

£(1) = Bexpl— 3 Q(s)X7)

We state our main result:

Theorem 1 For any t > 0 the following equality holds:
! i Q(s)z2
_ —-1/2 “/“s

L(t) = E[1+Q(3)7(5a3)] eXP{_EZW} ; (3)

where (y(t,s), 0 < s <1t) is the unique solution of the equation

s—1
(09 = K(:5) = 3 T gty ) 1S9 <8 20 = KGO, (0

and (zs, 0 < s <) is the unique solution of the equation

s—1
_ Q(r)y(s,r) S
Zs—ms—gmzmlfsﬁt; 2o =My . (5)

Remark 1 Observe that if mg = 0, s = 0,1,... then z;, = 0, s = 0,1,... and hence the
formula (3) reduces to:

¢
c(ty= I+ Qs)v(s, )12
s=0
Since here the formula (2) tells nothing else but

L(t) = {det[Lp1 + Q:ke]} ™12,

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 5

of course we get the identity
t
det[Li41 + QuKe] = [J[1+ Q(s)7v(s,9)] - (6)
s=0

Consequently, continuing the comparison of formulas (2) and (3) for a non centered se-
quence, it gives also the identity

t

m; [Liy1 + Q:Ki] 7' Qim, = Z

s=0

T QM)

It @s worth to emphasize that identities (6) and (7) tell that one may compute the determinant
and quadratic form appearing in the left-hand sides (and hence also the Laplace transform)
by means of running the procedures (4) and (5). These comments will be complemented in
the subsection 3.3 for the particular case of Markov sequences and also in Remark 5 at the

end of the Appendiz A.

The key point in the proof of Theorem 1 is the link between the computation of the
Laplace transform and the resolution of an appropriate filtering type problem. Recall that if
(U,Y) = ((Us,Y), t=10,1,...) is a pair of processes, supposing that only Y is observed but
one wishes to know Uy, the classical problem of filtering (resp. one-step prediction of) the
signal U at time ¢ from the observation of Y up to time ¢ (resp. t—1) occurs. The solution to
this problem is the conditional distribution of U; given the o-field Yy = o({V;, 0 < s < t})
(resp. Y:_1) which is called the optimal filter (resp. the optimal one-step predictor). Of
course, if the joint distribution of (U,Y) is Gaussian, then the optimal filter and predictor
are Gaussian distributions. Hence the resolution of the filtering and prediction problems can
be reduced to the derivation of equations for first and second order conditional moments. In
the sequel, for any random sequence U/ = (U;; ¢ > 0) such that E|U:| < oo, for all ¢t > 0
and 0 < s <t the notation m,(U;) is used for the conditional expectation of U, given Y, :

ﬂ's(Ut) = ]E(Ut/ys) .

Moreover we make the convention that m_;(U;) = IEU;.

Now we introduce the problems appropriate for computing the Ltqf. Let (g¢, t =0,1,..))
be a sequence of i.i.d. standard Gaussian random variables which is independent of the
given process (X, t =0,1,...). Let us define the auxiliary sequences (V;, ¢ =0,1,...) and
(&, t=0,1,..) by
Vi = Q)X + Qe
t (8)
£t = Z XSYS .

s=0
We shall be concerned with one-step prediction for X from Y and with filtering £ from Y.
Here, clearly the pair (X,Y) is jointly Gaussian, and hence the optimal one-step predictor

RR n~4357



6 M. Kleptsyna, A. Le Breton and M. Viot

is the Gaussian distribution defined by the conditional mean m;_1(X:) and the conditional
variance v, , (t) = E[(X: — m_l(Xt))Q/yt_l] which actually is deterministic i.e.,

Txx (t) = ]E[Xf - Wt—l(Xf)Pa 1> 1; Txx (0) = I{(an) . (9)

Of course, the joint distribution of (X,&,Y) is not Gaussian, but we observe that the condi-
tional distribution of (X;,&;_1) given YV:_1 is Gaussian. Hence, in particular, the optimal
filter for & is the Gaussian distribution defined by the conditional mean m;(¢;) and the corres-
ponding conditional covariance (which is random). Actually the other main characteristics
which is involved in the sequel is the following conditional covariance :

Ve () = EB[(Xe — w1 (Xe))(Ee—1 — me—1(E6-1))/Ve-1], > 15 74, (0) =0, (10)

Equations governing the first and second order conditional moments involved in definitions

(9)-(10) will be derived in Appendix A.
Now we can state the announced key property :

Lemma 1 For anyt =0,1,... the following equality holds:

£(0) = [T+ Q) () enpi—y 3o LITt =2l y -y

s=0 s=0

Before turning to the proof of this lemma it is worth to mention that the equality (11)
tells in particular that the quantity [m,_1(X) — v4,(s)]? is deterministic. Actually, it will
appear that the difference m,_1(X,) — 74, (s) is itself deterministic. Comparing equations
(3) and (11), it is clear that, starting from Lemma 1, to prove Theorem 1 it will be sufficient
to check that the quantities v, , (s) and 7m,—1(X;) — 'yxé(s) are nothing but (s, s) and z,
where (¢, s) is the unique solution of equation (4) and z; is the unique solution of equation
(5). This will be done in Appendix A and now we prove Lemma 1.

Proof of Lemma 1 Setting

= ,
L1 = §§Q(5)Xs )

we can write
L) Blexp {~hor — 5QWXE]) )
L(t—1) E(exp{—1;_1}) '

Let us define a new probability measure P by

t—1

t—1
dP = exp{—Ci—1}.dIP; G =D /Q(s)Xees + %ZQ(S)XE . (13)
s=0

s=0

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 7

Under IP the distribution of X is the same as under IP and X is independent of (¥, 0
t — 1). Hence we can rewrite the equality (12) as

IA
V)
IA

L) _ E(exp {—Il_1 — Q) X2} /Vi_1)
Lt—1) E(exp{—T,_1}/Y:_1) ’

where ]]:7(./)/,3_1) denotes a conditional expectation computed with respect to P. Then,
using the classical Bayes formula, again we can rewrite (12) as

L) Wexp{-Ti_1 — Q) X7} exp{—Ce—1}/Vi-1)

L(t—1) E(exp{—1li—1} exp{~Ci—1}/Vi-1)

Since from the definitions (8) and (13) we have &_1 = I;_1 + (¢—1, this means that

L(t) E(exp {—& -1 — $Q(0) X7} /Vi_1) .

L(t—-1) E(exp{—£&—-1}/Yi-1)

Now, we observe that under TP the conditional distribution of the pair (X, —1) given Y;_q
is Gaussian. But for a Gaussian pair (U, V) of random variables we have

Ee—V-3U7 91-1/2

L[EU — E(U — E(U))(V — E(V)))?

2 1+ E(U - E(U))? b

Therefore, we get

£ _ gy L QO (X0) = 9 (OF
7 = 14 QO ()7 exp{ 5= e

L(t-1
Finally, this gives immediately equation (11) which achieves the proof of the lemma. |

}.

Before turning to more particular examples (see Section 4), now we analyze the case of a
general Gauss-Markov process.

3 Ltqgf of Gauss-Markov sequences — Two approaches

In this part we concentrate on the case of a Gaussian AR(1) process X, i.e., a Gauss-Markov
process driven by
1/2~
Xe=AXeoi+ D5 t> 1, Xo=1, (14)
where (&;, t = 0,1,...) is a sequence of i.i.d. standard Gaussian random variables which
is independent of the initial condition . Moreover 7 is assumed to be a Gaussian variable
with mean mq and variance k(0) and (A¢, ¢t > 1), (Dy, t > 1) are (deterministic) sequences

RR n 4357



8 M. Kleptsyna, A. Le Breton and M. Viot

of real numbers such that Dy > 0 for ¢ > 0. In this setting, it is easy to check that the mean
and covariance functions of X are given by

t

my = [[] Aulmo; K(t,s)=[ [[ AuJk(s), 0<s<t,

u=1 u=s+1

where

k() = (T A%k + X0 TT 4810., 2 >0,
u=1 s=1 u=s+1

2:1 = 0 and Htu:t-l-l = 1 are made. Of course, inserting this into

the formula (2), one obtains a first expression of the Ltqf. Now we investigate alternative

and the conventions

forms.

3.1 Forward approach

Here, as an immediate consequence of the filtering approach developed in Section 2, we get
a second formula for the Ltqf :

Corollary 1 For allt > 0 the following equality holds :

t

_ )y -2 ex 1 : Q(s)Z:m3 ;
L:(t) _EJ[1+Q( )78] p{ ¢ ; 1+Q(S)7s}’ (]5)

where (s, 0 < s <) is the unique solution of the equation

_ Az')/s—l
T Qs — Dy

and (Zs, 0 < s <) is defined by

+D;, 1<s<t; 5 =k(0), (16)

s A,
7, =
E 14 Q(T‘ - 1)7r—1

,0<s<t. (17)

Proof At first, we notice that the corresponding one-step prediction problem for X in
view of YV is quite standard (see, e.g., [8]) and it is well-known that the variance v, (s) is
nothing else but the solution 7, of the Riccati type equation (16). Then one can check that
the solution of equation (4) is given by

t A,
7(1‘,8) = [ ].__[ 1+ Q(T— 1)7T—1]75~

r=s+1

Moreover, inserting this into (5), it is readily found that z, is also given by z, = Z;mqo with
Zs given by (17). Then, from (3), we get (15) immediately. |

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 9

Remark 2 (a) Observe that (Z,, 0 < s <1) defined by (17) is nothing else but the solution
of the recursive equation

1+ Q(S - 1)’75_]

Then Remark 1 can be revisited in terms of the procedures (16) and (18) to compute the
left-hand sides of (6) and (7).

(b) Clearly the above filtering approach to derive the Ltqf, which here leads to the expression
(15) in terms of the solutions of the ordinary forward recursions (16) and (18), is really a
forward approach in the sense that it is based on a recursion giving L(t) in terms of L(t —1)
(see the proof of Lemma 1).

Zs Zs_l,]gsgt; Z():] (]8)

3.2 Backward approach

Now we turn to a backward approach which leads to an expression of the Ltqf in terms of
the solution of a backward recursion. Precisely, we have the following alternative expression
for the Ltqf :

Theorem 2 For allt > 0 the following equality holds :

= -1/2 —1/2 1 F(t,O)mg
L(t)= [0+ Dra Tt v+ D171+ k(0)T(2,0)] eXP{—im}a (19)

where (T'(t,s), 0 <s <t+1) is the solution of the equation

ALl s +1)

I'(t,s) =
08 = T D T s+ 1)

+Q(s), 0<s<t; D(tt+1)=0. (20)

Proof We introduce the quantity £(¢;s, z) as the analogue of the Ltqf £(¢) for an AR(1)
process X*® which is driven by the same equation as X but starts at time s < ¢ from a
fixed point z | z.e.,

1 d s,x\2
Lt;s, z) = Eexp{—§ZQ(r)(Xr’ )’}
Clearly, due to the Markov property, we have
1 s,r
£(t:5,2) = exp{—5Q(s)2* BL (155 41, X53).
where the distribution of Xssfl is Gaussian with mean A 412 and variance Dgyq1. Recall

that the fundamental formula (1) says in particular that if U/ is a real Gaussian random
variable with mean y and variance o then

A . 1
Eexp{—gUQ} =[14+ X% = exp{—i[l + A7 A\’ A >0.

RR n~4357



10 M. Kleptsyna, A. Le Breton and M. Viot

Then, looking for £(¢;s, ) in the form
1 2
L(t;s,z) = exp{—ir(t, s)x’}rg,
it is readily seen that T'(¢, s) and r, must satisfy (20) and
rs = [14+ D1 T(t, s + 1)]_1/2rs+1 ,0<s<t; rmy1=1.
So, we obtain
d 1
L(t;0,2) = H[l + Doy 1 T(t, 7+ 1)]_1/2exp{—§l"(t, 0)z%} .
r=0
But, since of course we have also
L(t) =EL(t;0,n),
again using the one-dimensional version of (1), we can easily conclude that (19) holds. W

Remark 3 (a) Again Remark 1 can be revisited in terms of the procedure (20) to compute
the left-hand sides of (6) and (7).

(b) Actually the equation (20), involved in the expression of the Ltqf which has just been
deriwved through the backward approach, belongs to the world of optimal control. Namely, let
us consider the stochastic optimal control problem for a signal S governed by

Sy = AsSs_ 1+ B Ugds+V,, 1<s<t, So==u,

where V is a Gaussian noise with EV,V, = §,,D, and U is the (adapted) control policy,
with the payoff

QST+ R(s)U2)

Then (see, e.g. [8]), if B>/ R = D, the quantity —log L(t; 0, z) is nothing else but the minimal
cost and moreover the optimal policy is given by a feedback which can also be expressed in
terms of T'(t,s).

3.3 Matched Riccati recursive equations

It has been mentioned in Remarks 2 and 3 that the Riccati equations (16) and (20) belong
to the world of optimal filtering and to the world of optimal control respectively. Usually,
links between matched forward and backward Riccati equations come naturally within the
scope of the mathematical duality between these two worlds in the linear-quadratic Gaussian
theory of dynamical systems. It is the case here since it is readily seen, from the formulas
(15) and (19) for the Ltqf, that the following statement holds :

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 11

Corollary 2 The following relations hold:

TT0 + Q) = TT11+ Dt Tt s+ DI[1 4+ KOT(,0)], (21)

L+Q(s)ys 1+k(0)L(¢,0)°

Z Q(S)ZSZ F(tao) (22)
s=0

Actually we can give direct proofs of the identities (21)-(22) which have just been derived
probabistically. This is done in Appendix B.

4 Particular cases

In this part we investigate some examples of processes X for which we can provide completely
explicit formulas for the Laplace transform

t
L(t;p) = Eexp{—%zxf}, p>0.
s=0

In the further analysis of these examples, a common key point is the resolution of a Riccati
equation of the form (16) using the so-called linearization method. We shall be concerned
only with the case when coefficients A, are all nonzero and of course here Q(s) = p for all
s. Then, if the pair ((¥!, ¥?), s =0,1,...) is governed by the linear recursions

Lo — A~ gl -1 y2 1 _
{ \Ils‘l'l - As+1\IJs + /’LA3+1\IJS ) \IJO =1 (23)

\Ijz-l-l = Ds+1\II§+1 + As+1\IJ§ ) \Il% = k(o) ’

the corresponding solution (¢, ¢=0,1,...) of (16) is given by v; = (¥})~1W¥Z. Moreover,
the following equality holds:

t t+1
[T+ m3) = ([T Adwiss (24)
s=0 s=1

Now we turn to the examples, beginning with Markovian cases.

4.1 Homogeneous first order autoregressive processes

Here, for some fixed real number § # 0, in the AR(1) model (14), we take A; = 6 and D; = 1,
i.e., X¢ = 0X;_1 + &. Of course, if the initial condition n has mean mg and variance k(0),
then the mean and covariance functions of X are given by

my = 0'mo;  K(t,s)=0""k(s); k(s) =07 k(0)+ Y _0°CY.
=1

RR n 4357



12 M. Kleptsyna, A. Le Breton and M. Viot

Solving (23) for k£(0) = 0 we obtain

(1= A)AL + (Ap — 1AL

\Iltlzg_t VY ,

where

ptl+60/p+ 0+ (kr+0-1)7)

AL =
* 2

Homogeneous AR(1) process starting from zero — If we take n = 0, i.e., mg = 0 and k(0) = 0,
then from Corollary 1 and (24) we get immediately the correspondlng Laplace transform,
Lo(t; p) say, as
L= 20N + (g — DA
Lottigg = 1! ) 5 §‘+ )

+ - -

This is nothing else but the result obtained in [7] through another approach. It is interesting
to note that for § = 1, 7.e., when X 1s simply a random walk, we have the limiting behavior

}—1/2 )

Jim Lo((N1]; ) = (cosh(ut)) ™/,

Actually, since the sequence {N‘1/°X[Nt] t > 0} converges in distribution to a standard
Brownian motion B, not surprlslngly this limit gives the well-known Cameron-Martin for-
mula for the Laplace transform of fo B2 ds (see, e.g., [1] and [6] for other approaches to this
result).

Homogeneous AR(1) process starting from @ — Now, for some real number z # 0, we take
n=uw,ie, mg=a and k(0) = 0. In order to apply Corollary 1 we need to calculate the
quadratic form involving Z; which satisfies (17). From (17) and (24), we get that Z, = 1/wl,
Then it can be checked that

t

+/ws HTRTE 7

Hence, applying (15), we obtain the Laplace transform, £, (¢; u) say, as

B i 5 (1—)\_)/\3_+(/\+ —1)AL
La(t, 1) _,Co(t,/i)exp{— B) {N+6 [1— (1 _/\_))‘T-l + (A — ])/\t_+1]}} : (25)

Stationary AR(1) process — Finally, we deal with the case where —1 < # < 1 and the
process X is stationary. It means that for n we choose the mean mg = 0 and the variance
k(0) = 1/(1 — 6?). Of course here the Laplace transform can be computed as

L(t;p) =ELy(t; p),

where L (t; ) is given by (25). Then, integrating the right hand side of (25) with respect
to the distribution of 7 it is readily seen that

Lt 1) = {dy A5 4 doXTFTy 2,

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 13

where

L Y V[ VS WS PR HY ) W et WD WO

Note that this formula can also be derived directly from (15) and (24) by the resolution of
(23) with the initial condition 1/(1 — 6?) for 2.

4.2 Gaussian bridge between 0 and NV

Here, given a sequence (W;, t =1,..., N) of i.i.d. standard Gaussian random variables, we
consider the process X defined by:

t

N
Xt:ZWS—%ZWs; 0<t<N.

s=1 s=1

Clearly, by the definition, we have Xq = 0 and Xy = 0 and the process X can be seen as
a discrete time analogue of the standard Brownian bridge, which we may call the Gaussian
bridge between 0 and N. Actually X is a centered Markovian process with the covariance
function

4
K(t,s):s(l—ﬁ); 0<s<t<N.

It is easy to check that it is a nonhomogeneous AR(1) process driven by (14) with A, =
Dy = (N —t)/(N + 1 —1t). The resolution of the corresponding equation (23) leads to
1
U= ———{(04"" = 0TF") — (4 Apg1) (64 — L)}, 0<E < N -1,
pu(p+4)

where

5y = pt+2+plp+4)
= 9 .
Then, applying (15) and (24), we can obtain the Laplace transform as

5t+1_(5t+1 t _ st
Lm=10- ) ) % m
p(p+4) p(p+4)

Again we have the limiting behavior

}—1/2 )

sin -l
J\;E%OE([NH;%): {(1—t)cosh(\/ﬂt)+%} .

Actually, since here the sequence {N‘l/zX[Nt] ,t > 0} converges in distribution to a standard

Brownian bridge B*, this limit gives the Laplace transform for fot(B;‘)2 ds (see, e.g., [6] for
an other approach to this result).

RR n~4357



14 M. Kleptsyna, A. Le Breton and M. Viot

4.3 Moving average of order 1

Here we consider the case of a MA(1) process, i.e, a non Markovian process X defined by
Xy =W+ W15t >0,

where (W_y, Wy, Wy, ...) is a sequence of i.i.d. standard Gaussian variables. Of course X is
centered and has the covariance function K(t,s) =2ifs=1¢, 1ifs=¢t—land0ifs <t—1.
In order to solve equation (4) we can take

y(t,s)=0,s<t—1; ~t,t-1)=1,t>1,
and «(t,t) = 4 where ; is the solution of the equation:

Iz

- t>1; =2.
14 pyeoa - o

V=2

Actually this equation can be rewritten as (16) with A; = y and D; = 2 — u. The resolution
of the corresponding equation (23) leads to

t41 t41
—tP+ —P-

Vip+1

i+ 1+ /Ap+1

+ = ~
2

U, =

where

Then, applying (3) and (24), we can obtain the Laplace transform as

Appendix A — Solution of the auxiliary filtering type pro-
blems Here, for an arbitrary Gaussian sequence X, we deal with the one-step prediction
and filtering problems of the signals X and & given by (8) respectively from the observa-
tion of Y defined in (8). Recall that the solutions can be reduced to equations for the
conditional moments. The following statement provides the equations for the characteristics
which give the solution of the prediction problem and the equation for the other quantity
mi—1(Xt) — Y. (1) appearing in the expression (11) of the Ltqf :

Theorem 3 The conditional mean m,_1(X;) and the variance of the one-step prediction
error v x (t) are given by the equations

t—1
R (X0 =+ Y e Y = Qe (X420, (26)

where vy s the unique solution of equation (4). Moreover, with v, (t) defined by (10), the
difference mi—1(X¢) — 'yxé(t) is the solution z; of equation (5).

INRIA



Laplace transforms of quadratic forms of Gaussian sequences 15

Proof Since for the general setting the analysis is quite parallel, for simplicity of notation
we deal only with the case @ =1, i.e., Y; = Xy + &¢. Since the joint distribution of (X, Y;)
for any r, s is Gaussian we can apply the Note following Theorem 13.1 in [8]. For any [ we
can write

_ y(t. 1)
{ m(X) = moa (X)) + oo (28)
7T—1(Xt) = My,
where vy =V, — E(Y;/Yi_1) =Y, — m_1(X;) is the innovation and (v); is its variance
(v =1+~(01),
with
Y1) = B(Xy — my (X)) (X = m-a (X0)) (29)

By the definition (29), we see for | = ¢ that the variance v, (¢) is given by (27). Now,
equality (28) implies

t,7)

!
m(Xe) = m + Z HL[Y,« = mr—1(Xr)],
r=0

xx (7)

and putting { = ¢t — 1 we get nothing else but equation (26). Concerning the solution of
the one-step prediction problem, it just remains to show that the covariance (¢, s) satisfies
equation (4). Let us define

(SX(t,l) = Xt — TI'I(Xt) .

According to (28) we can write

v(t, 1)

JX(tal) = 5X(tal - 1) - WW;
and so (t1 l) (t2 l)
Wox (11, 1)5x (12,1) = Wox (1,1 — 1)dx (12,1 — 1) — %
V)
or .
Edx (t',1)dx (°,1) = Eox (t', = 1)dx (7, -1) = > W (30)
r=0 r

Taking t' =¢,t? = 5,1 = s — 11in (30), it is readily seen that equation (4) holds for (¢, s).
Now we analyze the difference m 1 (X;) — Vxe (). Using the representation & = Z:zo Y, X,
we can rewrite 7, (t) in the following form

Vxe(t) = mo1(§em1 — meo1(e-1)) (KXo — me—1(Xe))

= ti:: 71',3_1((X,- _ﬂ't—l(Xr))(Xt _ﬂ-t—l(Xt)))Yr

- ;0 E((X, = mo_1(X,))(Xs = oy (X)) Y

RR n~4357



16 M. Kleptsyna, A. Le Breton and M. Viot

So we have

Vxe (t) - z_::)j(t; T)Yr ) (31)
where
F(t,7) = B((X, — mot (X)) (X: = o1 (X)) = 2(1,0). (32

Using the definitions (29) and (32) we can write
F(t,r) =7, r) = —EX;(m-1(Xy) — mr=1(X7)).

Again, applying the Note following Theorem 13.1 in [8], we can write also

m(Xr) =m_1(X,) +

This means that

or equivalently

= 4
l=r <V>l
Then, mutltiplying by X; and taking expectations in both sides, we get

t—1 ~

Lir
BXu{minr () = et () = 3 Zhate.
l=r
Hence we have proved the following relation
t—1 ~
- ()
V(ta 1“) - V(ta 7") = <V>l V(ta l) : (33)

Now we can show that the difference z; = m—1(X;) — Yxe (1) satisfies the equation (5). Using
(26), (31) and (33), we obtain

t—1 (7‘ T’) t—1
o= omet Yy 7(;; (Y — w1 (X)) = S F(t, )Y,

= -1

— m _Zﬂy(t’r)ﬂr—l(xr)‘FZ(Fy( ,7" —A’yd(f,r))yr
r=0 <V>T r=0 <V>T
t—1 t—1 t—1 ~

= m- Y )+ A e - S Ly
r=0 <V> r=0 <V>r l=r <V>l
t—1 t—1 t—1 l

=y S 2T (%) =Y 7t r)'y(r, MY+ 3 (1) SOFL Y
r=0 <l/>7- r=0 <l/>7- =0 <V>l r=0
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with, in the last step, the use of the equality (v), = 14 v(r, 7). Now, using (31) again and
the property v(r,r) = ¥(r, ), we can write

t—1

. = My — Z_: Mﬂ'r—l(Xr) + z_: L;l)%xe(l)

r=0 <I/>7- =0 <V !
()

= m— (1 (Xr) = i (7))
r=0 <V>T )
t—1

— ’Y(tﬂ‘)z”
r=0 <V>T

which is nothing else but equation (5). |

Remark 4 [t is worth mentioning that, paralleling the proof of Theorem 3, one can extend
the result to the case when the observation equation for the signal X is

th = CtXt + Btl/QEt s

instead of the first equation in (8). Then the conditional mean m:_1(X:) and the variance
of the one-step prediction error 4, (t) are given by the equations

t—1

Wt—l(Xt):mt‘Fz%[Y Csms—1(Xs)],t >0,

7XX(t):7(t)t)) tZO)

where 7 1s the unique solution of equation

Yt s) = K(t,s) ZB+E;T i) 1< <t 51,0 = K(1,0).

Remark 5 Here we visit again the identities (6) and (7) in terms of the characteristics of
the process Y. Without loss of generality, we concentrate on the case where Q(s) = 1 for all
s. At first let us observe that the matriz I,41 + K¢ which is involved in identities (6) and
(7) is nothing else but the covariance matriz of the vector Y, = (Yy,...,Y;)'. Moreover, we
see that the sequence of innovations v, =Y, — m—1(Y:) is generated by the recursion:

1,
ve = (Vi —my) — 7(’9)1/5; 1<s<t; wvy=Yy— myg, (34)

where y(t, s) is the solution of equation (4) (with Q(s) = 1) and the variance (v); = E(vs)?
is given by (v)s = 1+ ~(s,s). It appears that the recursion (5) generating the sequence

RR n~4357



18 M. Kleptsyna, A. Le Breton and M. Viot

(25,5 = 0,1,...) from (ms;,s = 0,1,...) is exactly the same as recursion (34) generating
(vs,s=0,1,..) from (Yo —ms,s = 0,1,...). Actually (34) and (5) can be rewritten for
v, = (vo,...,n) and z, = (z0,...,2t)" as:

v, =Ti(Y, —my); 2z =Tim,

where Ty is a (t + 1) x (¢t + 1) lower triangular matriz with ones as diagonal entries. Of
course Ty satisfies

Wy - 0
S =Ty (Iepr + Ko)TY
0 - (W)
and also
<V>51 0
(Iegr + Ke)~h =11 S 1t
0w

which is the Choleski decomposition of the matriz (I 41 + K¢)~'. Therefore we get that

t t 2
s

det[li41 + Ki] = H<V>s ; m;[[t+1 +Ki) 7 m, = Z

)
s=0 s=0 <I/>5

which can be rewritten as (6) and (7).

Appendix B — Direct proof of Corollary 2 we start with the

following Hamiltonian system for the pair ((zs,ps), s=0,...,1 4+ 1) :

{ Ts41 = As+1‘rs + Ds+1ps+1 ) o =12 ;é O) (35)
Ps = As+1ps+1 - Q(S)Is ) DPt+1 = 0.

Using direct calculations one can prove the following representations :

s = (1 + k(O)F(t,O)) Zs + Ysps
{ Ps = _F(ta S) Ls . (36)

where 7, , Z, and I'(¢, s) are defined by (16), (17) and (20) respectively.
It follows from (17), (35) and (36) that

Aspr Zsg1 Ast1 T4
1+ Q(s)7s 7 14 DepiT(t, s+ 1) Zs
Hence we can write
t t t—1 t
—oAs —oAs
[0+ Q) = L=ttt Tl rp, st 1)p,p) = o e
s=0 “t+1 s=0 Tr41

INRIA
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which, due to the final condition z;41 = x (1 + k(0)T'(¢,0))Zs 41, gives (21).
To prove (22) we notice that po = —I'(¢,0)z. But it follows from (35), (36) and (17) that

_ Zs+1ps+1 _ Q(S)Zs

p,= Dl a1 HO)T(10)),
s 2
psZ,g - Zs+1ps+1 = _%ﬁ(l + k(O)F(t, 0)) s

— Po® = I(z,0) T:Zt:iQ( )Z; x.
RO~ TTROTE0 "~ 2T+ Q6
Therefore identity (22) holds.
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