N
N

N

HAL

open science

Tracing Execution of CLP(FD) Programs: A Trace
Model and an Experimental Validation Environment

Ludovic Langevine, Pierre Deransart, Mireille Ducassé, Erwan Jahier

» To cite this version:

Ludovic Langevine, Pierre Deransart, Mireille Ducassé, Erwan Jahier. Tracing Execution of CLP(FD)
Programs: A Trace Model and an Experimental Validation Environment. [Research Report] RR-4342,

INRIA. 2001. inria-00072246

HAL 1d: inria-00072246
https://inria.hal.science/inria-00072246
Submitted on 23 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00072246
https://hal.archives-ouvertes.fr

ISRN INRIA/RR--4342--FR+ENG

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Tracing Execution of CLP(FD) Programs

A Trace Model and an Experimental Validation Environment

Ludovic Langevine — Pierre Deransart — Mireille Ducassé — Erwan Jahier

N° 4342

Novembre 2001

THEME 2

apport
derecherche

Zd I N RIA

ROCQUENCOURT

Tracing Execution of CLP(FD) Programs
A Trace Model and an Experimental Validation
Environment

Ludovic Langevine* , Pierre Deransart’ , Mireille Ducassé! , Erwan Jahier

Théme 2 — Génie logiciel
et calcul symbolique
Projets Contraintes et Lande

Rapport de recherche n’° 4342 — Novembre 2001 — 43 pages

Abstract: Developing and maintaining Constraint Logic Programs (CLP) requires perfor-
mance debugging tools based on visualization and explanation. However, existing tools are
built in an ad hoc way and porting them from one platform to another is very difficult and
experimentation of new tools remains limited. It has been shown in previous work that, from
a fine-grained execution trace, a number of interesting views about logic program executions
could be generated by trace analysis.

In this report, we propose a generic trace model for constraint resolution by narrowing
and a methodology to study and improve it. The trace model is the first one proposed
for clp(fd) and does not pretend to be the ultimate one. The methodology is based on the
following steps: definition of a formal model of trace, extraction of relevant informations by
a trace analyzer, utilization of the extracted informations in several debugging tools.

We present the trace model and an implementation which includes a tracer, based on a
meta-interpreter written in ISO-Prolog, and an opium-like analyzer. The efficiency of the
tracer is tested and some elementary debugging tools based on trace analysis are experi-
mented. This work sets the basis for generic analysis of behavior of clp(fd) programs.

[26] is a short version of this report.

Key-words: constraint programming, logic programming, programming environment, de-
bugging, tracing, trace analysis, analysis tool, performance debugging, visualization, propa-
gation analysis.

This work is partly supported by OADymPPaC, a RNTL project [21].

* INRIA/INSA : Domaine de Voluceau - BP 105, 78153 Le Chesnay ; mél. : Ludovic.Langevine@inria.fr
T INRIA : Domaine de Voluceau - BP 105, 78153 Le Chesnay ; mél. : Pierre.Deransart@inria.fr

i IRISA/INSA : 20, avenue des Buttes de Coésmes, 35043 Rennes ; mél. : Mireille.Ducasse@irisa.fr

§ IFSIC /IRISA : Campus universitaire de Beaulieu, 35042 Rennes ; mél. : Erwan.JahierQirisa.fr

Unité de recherche INRIA Rocquencourt

Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex (France)
Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Tracer I’exécution de programmes CLP(FD) : un modéle
de trace et un environnement expérimental de validation

Résumé : Le développement d’applications fiables et efficaces en CLP utilise toute
une panoplie d’outils de mise au point permettant la visualisation et l’explication de la
résolution. De nombreux outils trés spécialisés et dépendants de la plate-forme du solveur
on déja été élaborés, mais leur spécialisation les rend difficilement adaptables d’une plate-
forme & l'autre et limite ’expérimentation de nouveaux outils. Par ailleurs des travaux
antérieurs ont montré qu’a partir de traces fines, on pouvait extraire toutes sortes de vues
intéressantes illustrant ’exécution de programmes logiques.

Dans ce rapport ce type d’approche est utilisé pour définir un modéle de trace générique
pour des solveurs basés sur la contraction de domaine. Ce modéle est une premiére tentative
concernant la programmation avec contraintes sur les domaines finis (CLP(FD)). C’est pour-
quoi il est également exposé une méthode pour l'étudier et I’améliorer. La méthode repose
sur les étapes suivantes : définition d’un modéle formel de trace, extraction des informations
utiles par une analyse de la trace, puis utilisation de cette informations dans différents outils
de mise au point.

On présente donc d’abord le modéle de trace, puis une implantation basée sur un méta-
interpréte écrit en Prolog ISO associé & un analyseur de trace d la Opium. L’efficacité
de cette approche est testée et elle est illustrée avec I'implantation de deux outils simples
pouvant servir & la mise au point.

Ce travail contribue & fonder la réalisation d’outils génériques de mise au point de pro-
grammes CLP(FD).

[26] est une version courte de ce rapport.

Mots-clés : programmation avec contraintes, programmation logique, environnement de
programmation, débogage, trace, analyse de trace, outils d’analyse, analyse de performance,
visualisation, analyse de propagation.

Tracing clp(fd) executions 3

cP Debugging
Platform 1 tool 1

cP Debugging
Platform 2 tool 2

cP Debugging
Platform m tool n

Figure 1: Communication between platforms and tools thanks to a generic trace model

1 Introduction

Developing and maintaining CLP programs benefits from visualization and explanation tools
such as the ones designed by the DiSCiPl European project [11]. For example, the CHIP
search-tree tool [30] helps users understand the effect of a search procedure on the search
space; and the S-Box model [19] allows users to inspect the store with graphical and hierar-
chical representations.

However, existing tools are built in an ad hoc way. Therefore porting tools from one plat-
form to another is very difficult. One has to duplicate the whole design and implementation
effort every time and the possibilities of experimentation are limited.

We have shown in previous work that, from a fine-grained execution trace, a number of
interesting views about logic program executions could be generated by trace analysis [13,
22]. In this report we define a generic trace that can be used by several debugging tools.
Each tool gives a useful view of the clp(fd) execution (e.g. the labelling tree or the domain
state evolution during a propagation stage). As shown by Figure 1, the trace is generated by
any platform which is compliant with the generic trace model. This trace can then be used
by any tool which is compatible with this trace model. A standard exchange format allows
any tools to be used with any platform ([9] gives a description of a XML-based format).
Each tool selects the relevant data in order to build its execution view. Therefore, the
trace is supposed to contain all potentially useful information. The tools can be developed
simultaneously and reused on different platforms®. This approach assumes that there is a

1 Our OADymPPaC [21] partners will use our trace model to build tools in the CHIP [8], CLAIRE [6]
and GNU Prolog [18] platforms.

RR n° 4342

4 Langevine & al.

Debugging
Tracer Trace query Tracefilter Tool
Input
data (abstract
and analyzer
prototype Trace y view of the
execution)

Figure 2: The experimentation chain: the tracer, the filter and the analyzer.

generic trace model. In order to reach this objective, we start with a general model of finite
domain constraint solving which allows to define generic trace events.

So far, no fine-grained tracers exist for constraint solvers. Implementing a formally
defined generic tracer may be a delicate task, if even at all possible. This is especially
true in the context of constraint solving where the solvers are highly optimized. Therefore,
before going for a ‘“real” implementation, it is essential to elaborate several trace models and
experiment with them.

In order to rigorously define the constraint solving trace model, and as we did for Prolog
[23], we use an operational semantics based on [2] and [17]. We define execution events of
interest with respect to this semantics. On one hand, this formal approach prevents the
fined-grained trace model to be platform dependent. On the other hand, the consistence
between the model and concrete clp(fd) platforms has to be validated.

In order to develop a first experimentation, the formal model is implemented as an
instrumented meta-interpreter 2 which exactly reflects it.

The proposed instrumented meta-interpreter is useful to experimentally validate the
model. It is based on well known Prolog meta-interpretation techniques for the Prolog part
and on the described operational semantic for the constraint part.

The ultimate goal of the meta-interpreter (as in [23]) is to provide an executable specifi-
cation of traces. The traces generated by the meta-interpreter could then be used to validate
a real (and efficient) tracer. At this stage, efficiency of the meta-interpreter is not a key
issue; it is used as a prototype rather than as an effective implementation. However we
present some results of performance in order to assess the practicability of our approach.

Such a tracer may generate a large volume of data. The generic trace must be analyzed
and filtered in order to condense this data down to provide the sufficient information to the
debugging tools. To push further the validation we have mimicked a trace analyzer a la
Opium [14] as shown by Figure 2. This Opium-like analyzer allows to obtain different kinds
of abstract views of the execution. This is a way to show that the proposed trace model
contains the necessary information to reproduce several existing clp(fd) debugging tools.

2The meta-interpreter approach to trace clp(fd) program executions has already been used in the APT
tool by Carro and Hermenegildo [4]. However, APT does not access the propagation details. We propose a
more informative trace.

INRIA

Tracing clp(fd) executions 5

In this report, we concentrate on the constraint solving part, a trace of the logic pro-
gramming part “a la Byrd” [3] could be integrated in the meta-interpreter (see for example
[15]). In [9], additional ports are suggested to cope with other aspects of the computation.

In the following, Section 2 formally defines an execution model of clp(fd) narrowing.
In particular, it defines a 8 steps operational semantics of constraint solving. These steps
are the basis for the trace format defined in Section 3. Section 4 explains how to build
an instrumented meta-interpreter in order to build an experimental environment. Section 5
gives some performance results. Section 6 presents an Opium-like trace analyzer based on the
instrumented meta-interpreter. Section 7 briefly describes experiments with the proposed
trace and our trace analyzer. Finally, Section 8 discusses the content of the trace with
respect to existing debugging tools.

2 Operational Semantics of Constraint Programming

In this section, we propose an execution model of (finite domain) constraint programming
which is language independent. The operational semantics of constraint programming re-
sults from the combination of two paradigms: control and propagation. The control part
depends on the programming language in which the solver is embedded, and the propagation
corresponds to narrowing. Although the notions introduced here are essentially language
independent, we will illustrate them in the context of clp(fd).

2.1 Basic notations

In the rest of the paper, P(A) denotes the power set of A4; r|,, denotes the restriction of the
relationr CAx Btow C A 7ly ={(z,y) |z € wA (z,y) € r}.

The following notations are attached to variables and constraints: V is the set of all the
finite domain variables of the problem; D is a finite set containing all possible values for
variables in V; D is a function D : ¥V — P(D), which associates to each variable z its current
domain, denoted by D,; min, and maz, are respectively the lower and upper bounds of
D,; C is the set of the problem constraints; var is a function C — P(V), which associates
to each constraint C' € C the set of variables of the constraint.

2.2 Reduction operators

Many explanation tools focus on domain reduction (see for example [17, 24]). When con-
straints are propagated, the evolution of variable domains is a sequence of withdrawals of
inconsistent values. At each step, for a given constraint, a set of inconsistent values is with-
drawn from one (and only one) domain. These values can be determined by algorithms such
as “node consistency”, “arc consistency”, “hyper-arc consistency” or “bounds consistency”
described for example by Marriott and Stuckey [27].

Following Ferrand et al [17], we define reduction operators. The application of all the re-

duction operators of a constraint gives the narrowing operator introduced by Benhamou [2].

RR n° 4342

6 Langevine & al.

X

3
2
1

y z Xy z y Xy z y Xy z 5 Xy z vz
X

Figure 3: Application of reductions to the system {z > y;y > z}.

Definition 2.1 (Reduction operator). A reduction operator redy is a function attached
to a constraint C' and a variable x. Given the domains of all the variables used in C, it
returns the domain D, without the values of x which are inconsistent with the domains of
the other variables. The set of withdrawn values is denoted W,.

Tedg (D|var(C)) = Dw - Wz. O

There are as many reduction operators attached to C as variables in var(C). In general,
for efficiency reasons, a reduction operator does not withdraw all inconsistent values.

A simple example of reduction operator for C' = =z > n, where n is a given integer, is
redg(Dlizy) = Dy —{v |v € Dy Av < n}.

The evolution of the domains can be viewed as a sequence of applications of reduction
operators attached to the constraints of the store. Each operator can be applied several
times until the computation reaches a fix-point [17]. This fix-point is the set of final domain
states.

An example of computation with reduction operators is shown in Figure 3. There are
three variables z, y and z and two constraints, z > y and y > z. At the beginning,
D, =D, =D, ={1,2,3}, represented by three columns of white squares. Considering the
first constraint, it appears that x cannot take the value “1”, because otherwise there would
be no value for y such that z > y; redﬁ>y withdraws this inconsistent value from D,. This
withdrawal is marked with a black square. In the same way, redg>y withdraws the value
3 from the domain of y. Then, considering the constraint y > z, the operators redz>z and
red; ., withdraw respectively the sets {1} and {2,3} from D, and D,. Finally, a second
application of red5. , reduces D, to the singleton {3}. The fix-point is reached. The final

>y
solution is: {z = 3,y =2,z = 1}.

2.3 Awakening and solved conditions

An essential notion of constraint propagation is the propagation queue. This queue con-
tains all the constraints whose reduction operators have to be applied. At each step of the
propagation, a constraint is selected in the propagation queue, according to a given strategy
depending on implementation (for example a constraint with more variables first). The re-
duction operators of the selected constraint are applied. These applications can make new
domain reductions. When a variable domain is updated, the system puts in the queue all
the constraints where this variable appears. When the queue becomes empty, a fix-point is

INRIA

Tracing clp(fd) executions 7

reached and the propagation ends. Thus, there are three fundamental operations: selection
from the queue, reduction of variable domains and awaekening of constraints.

It is actually not necessary to wake a constraint on each update of its variable domains.
For example, it is irrelevant to wake the constraint x > y at each modification of D, or D,,.
The reduction operators of this constraint are unable to withdraw a value in any domain if
neither the upper bound of D, nor the lower bound of D, is updated. Hence, it is sufficient
to wake the constraint only when one of those particular modifications occurs.

Definition 2.2 (Awakening condition). The awakening condition of a constraint C is
a predicate depending upon the modifications of D|var(c). This condition holds when a new
value withdrawal can be made by the constraint reduction operators. The condition is optimal
when it holds only when a new value withdrawal can be made.

The awakening condition of C is denoted by awake cond(C). O

The actual awakening conditions are often a compromise between the cost of their com-
putation and how many awakenings they prevent.

Another condition type permits irrelevant awakenings to be prevented. Let us consider
a constraint C; if the domains of its variables are such that no future value withdrawals
can invalidate the constraint satisfaction, the constraint is said to be solved. In that case,
the reduction operators of this constraint cannot make any new value withdrawal anymore,
unless the system backtracks to a former point. For example, if the two domains D, and
D, are such that D, N D, = 0, it is useless to apply the reduction operators of z # y. Thus,
it is useless to wake a solved constraint.

Definition 2.3 (Solved condition). The solved condition of a constraint C is a predicate
depending upon the state of D|var(cy. This condition holds only when the domains are such
that C is solved.

The solved condition of C' is denoted by solved_cond(C). O

We can note that a sufficient condition is that all variables in var(C') are ground to some
values satisfying the constraint.

In the rest of the paper, a primitive constraint is defined by those three characteristics:
its reduction operators, awakening condition and solved condition.

2.4 Structure of the constraint store

The constraint store S is the set of all constraints taken into account by the computation at
a given moment. When the computation begins, the store is empty. Then, constraints are
individually added or withdrawn according to the control part. In the store, constraints may
have different status and the store can be partitioned into five subsets denoted A4, S, Q, T, R.

RR n° 4342

Langevine & al.

,,,

1 SELECT

} WAKE-UP !
| SUSPEND |
i Suspended !
i A S) ‘
: constraints :

TELL ! Active | TOLD

i Constraint |
! Solved !
| TRUE T constraints i
3 REDUCE !
| Rejected |
| REJECT R) |
| constraints !

Figure 4: Events related to the structured store

A is the set of active constraints. It is either a singleton® (only one constraint is
active) or empty (no constraint is active). The reduction operators associated to the
active constraint will perform the reductions of variable domains.

S is the set constraints which are said suspended, namely they are waiting to be
“woken” and put into () in the case of domain modifications of some of their variable
(none has empty domain).

Q is the set of constraints in the propagation queue*, it contains the constraints wait-
ing to be activated. In order to reach the fix-point all reduction operators associated
to these constraints must be considered.

T is the set of solved constraints (¢rue), namely the constraints which hold whatever
future withdrawals will be made.

R is the set of rejected constraints, i.e. the constraints for which the domain of at least
one variable is empty. In practice it is empty or a singleton, since as soon as there
is one constraint in R the store is considered as “unsatisfiable” and the computations
will continue according to the control.

INRIA

Tracing clp(fd) executions 9

ICeQ NA=0AR=0

select
Q< Q-{C}, A< {C}
reiect AC € A,3x € var(C) - (D, =0)
J A+~ A—{C}, R« {C}
wakeou 3C € S-awake_cond(C) A R=10
P S S—{C}, Q« Qu{C}
AC € A,z € var(C)- W, #0) A R=10 <
reduce D, < Do —W, We = Dy — red&(Dlvar(c))
true 3C € A -solved_cond(C) A R=10
A+ A—{C}, T+ TU{C}
cusvend ACeEA AN R=0
P A< A—{C}, S< Su{cC}
Figure 5: Propagation events. Rule format : Name Conditions Definitions
& ’ pag ’) Actions
A=90
tell
MOk {CLS QTR D)
told

pop

Figure 6: Control events

2.5 Propagation

The evolution of the store can now be described as state transition functions or “events”
acting in the store, in the style of Guerevitch’s evolving algebras [20]. This is illustrated
in Figure 4. When propagation begins, there is an active constraint. The active constraint
applies its reduction operators as far as possible. Each application of a reduction operator
is a reduce event. It narrows the domain of one and only one variable. If a domain becomes
empty, the constraint is rejected (reject event). A rejected constraint is a sign of failure. If
no failure occurs and no other reduction can be made, the constraint is either solved (true)
or suspended (suspend). A solved constraint will not be woken anymore. A suspended con-
straint will be woken as soon as its awakening condition holds. On awakening, the constraint
is put in the propagation queue (wake-up event). When there is no active constraint, one is
selected in the queue (select) and becomes active. If the queue is empty, the propagation
ends.

3This restriction could be alleviated to handle multiple active constraints, for example to handle unifica-
tion viewed as equality constraints on Herbrand’s domains.
4The term queue comes from standard usage. It is in fact a set.

RR n° 4342

10 Langevine & al.

The propagation is completely defined by the rules given in Figure 5. The rules are
applied in the order in which they are given (from top to bottom). Each rule specifies an
event type. An event modifies the system state: (4,S5,Q,T, R,D). An event occurs when
its pre-conditions hold and no higher-priority event is possible. The rule priority prevents
redundant conditions. For example, a suspend event is made only when no true event is
possible. In the same way, if a reduce event wakes some constraints, all wake-up events are
performed before any other reduce. The rule system still contains some indeterminism: the
choice of C in the rules select and wake-up, and the choice of x in the rule reduce depends
on the solver strategy.

The rules are applied until all the constraints are in 7', R and S. No further application
is possible. If R is non empty, the store is “rejected”. Otherwise, it may be considered that
a (set of) solution(s) has been obtained. All constraints in T are already solved. Therefore,
any tuple of values of ¥V which satisfies the constraints in S is a solution. The way the
computation will continue depends of the control.

2.6 Control

The evolution of the store described so far assumes that the set of constraints in the store
is invariant, i.e., only their status is modified. The host constraint programming language
provides the way to build the store and to manage it, with possible interleaving of constraint
management and propagation steps.

In order to remain as independent as possible from the host language, we restrict the
control part to two events: the first one adds a constraint C into the store (tell(C) event)
and the second one restores the store and the domains in some previous state (told event).

These events act on the store as illustrated in Figure 4. The tell event puts a new
constraint in the store as the active one.

In clp(fd) the control part is particularly simple and can be described by a (control)
stack of states of the system 3. The state contains the current store and the domains. The
propagation phase is always performed in the state on top of the control stack. Each tell
event includes a constraint into the store, push the new state on the stack and is followed
by a complete propagation phase. When the fix-point is reached either a new tell(C') is
performed, or a told. In the later case the stack is popped, thus the former state is restored.
As long as the control stack is not empty, new tell events can be performed on choice points
and correspond to alternative computations.

This semantics is formalized by the two rules of Figure 6. The push and pop operations
work on the control stack. With a different host language, the same told event could be used
but with a possibly different meaning.

5This corresponds to the description of the visit of a standard search-tree of Prolog [10].

INRIA

Tracing clp(fd) executions

3 Trace definition

An execution is represented by a trace which is a sequence of events. An event corresponds
to an elementary step of the execution. It is a tuple of attributes. Following the notation of

Prolog traces, the types of events are called ports.

Most attributes are common to all events. For some ports, specific attributes are added.
For example, reduce events have two additional attributes: the withdrawn values W, for
the variable z whose domain is reduced, and the types of updates made, such a modification

of the domain upper bound. The attributes are as follows.

Attributes for all events
— chrono: the event number (starting with 1);
— depth: the depth of the execution, starting with 0, it is incremented at
each tell and decremented at each told;

— port:

the event type as presented in Sections 2.5 and 2.6: one of reduce,

wake-up, suspend, true, reject, select, tell and told;
— constraint: the concerned constraint, represented by a quadruple:

a unique identifier generated at its tell;

an abstract representation, identical to the source formulation of
the program;

an concrete representation (e.g. diffN(X, Y, N) for X ## Y + N
orX - N ## Y);

the invocation context, namely the Prolog goal from which the tell
is performed.

— domains: the value of the variable domains before the event occurs;

— store: the content of the constraint store represented by the 5 components
described in section 2.4. Each set of constraints is represented by a list of
pairs (constraint identifier, external representation):

store_A the set of active constraints;
store_S the set of suspended constraints;
store_Q the propagation queue;

store_T the set of solved constraints;
store_R the set of rejected constraints.

Specific attributes for reduce events
— withdrawn: The withdrawn domain
— update: The list of updates, an update is of the form (variable ->
type), where type can be one of ground, any, min, max, see Section 4
for further explanation;
Specific attribute for wake-up events
— cause: The verified part of the awakening condition

The attributes are numerous and contain large chunks of information. Indeed, they aim
at providing useful information to automatic trace analysis programs. The more contents the

RR n° 4342

12

Langevine & al.

sorted([X, Y, Z]):-

[x, v, 71 1..3, % At the beginning, D, = D, = D, = [1..3]
X# Y, X#>=Y, Y# Z, % 3 constraints : x Zy,z>y andy > 2
labelling([X, Y, ZI). % labelling phase, with a “first fail” strategy
1 [1] Tell X##Y X:[1,2,3] Y:[1,2,3] 21 [4] True X#>=Y X:[2] Y:[2]
2 [1] Suspend X##Y X:[1,2,3] Y:[1,2,3] 22 [4] Select X##Y X:[2] Y:[2]
3 [2] Tell X#>=Y X:[1,2,3] Y:[1,2,3] 23 [4] Reduce X##Y X:[2] Y:[2] X[2]
4 [2] Suspend X#>=Y X:[1,2,3] Y:[1,2,3] 24 [4] Reject X##Y X:[] Y: [2]
5 [3] Tell Y#>Z Y:[1,2,3] Z:[1,2,3] 25 [4] Told X#=2 X:0
6 [3] Reduce Y#>Z Y:[1,2,3] Z:[1,2,3] Y[1] 26 [4] Tell X#=3 X:[2,3]
7 [3] Wake-up X#>=Y X:[1,2,3] Y:[2,3] 27 [4] Reduce X#=3 X:[2,3] X[2]
8 [3] Reduce Y#>Z Y:[2,3] Z:[1,2,3] Z[3] 28 [4] Wake-up X##Y X:[3] Y:[2,3]
9 [3] Suspend Y#>Z Y:[2,3] Z:[1,2] 29 [4] True X#=3 X:[3]
10 [3] Select X#>=Y X:[1,2,3] Y:[2,3] 30 [4] Select X##Y X:[3] Y:[2,3]
11 [3] Reduce X#>=Y X:[1,2,3] Y:[2,3] X[1] 31 [4] Reduce X##Y X:[3] Y:[2,3] Y[3]
12 [3] Suspend X#>=Y X:[2,3] Y:[2,3] 32 [4] Wake-up Y#>Z Y:[2] Z:[1,2]
13 [4] Tell X#=2 X:[2,3] 33 [4] True X##Y X:[3] Y:[2]
14 [4] Reduce X#=2 X:[2,3] X[3] 34 [4] Select Y#>Z Y:[2] Z:[1,2]
15 [4] Wake-up X#>=Y X:[2] Y:[2,3] 35 [4] Reduce Y#>Z Y:[2] Z:[1,2] z[2]
16 [4] Wake-up X##Y X:[2] Y:[2,3] 36 [4] True Y#>Z Y:[2] Z:[1]
17 [4] True X#=2 X:[2] 37 [4] Told X#=3 X:[3]
18 [4] Select X#>=Y X:[2] Y:[2,3] 38 [3] Told Y#>Z Y:[2,3] Z:[1,2]
19 [4] Reduce X#>=Y X:[2] Y:[2,3] Y[3] 39 [2] Told X#>=Y X:[1,2,3] Y:[1,2,3]
20 [4] Wake-up Y#>Z Y:[2] Z:[1,2] 40 [1] Told Xi#t#Y X:[1,2,3] Y:[1,2,3]
chrono = 14
depth = 4
port = REDUCE
constraint = (4, X#=2, assign(var(1l, X), 2), labelling([X, Y, Z]))
domains = [X::[2..3], Y::[2..3], Z::[1..2]]
withdrawn = X::[3]
update = [X->any, X->ground, X->max]
store_A = [(4, X#=2)] store_S = [(2, X#>=Y), (3, Y#>Z), (1, X##Y)]
store_Q =0 store_T = [] store_R = []
chrono = 16
depth = 4
port = WAKE-UP
constraint = (1, X##Y, diff(var(l, X), var(2, Y)), sorted([X, Y, Z]))
domains = [X::[2], Y::[2..3], Z::[1..2]]
cause = [X->ground]
store_A = [(4, X#=2)] store_S = [(3, Y#>Z), (1, X##Y)]
store_Q = [(2, X#>=Y)] store_T = [] store_R = []

Figure 7: A trace of the execution of program sorted([X, Y, Z]), all events are present
with attributes (event number, [depth], constraint C, D|yar(c)). Events #14 and #16 are
displayed with all their attributes.

INRIA

Tracing clp(fd) executions 13

better. In a default display for users, only some attributes would be chosen. Furthermore,
and as in Opium [14] the trace analysis will be mainly done on the fly, only the attributes
relevant to a given analysis will be retrieved, and no trace will be stored. Therefore there
is no a priori restriction on the number and size of attributes.

Figure 7 shows the source code of program sorted(L). The program sorts three numbers
between 1 and 3 in a very naive way. Following the convention of many systems, constraints
operators are prefixed by a “#”. The figure also shows a trace of the execution. All events
are listed but only with a few event attributes: the event number and port, the constraint
concerned by the event and its variable domains. At reduce events, the variable whose
domain is being reduced as well as the withdrawn values are added.

The first two constraints are entered (tell) and suspended without any reduction (events
#1 to #4). The tell of the third one, Y #> Z gives two value withdrawals, ‘1’ from D,
(#6) and ‘3’ from D, (#8). The first reduction modifies the lower bound of D, and so
wakes the suspended constraint X #>= Y (#7). After those two reductions the constraint
is suspended and the waiting one is selected (#10). At event #12, the domains are D, =
{2,3},D, = {2,3} and D, = {1,2}. Then the labelling phase begins. With our simple
“first fail” strategy, the first added constraint is X #= 2. X is ground and equal to 2 and
this constraint is solved (#17). Two other constraints are solved during the propagation,
but it leads to D, = {3}, D, = {1,2} and an empty domain for X (#25). Another labelling
constraint is tried (#26), X #= 3 and leads to the unique solution {X:3, Y:2, Z:1}.

4 Deriving a tracer from the operational semantics

In order to experimentally validate the trace defined in Section 3, we derive, from the
operational semantics of Section 2, a clp(fd) interpreter in Prolog that we instrument with
trace hooks. The resulting interpreter, which produces traces, is not meant to be an efficient
clp(fd) system, but to be faithful to the semantics of Section 2. The faithfulness comes from
the fact that the translation of the semantic rules into executable Prolog code is syntactical.

In Section 2, we left the primitive constraints undefined. We therefore first propose
a definition for 8 primitive constraints by specifying, for each, its reduction operators, its
solved condition, and its awakening condition. Note that the definitions we propose in
Table 1 define reduction operators that perform a full-arc consistency.

Then, we show how to translate the primitive constraints and the semantic rules into
Prolog. We also show how to interface this Prolog code with the Prolog underlying system.

4.1 Primitive constraint definitions

In order to define a primitive constraint, we need to define its reduction operators, its solved
condition, and its awakening condition (see Section 2). We define in Table 1 the 8 primitive
constraints z =y, c Zy,x =y+n,x #Fy+n, x>y, >y, xr=n,and z # n, where
z and y represent two finite domain variables, and n represents an integer constant. The

RR n° 4342

14 Langevine & al.

Constraint Reduction operators Solved condition Awakening cond.
c (redé (Dlvar(c)) = Dz — Wa) solved _cond(C) awake cond(C)
_ Wy = Dy — (D N Dy) _ _
r=y W, = Dy, — (D N Dy) Dy =Dy = {v} Tany V Yany
W= {v}nD, if D, ={v}
L0 otherwise _
x 56 Yy W _ {’U} n Dy si Dm — {U} Dz n Dy = 0 xground \% yground
VT 0 otherwise
e—y4n | We=De=(Din{vtnveD,] g“fg”%//: 2o V' y
- = — Yy = Y any any
Wy =Dy — (D N{v+n,v € Dy}) Ve = vy +10
W _{ {v+n}ND, if D, ={v}
S otherwise
T 7& y+n W {’U _ n} n Dy if D, = {’U} Yv € Dy, v+mn € D, Tground \ Yground
YT 0 otherwise
We = {v € D;,v < miny} .)
r>y W, = {v € Dy,v > maz, } MiNg > MaTy Tmax V Ymin
We = {v € D;,v < miny}))
] W, = {v € Dy,v > maz,} Ming > MaTy Zmax VY Ymin
rT=mn W, = D, — {n} D, = {n}
[{n} ifneD,
v#n W = {] otherwise n¢ Do

Table 1: Characteristics of the primitive constraints implemented in the interpreter

reduction operator red? is defined by the set of values W, it withdraws from the domain of
variable z.

The equality constraint between two variables and y (x = y) withdraws from the
domains of D, and D, the values which are not contained in both domains. The constraint
is solved only when the two variables are ground and have the same value v. At each
modification of D, or D,, the reduction operators may withdraw new values. The constraints
must therefore be woken at each of their modification.

The difference constraint between two variables and y (x # y) can only reduce the
domains when one of them is ground. However, it is solved as soon as the two domains are
disjoint.

4.2 Data structures

A constraint variable is represented by a term containing a unique integer, and a string
(its name in the source). A constraint instance is represented by a 4-tuple containing a
unique constraint number, a string (the constraint as displayed in the source), an internal
form, a list of constraint variables, and an invocation context. The invocation context of a

INRIA

Tracing clp(fd) executions 15

0~ O W

cd_reduction(diff(X,Y),D,Y,[Vx]) :- 9 cd_awake (diff (X,Y),Cond) :-
is_ground(X,D,Vx), 10 Cond = [X->ground,Y->ground]).
get_domain(Y,D,Dy), 11
member (Vx, Dy). 12 cd_solved(diff(X,Y),D) :-

cd_reduction(diff (X,Y),D,X, [Vy]l) :- 13 get_domain(X,D,Dx),
is_ground(Y,D,Vy), 14 get_domain(Y,D,Dy),
get_domain(X,D,Dx), 15 d_intersection(Dx,Dy, [1).
member (Vy,Dx) .

Figure 8: Definition of the primitive constraint x # y: its two reduction operators, its solved
condition, and its awakening condition, as specified in Table 1.

constraint is the Prolog goal from which it was invoked. The solver state is represented by
a sextuplet: (A, S, Q, T, R, D), where A, S, Q, T and R define the store as described in
Section 2; they are lists of constraints. D is a list of domains.

In order to represent awakening conditions and domain narrowing, we define five types
of domain modifications (following what is done in ECLIPS® [16]). Each type refers to a
particular constraint variable z.

— Zmin refers to a modification of the D, lower bound, e.g., {1,2,4} — {2,4};

— Zmag refers to a modification of the D, upper bound, e.g., {1,2,4} — {1,2};

— Zany refers to any modification of Dy, e.g., {1,2,4} — {1,4};

— Zground refers to a grounding of « (D, becomes a singleton), e.g., {1,2,4} — {1};

~ Tempty refers to an emptying of D,, e.g., {1,2,4} — 0

Those five modification types respectively appear in the code as X->min, X->max, X->any,
X->ground, and X->empty. Awakening conditions are disjunctions of such modification
types; such disjunctions are encoded by lists.

4.3 Translation of the primitive constraints

The reduction operators, the solved condition, and the awakening condition defining a prim-
itive constraint are encoded by the following predicates:
— cd_reduction(+C, +D, +X, -Wx)S: takes asinput a constraint C, a domain state D,
and a constraint variable z; it succeeds iff the application of red (D|var(cy) withdraws
a non-empty set (bound to Wx). There is one clause per reduction operator of C;
— cd_solved(+C, +D): takes as input a constraint C' and a domain state D; it succeeds
iff the constraint C' is solved in the domain state D;
— cd_awake(+C, -Cond): takes as input a constraint C' and outputs (in Cond) the list
of awakening conditions of C'.

6 As specified in the standard Prolog [10], + denotes input arguments and - denotes outputs arguments.

RR n° 4342

16 Langevine & al.

Figure 8 shows the implementation of the primitive constraint x # y which is simply a
Prolog encoding of the first entry of Table 1. The functor diff/2 is the internal encoding of
#. Predicate is_ground (+X, +D, -Vx) takes a constraint variable x and a domain D, and
succeeds iff D, is a singleton (bound to Vx); get_domain(+X, +D, -Dx) takes a constraint
variable z and a domain state D, and outputs the domain of z (D,); d_intersection(+D1,
+D2, -D) computes the intersection of two domains.

4.4 Translation of the semantic rules

Figure 9 contains the translation of the semantic rules of Figures 5 and 6. Each rule is
encoded by a predicate with the same name as the rule. The translation is merely syntactical,
except for the tell and told rules, for which it is unnecessary to save and restore the solver
states (push and pop) since this work is done by the Prolog backtracking mechanism.

Before paraphrasing the code for one rule, we give the meaning of all the (simple) pred-
icates that are not defined elsewhere in the paper: choose_in_queue(+Q0, -C) takes as
input a queue () and outputs one of the queue constraints; it succeeds iff () is not empty.
The choice of the constraint depends of the solver strategy; subtract (+L1, +L2, -L) com-
putes the difference between two lists; get_varC(+C, -V) takes as input a constraint C' and
outputs a list of the constraint variables that appear in C'; trace(+Port, +C, +St0, +01,
+02, +03) takes as input the different event attributes as described in Section 3; it calls the
trace analysis system which can, for example, print a trace line; put_end_of_queue (+C,
+Q0, -Q) puts a constraint at the end of a queue; update_domain(+X, +Wx, +D0O, -D,
-Mod) takes as input a constraint variable z, a value set W, (to withdraw), and a domain
state DY; it outputs the state domain D such that D, = D% —W,, and the list of modification
tyPes Tmodys -+ Tmod, (Where mod; € {min, maz, ground, any,empty}) that characterizes
the W, value removals; internal(+C, -Ci) takes as input a constraint and outputs its
internal representation.

All the predicates translating rules take as input a solver state Sty and output a new
solver state St. Sty and St respectively denote the state of the solver before and after the
application of a rule. The only exceptions are predicates wake_up(+St0, -St, +ModIn)
and reduce(+St0, -St, -ModOut) that respectively inputs and outputs an additional ar-
gument: a list of modification types (Zmody, ---» Tmod,)- Lhis list is computed in reduce/3
and used in wake_up/3 to check the awakening condition.

Predicate select (+St0, -St) translates the select rule. That rule needs to fulfill 3 con-
ditions to be allowed to be applied: IC € @, that is checked line 17 by choose_in_queue/2
(which fails iff the queue is empty); A = @ and R = () that are checked line 15. The 2 actions
to perform when the conditions of the rule hold are @ + @ — {C}, which is done line 18
by subtract/3, and A = {C} which is done line 16. The other rules are translated in the
same way.

INRIA

Tracing clp(fd) executions

17

0~ O W

tell(C, St0, St) :-
sto=(0,s,Q T, R, D),
st = ([cl, s, Q, T, R, D),
trace(tell, C, St0O, -, -, -).

told(C, St0) :-
trace(told, C, St0, -, -, -).

select(St0, St) :-
sto = ([1, s, Qo, T, [1, D),
St (cl, s, Q, 1, 0, D,
choose_in_queue(Q0, C),
subtract (Q0, [CI1, Q),
trace(select, C, St0, -, -, -).

reject(St0, St) :-

sto = ([c], s, Q, T, [I, D),
St =([]: S; Q; T, [C]:D):
get_varC(C, VarC),

member (X, VarC),
get_domain(X, D, [1),
trace(reject, C, St0, -, -, -).

wake_up(St0, St, ModIn) :-
St0 = (A, SO, Qo, T, [1, D),
St = (A, S, Q, T, 0, D),
member (C, SO),
awake_cond(C, ModIn, True),
subtract (S0, [C], S),
put_end_of_queue(C, QO0, Q),

trace(wake_up, C, StO, True, -, -).

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

reduce(St0, St, ModOut) :-
st0 = ([c1, s, Q, T, [1, DO),
st = ([¢l, s, Q, T, [0, D),
get_varC(C, VarC),
member (X, VarC),
reduction(C, DO, X, Wx),
update_domain(X, Wx, DO, D, ModQOut),
trace(reduce, C, St0, X, Wx, ModOut).

true(St0, St) :-
sto = ([C1, S, Q, To, [1, D),
st =(M0,s,qQ, 1, [,D),
solved_cond(C, D),
T = [C|TO],
trace(true, C, St0, -, -, -).

suspend (St0, St) :-
sto = ([C1, SO0, Q, T, [1, D),
st =(0,s, Q, T, [1, D),
S = [C]so0],
trace(suspend, C, StO, -, -, -).

reduction(C, D, X, Wx) :-
internal(C, Ci),
cd_reduction(Ci, D, X, Wx).

awake_cond(C, ModIn, True) :-
internal(C, Ci),
cd_awake(Ci, Cond),
intersection(Cond, ModIn, True),
not True = [].

solved_cond(C, D) :-
internal(C, Ci),
cd_solved(Ci, D).

Figure 9: Prolog translation of the semantic rules of Figures 5 and 6

RR n° 4342

18 Langevine & al.

_
N = O

1 call_constraint(C, St0, St) :- 13 prop_step(St0, St, ModO, Mod) :-
2 tell(C, St0, St1), 14 select(St0, St) -> Mod = none
3 propagation(none, Sti1, St), 15 5 reject(St0, St) -> Mod = none
4 (true ; told(C, St), fail), 16 5 wake_up(S5t0, St, ModO)
5 st = (., s _, _, O, 2. 17 -> Mod = ModO
6 18 5 reduce(St0, St, Mod)
7 propagation(Mod0, StO, St) :- 19 -> true
8 prop_step(St0, St1, Mod0, Mod) 20 5 true(St0, St) -> Mod = none
9 > (St1=(_, _, _, _, 0O, 21 ; suspend (St0, St) -> Mod = none.

-> propagation(Mod, Stl1, St)

; St = St1)

5 St = StO.

Figure 10: Integrating the constraint solver with the underlying Prolog system

4.5 Integration with the underlying Prolog system

The integration of our instrumented constraint solver with the underlying Prolog system is
done by the predicate call_constraint/3 which is given in Figure 10. After propagation
and success, it returns the new state of the constraint part (St). If the propagation leads to
a failure, the goal fails.

Predicate prop_step/4 performs a propagation step, i.e., it applies one of the 6 propa-
gation rules of Figure 5; it fails if no rule can be applied. The choice of the rule to apply
is done according to the strategy discussed in Section 2.5. Predicate propagation/3 calls
prop_step/4 in loop until either a propagation step fails (the fix-point is reached) or the
solver rejects a constraint (the constraint goal is unsatisfiable).

5 Performance

In the previous section, we have described a meta-interpreter directly derived from the
operational semantics. It is purely declarative. As this approach can be very inefficient we
want to assess its practicability. Therefore we started some measurements, first comparing
the execution of programs in a compiled mode (without tracing) and with the compiled
meta-tracer; Then comparing with meta-interpreters trying to take advantage of proper
features of ECLIPSe.

With our preliminary experiments, several properties can be observed:

— the number of events for some classical problems;

— the efficiency of the declarative meta-interpreter;

— the possibility of using meta-interpretation to prototype clp(fd) tracers.

INRIA

Tracing clp(fd) executions 19

5.1 The Two Other Meta-Tracers

We have implemented two other meta-interpreters using delay mechanism. This mechanism
is provided by ECLIPS® plate-form. It may give efficient meta-implementation of constraint
solving [7]. The first interpreter generates the same information as the declarative one. The
second one does not manage some costly attributes.

In those two meta-interpreters, constraints are still described by three characteristics:
reduction operators, awakening condition and solved condition. But the events are managed
by ECLIPS® built-ins instead of strict rule translation.

5.1.1 Meta-interpretation Based on Goal Suspension

The mechanism of constraint management is inspired by constraint implementation in
ECLIPS® as described by Wallace et al. [31]. In ECL'PS®, a constraint is represented by a
goal whose resolution is suspended until a given condition is verified. This condition gener-
ally relates to variable domains of the constraint. For example, the z # y constraint uses
a goal suspended to two events: modification of domain D, or modification of domain D,,.
The woken goal has to make the reductions due to the constraint. If those reductions are
not sufficient to solve the constraint, the corresponding goal is re-suspended.

The ECLIPS® built-in suspend(+Goal, +Priority, +Cond) explicitly delays the goal
Goal and wakes it with priority Priority as soon as the condition Cond holds. The priority
notion is fundamental to interrupt the current goal so as to resolve an other one.

The suspension mechanism can be viewed as a thread system, as shown by Figure 11.
Each constraint is represented by a “thread” (a goal). The threads share the domains of
the variables of the problem. Each thread makes the reductions due to the corresponding
constraint. When it cannot make any more reduction, it is suspended. On domain reduction,
all the threads whose awakening condition holds are woken. When a constraint is solved, the
corresponding thread is stopped. For example, the Figure 11 shows the first twelve events
of the trace described by Figure 7: the first event, a tell, creates the goal “diff (X,Y)”
which is immediately suspended. The second tell creates the goal “geq(X,Y)” which is also
immediately suspended. The third tell creates the third goal, “greater (Y,Z)” which makes
two reductions. The first one causes the awakening of geq(X,Y). The third goal is suspended.
Then the second one is selected and makes its reduction before being suspended again.

The implantation of this mechanism is made easier by the attributed variables of ECLIPSe.
Each logical variable can have one or more attributes as illustrated in Figure 12. Thus, a
finite domain variable is a structure with several fields. The first attribute of X is the do-
main D, represented by an interval list. The other attributes of X are suspended goal lists.
Among these lists, we find the list of goals which are suspended to the grounding of X (this
list is named bound), the list of goals suspended to the modification of the domain lower
bound modification (min) or upper bound (max).

The code of the meta-interpreter is given in Appendix B.

RR n° 4342

20 Langevine & al.

diff(X)

TELL X ##Y

PEND X ## Y
SUS geq(X, V)

TELL X#>=Y
SUSPEND X #>=Y

greater(Y, 2)
TELLY #>Z
REDUCE Y [1]
WAKE-UP X #>=Y
REDUCE Z [3]
SUSPEND Y #>Z

REDUCE X [1]

}
|
|
|
SELECT X #>= Y
SUSPEND X #>= Y

Active constraint

******** Waiting constraint (in the propagation queue)
rrrrrrrrrrrrrr Suspended constraint

<____— Cause/Effect relation

Figure 11: Events #1 to #12 of Figure 7, viewed as events in a thread based system.

domain = [1..3, 5, 7]
bound = [X #=/= Y]

max = [X #> Z, T #<= X + 2]
mn =[]

Figure 12: Example of a finite domain variable X and some of its attributes.

INRIA

Tracing clp(fd) executions 21

The goal suspension mechanism has already been used to build a clp(fd) meta-compiler
as described by Codognet et al. [7]. In our case, the meta-interpreter conception is guided
by facility of execution tracing instead of efficiency.

5.1.2 Ignored Attributes

The system state is partly embedded in the ECLIPS® internal state. Therefore it is costly
to get some particular attributes of an event:

— the cause of an awakening is not directly available to the tracer because the interpreter
loss hand between a reduce and the following wake-up. The interpreter has to store
the domain modification on a reduce by an “assert” and to compare it with the
awakening condition of the woken constraint on a wake-up.

— the store contents is represented by delayed, solved or failed goals. ECL'PS® does not
allow the interpreter to inspect those goals. Thus, the interpreter has to record all
the store alteration.

Besides the interpreter, extra-mechanisms are needed to make some attributes available,
whereas in the declarative interpreter all event attributes are explicitly managed at the
meta-level. For efficiency purpose, the following attributes are ignored in the third meta-
interpreter:

— store:the store content (the sets A, S, @, T and R);

— cause: the awakening cause (specific attribute of wake-up port).

5.1.3 How Equivalent are the Three Meta-Interpreters?

The three meta-interpreters are equivalent wrt the operational semantics. We have the same
invoked goals and the same choice points. The traces are the same (same ports and same
attributes). The third interpreter is less precise: there is less attributes attached to each
event.

The computation of the propagation phase is not necessarily the same. In the first
interpreter, we control the awakening strategy. In the other two ones, this strategy is up
to the ECL'PS® scheduler. For a given CLP goal, we do not get the same traces because
of several possible orders of constraint awakenings. From a problem to another, the two
strategies are not equivalent. For a given problem, one of the strategies can be better than
the other one and generate less propagation events.

5.2 Assessments

When executing a program by meta-interpretation, most advantages of compiling are lost.
The execution is obviously less efficient. Three problems and several instances will be consid-
ered. For each program we compare the time spent in the execution of the program without
trace (T;omp) and its execution and tracing with the declarative meta-interpreter (77). We
also compare with the two less declarative meta-interpreters based on goal suspension. Our
hypothesis is that the suspension-based interpreters are more efficient than the declarative

RR n° 4342

22 Langevine & al.

one. If the time spent in the program tracing with the second meta-interpreter is denoted
by T, then we expect to have T, <« T1. We also measure T3, the time spent in the program
tracing with the suspension-based meta-interpreter without the costly attributes.

In the following we compare the three measures: Ty, T5 and 73. We will also compute
the corresponding ratios:

.
Tco'mp ’

e the cost of the declarative meta-interpreter: Ry =

T

e the cost of the second meta-interpreter: Ry = Tooos

o the cost of the third meta-interpreter: Rz = 7-i—.
p—

5.2.1 Methodology

Hardware and software. We perform our measurements on a SUN Ultra-10 (440MHz,
384MB of RAM). It runs under the SUN Solaris 7 operating system. The machine is very
lowly loaded; the “idle” time of the CPU before an execution launching is more than 99%.
The Eclipse compiler is the release 5.1.3 of the 12 May 2001.

Time measuring command. We use the elapsed time given by the profile/1 Eclipse
command. profile/1 executes a given goal and displays execution statistics. Because of
the intrinsic imprecision of the above command, we need to make sure that programs run in
a period of time that is far above the clock accuracy. Each program in the benchmark suite
is re-executed until it runs at least for 20 seconds. The execution time is the total execution
time divided by the number of executions. More precisely, the profiled goal is:
repeat (BenchGoal, N) where BenchGoal is the goal whose execution time has to be
measured and N is an integer such that N X TBenchGoat > 20 s
To measure an execution time, 10 consecutive profiling are performed. The first execution
is not taken into account because of time spent in library loading or module compiling. The
“execution time” finally given in the following is the average of the nine other measures.
The CPU loading is checked thanks to the top Unix command before the test launching.
The results have been obtained with an uncertainty of 1%.

Traced programs. We chose three different traced programs. The first one solves the
classical n-queens problem. It uses only dis-equality constraints (z # y and z # y + n). Its
size is easy to parameterize. Three problem sizes have been tested: n = 10, n = 11 and
n = 12 in order to study the variation of the rates R;c(1,2,3) with respect to the problem
size. The second traced program is a 4 x 4 magic squares generator. Its constraints are
mostly in the form z + y + z + t = n. The reduction operators of this kind of constraint is
more subtle than constraints such as dis-equality or inequality. The third traced program
is a naive generator of the integers between 1 and n which involves a lot of constraints
and variables. Its size is also simple to change. Six problem sizes have been tested: n €
{50, 100, 200, 300, 400, 500}.

INRIA

Tracing clp(fd) executions 23

The source code of these programs is given in appendix A. Test programs are compiled
with all optimizations provided by the Eclipse compiler (nodbgcomp Eclipse command),
macro expansions excepted. In the case of nqueens, the execution means the search for all
solutions. For the magic-square problem, we run until the first solution. For the sorted
problem, there is only one solution for each instance.

In the meta-interpreters, the trace is deactivated by defining the trace/6 predicate used
in Figure 9 by the following clause:

incval (var_event_number) .
Therefore, no trace is stored or printed but the basic trace mechanism is used and events
are counted.

5.2.2 Results

Table 2 shows the characteristics of the ten benchmarks. For each experiment, we have:
the corresponding goal, the number of constraints and the number of variables involved by
this goal, the number of events with the declarative meta-interpreter and with the other two
ones. The number of events of the declarative interpreter is greater than the one of the other
two interpreters in the case of the n-queens problem. At the opposite, the best number of
events for the magic-square problem is obtained by the declarative interpreter. It is a way
to appreciate the efficiency of the two different awakening strategies.

Table 3 gives the execution times of the programs and the rates presented in Section 5.2.
Some instances of the program sorted have not been measured with the second meta-
interpreter. In fact, the first instances and the measurements made with the third interpreter
are sufficient to conclude about the efficiency of the declarative interpreter. In most cases,
and unexpectedly for Ry (T> > T4) , it appears that Rs > R; > R3. The ratio Ry linearly
increases with the size of data (e.g. 421 for sorted(50,_) and 4483 for sorted(500,_)).
This increasing may be due to list operations. In fact, the constraint and variable sets are
represented by lists in the declarative interpreter and list accesses are in linear time. Lists
of integers are also a time-expensive representation in the case of large domains. These hy-
pothesis are confirmed by the profiling details for the goal sorted (200,_): 45% of execution
time is spent in the predicate “get_domain/3”.

In the case of the second and third meta-interpreters, the cost is more stable, but there
is a clear loss of performance when adding extra-mechanisms: R3 << Rs. The extra-
mechanisms make the second interpreter less efficient than the declarative one.

5.3 Synthesis and Discussion

We first observe a high number of events (at less 47000 events to generate a 4 x 4 magic
square, or about 21 millions to find all the solutions of the 12-queens problem).

In the case of small problems (about 20 variables and 150 primitive constraints), the
declarative meta-interpreter gives an overhead-ratio of about 200. This ratio is highly de-

RR n® 4342

24

Langevine & al.

Goal Nb. constraints Nb. variables Nbeyents(decl) Nbevents(susp)
nqueens (10, _) 135 10 980313 849 460
nqueens(11,_) 165 11 4701121 4049 253
nqueens (12, _) 198 12 24 409 709 20892 277
ms4(_) 134 16 47872 112281
sorted(50,_) 49 50 4949 4949
sorted (100, _) 99 100 19899 19899
sorted (200, _) 199 200 79799 79799
sorted(300,_) 299 300 179699 179 699
sorted (400, _) 399 400 319599 319599
sorted(500,_) 499 500 499 499 499499

Table 2: Size of the test programs: number of constraints and number of variables involved,
number of events generated by the two meta-interpreters.

Goal Nb sol. Tcomp T1 R1 T2 Rz T3 R3
nqueens (10, _) 724 1.429 261.0 183 306.3 214 19.7 13.8
nqueens(11,_) 2680 6.746 | 1362.1 202 | 1619.9 240 92.5 13.7
nqueens (12, _) 14200 34.866 | 7464.9 214 | 9257.5 265 | 476.8 13.7
ms4(_) 1 0.19 22.7 119 69.74 367 27.3 144
sorted(50,_) 1 0.013 5.5 421 268.6 20661 1.9 146.2
sorted(100,_) 1 0.047 41.8 889 951.9 20253 8.1 172.3
sorted(200,_) 1 0.178 331.5 1863 - - 32.8 184.3
sorted (300, _) 1 0.424 | 1123.5 2650 - - 79.2 186.8
sorted (400, _) 1 0.811 | 2674.9 3298 - - | 130.0 160.3
sorted(500,_) 1 1.195 | 5357.3 4483 - -1 206.1 1725

Table 3: Cost of the instrumented meta-interpretation on three benchmark programs. Exe-
cution times are given in seconds.

pendent on the size of data, especially the number of variables. Some optimizations could
be done on that point.

The suspension-based meta-interpretation is a more efficient meta-implementation of
constraint solving but it is not appropriate for tracing purpose: retrieving some attributes is
too expensive. The suspension-based meta-interpreter has no advantage in the tracer proto-
typing context: it is highly platform dependent; its strategies to awake and select constraints
are difficult to tune; moreover, the validity of the suspension-based meta-interpreters wrt
the operational semantics depends on Eclipse special features.

At the opposite, the declarative meta-interpreter explicitly manages each item appearing
in the operational semantics. The strategies are encoded in some Prolog predicates. The
declarative meta-interpreter is derived from the semantics in a straightforward way and is

INRIA

Tracing clp(fd) executions 25

written in ISO-Prolog. Therefore its validity is easier to guarantee. It is a good way to
prototype, experiment and tune formal trace format.

6 clp(fd) Trace Analyzer: a First Prototype

A first on the fly trace analyzer has been implemented. It is based on the declarative meta-
tracer presented above. The conceptual model underlying the trace query mechanism is the
same as Opium conceived by Ducassé [14].

The trace analyzer is an independent Prolog process. A console allows the user to
formulate queries in order to investigate the execution. The execution is simultaneously
running. The queries are formulated in the Prolog language extended by three primitives:

next/0 executes the program until the next event is reached;

fget/1 executes the program until the current event satisfies a given filter. For instance:
“the next event of port reduce which modifies the upper bound of the domain of X”;

get_attr/2 retrieves some attributes of the current event.

These primitives allow to search a specific event forward in the execution trace (next/0
and fget/1) and to retrieve data about this event (get_attr/2). Only forward search is
available at this stage. For example, the following query goes to the first event whose port
is reduce with a “chrono” greater than 150. The reduced variable and the withdrawn domain
are then retrieved and stored in the variables X and Rx

:- fget([port = reduce, chrono>150]),
get_attr([var, withdrawn], [X, Rx]).

Analysis programs can be written with these primitives and easily reused. For example,
here is the code of a query that counts the number of failures encountered before the first
solution and prints it:

:- setval(nb_reject, 0),
repeat,
fget (in(port, [reject, solution])),
(get_attr(port, reject)
-> incval(nb_reject),
fail
; true
)’
getval(nb_reject, NbFailures),
writeln(NbFailures).

RR n° 4342

26 Langevine & al.

Trace query i Debugging
Tracer Output file
ting th Analyzer
executing the program | —+——————*=>
g the prog Relevant tool
trace data

>

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A Prolog process: the meta—tracer

N 7 \

the trace analyzer

|
|
|
|
|
|
|
|
Prolog process: |
|
|
/

Figure 13: Architecture of the trace generation and analysis

The implementation architecture of this tracer/analyzer comes from Opium’s one too.
As shown by Figure 13, the analysis is done by two co-processes: the tracer prototype
executing the examined program and the trace analyzer where the primitives described
above are available. The two processes communicate by a Unix socket in a client-server
scheme. At the beginning, the tracer waits for a query of the analyzer: the execution is
frozen. When the analyzer has to retrieve some attributes of the current event, it sends a
query to the tracer. The tracer searches for the corresponding data in the solver state and
sends it to the analyzer. The execution is still frozen. When the analyzer has to examine
an other event, it sends to the tracer an event-filter. The tracer resumes then the execution
to the first event satisfying the filter. When a such event is reached, the execution is frozen
again and the tracer waits for other queries. This mechanism allows the analyzer to examine
the whole trace forward and to retrieve the necessary data in order to analyze the trace and
to produce a specific view of the execution.

At this stage, the result is a file in an ad hoc format (for instance VRML for the com-
putation space analysis or PostScript for the labelling tree) and a specific viewer is required
to visualize it.

7 Experimentation

We have made some preliminary experiments of trace analysis with our tracer.

A first experiment consists in displaying the labelling (or search-) tree. The analyzed
program solves the well known n-queens problem. Figure 14 shows a search-tree obtained
for the 4-queens problem by trace analysis of a trace generated by our meta-interpreter, and
displayed with dot [25]. Each variable corresponds to a row of the chess-board. The top
node of the displayed tree contains the initial domains, the other nodes contain the reduced

INRIA

Tracing clp(fd) executions

AH##B AHHIC A#HD
B##C B##D CH##D
A+1#4#B A-1#4B
A+2##C A-2#4C
A+3H#HD A-3H#HD
B+1##C B-1##C B+2#D
B-2##D C+1##D C-1##D

B#=2
D->2 B->4 B->1 B->2
C->4 D->3 C->3 D->3
B->] C->]] D->[] C->]

Figure 14: A search-tree of a 4-queens constraint program execution, obtained by trace
analysis, and displayed by dot.

RR n° 4342

28 Langevine & al.

Figure 15: Comparing two search procedures for the 40-queens problem with VRML views
computed by trace analysis.

domains if any. The tree shows four failures in square boxes, two solutions and three choice
points. The uppest arc sums up the tell operations for all permanent constraints of the
programs. Each other arc represents a labelling constraint addition.

The trace analysis uses only the tell, told, reduce events. Few attributes were needed: the
port, the concerned constraint and the domains of constraint variables. For reduce events,
the updated variable and the withdrawn set were also needed.

The sequence of tell and told events in the trace corresponds to a depth-first left-to-
right visit of the search-tree where tell and told events respectively correspond to downward
and upward moves in the search-tree. Reconstructing a tree from its visit (for a fixed visit
strategy) is easy. In Figure 14, we took advantage of reduce events to label the nodes with
the propagation results.

A second experiment is the generation of a 3D variable update view [32]. The evolution
of the domains of the variables during the computation is displayed in three dimensions. It
gives a tool & la TRIFID [5] (here however colors are introduced to display specific events as
in the variable update view of [30]). The trace analyzer makes a VRML file by computing
domain size on each tell and reject event, and when a solution is found. The details of
reduce events allow us to assign color to each kind of domain update (for example minimum
or maximum value removed or domain emptied) as made by Simonis and Aggoun in the
Cosytec Search-Tree Visualizer [30]. The trace analysis is implemented in about 125 lines of
Prolog and generates an intermediate file. A program implemented in 240 lines of C converts
this file into VRML format.

Figure 15 shows the resolution of the 40-queens problem with two different labelling
strategies. We have three axes: variables (horizontal axis of the vertical “wall”), domain size
(vertical axis) and time. The first strategy is a first-fail selection of the labelled variable
and the first value tried is the minimum of its domain. The second strategy is also a first-
fail strategy but variable list is sorted with the middle variable first and the middle of

INRIA

Tracing clp(fd) executions 29

domain is preferred to its minimum. This strategy derives from one described by Simonis
and Aggoun [30]. This approach allows to compare the efficiency of these two strategies by
manipulating the 3D-model. With the first strategy, we get a quick decreasing of the domain
size on one side of the chess-board and a long oscillation of the domain size on the other
side. With the second strategy, the decreasing of domain size is more regular and more
symmetrical, the solution is found faster. In fact, the second strategy, which consists in
putting the queens from the center of the chess-board, benefits more from the symmetrical
nature of the problem. The possibility of moving manually the figure facilitates observation
of such property.
Further explanations about the trace analysis technics will be published in [12].

8 Discussion

In this report we introduced new ports for tracing finite domain solvers. They can be viewed
as a high level trace which can be implemented on most of the clp(fd) platforms. In order to
validate such a trace, the ports and their attributes, more experimentation is needed. We
therefore proposed also a methodology to validate and to improve it. This methodology is
based on the following steps: definition of an executable formal model of trace, extraction of
relevant information by a trace analyzer, utilization of the extracted informations in several
debugging tools. It is illustrated by Figure 16 which specializes and combines Figures 1 and
2 of the introduction. It shows several debugging tools which extract from the same generic
trace the informations they need.

The formal approach of trace modeling used here allows the ports to be clearly defined.
Then the implementation of the model by a meta-interpreter written in ISO-Prolog allows
its correctness to be preserved with respect to the formal model. We have shown that this
methodology is efficient enough on small examples and therefore is of practical interest to
validate the trace model. However, to handle large realistic examples will require hard-coded
implementation of the trace model.

A Generic Trace. In the formal model itself, two ports are directly related to logic
programming (tell and told) and correspond to the welknown ports call and fail of Byrd [3],
the others correspond to a small number of different steps of computation of the reduction
operator fix-point. On the other side we defined a number of (possibly large sized) attributes
to ensure that each event carries enough potentially useful informations. Our model is
probably general enough to take into account several finite domain solvers, but tracing the
complete behavior of different solvers may require new or different ports to take into account
different kinds of control, specific steps of computation (e.g. constraint posting, labelling
phase, ...), or different algorithms.

The proposed methodology shows the way to progress: defining the trace with a formal
model makes easier to compare different trace models. It is thus easier to see which are the
missing ports or attributes. Some solvers use a propagation queue with events instead of
constraints (in this case new ports or same ports but with different attributes are necessary),

RR n° 4342

30 Langevine & al.

Debuggini
Filter and To(gg#lg
Analyser #1 (Search~tree.
(Search~tree) Visualizer)
) Filter and Debugging
Tracer Generic Analyser #2 Tool #2
1 .
Prototype Trace (VRML view) (VRML viewer)
\1 Filter and Debugging
Analyser #n ——= Tool #n
) ()
Solver Trace Production Relevant Informations Extraction Debugging Tool

Figure 16: Current state of experimental validation

or do not use backtracking (then told is never used). The question is also to find the right
balance between the number of events and the attributes, in such a way that a hard-coded
efficient implementation of (a part of) the trace model is still possible. For example the
attribute withdrawn of the port reduce concerns one variable only. Therefore if several
variables are involved by a single reduction step, there will be several reduce events. Another
possibility would be to have a unique event with a port whose withdrawn attribute includes
several variables at once. Gathering too many informations in one event may slow down the
tracer considerably. The trace production must be as fast as possible in order to keep the
best performances of the solver.

Trace Analysis. The generic trace is not intended to be stored in a huge file, but it
will be filtered on the fly and re-formatted for use by some given tool. The methodology we
proposed here, a la opium [14], has been shown to be efficient and general enough to be used
in practice also in hard-coded implementations. It allows to specify the trace analysis in a
high level language (here Prolog) in a way which is independent from the trace production.
We are currently adapting the Opium scheme to clp(fd).

For each experimented tool we have presented here there is a specific analyzer which needs
only few lines of code. With this approach, building different views of the same execution
requires only to modify the trace analyzer. Notice that the implementation presented here
assumes that there is only one trace analyzer running in parallel with the solver.

Trace Assessment. The main challenge in constraint debugging is performance debug-
ging. Our objective is to facilitate the development of constraint resolution analysis tools
in a manner which is as independent as possible from the solver platforms. The three steps
method (generic tracer/trace analyzer/debugging tool) is a way to approach such a goal.
We experimented it by building several analyzers and (limited) tools very easily, without

INRIA

Tracing clp(fd) executions 31

having to change the trace format. More experiences are still needed but it is already clear
that ports and attributes presented here are a good basis to start the study of a generic
trace for CLP(FD). In Fekete et al. [9] a sample of additional ports are suggested to cope
with different finite domain solvers.

Another way to assess the proposed generic trace is to consider some of the existing
debugging tools and to observe that most of the information relevant for each of these tools
is already present in the ports and their attributes. Here are briefly reviewed some plat-
form independent tools?, namely debugging tools using graphical interfaces where labelling,
constraints and propagation can be visualized.

The Search-Tree Visualization tool for CHIP, described by Simonis and Aggoun [30]
displays search-trees, variables and domain evolution. The whole of this information is
present in the proposed ports. Our experimentation shows that search-tree and constraints
can easily be displayed. The relevant information is also present for the Oz Explorer, a visual
programming tool described by Schulte [29], also centered on the search-tree visualization
with user-defined displays for nodes. It is also the case in the search-tree abstractor described
by Aillaud and Deransart [1] where search-tree are displayed with constraints at the nodes.

In Grace, a constraint program debugger designed by Meier [28], users can get informa-
tion on domain updates and constraint awakenings. This is available in our trace via our 8
ports. Grace also provides the ability to evaluate expressions using the current domain of
the variables. As the domain of the variables is an attribute of all events, it can be obtained
by any analyzer of our trace. The CHIP tool also provide update views in which, for exam-
ple, useless awakenings are visible. In our environment useless awakenings could be detected
by a select not followed by a reduce. The visualization tool by Carro and Hermenegildo [5]
traces the constraint propagation in 3 dimensions according to time, variable, and cardinal
of the domain. The required information is present in our trace. The S-boxes of Goualard
and Benhamou [19] structure the propagation in and the display of the constraint store.
Structuring the propagation requires to modify the control in the solver. Displaying the
store according to the clausal structure would however cause no problem.

9 Conclusion

In this report, we defined and experimented a generic trace for constraint solvers over Finite
Domains. This trace is characterized by a set of ports and attached attributes which are
defined on a formal model of resolution. The genericity of this trace is double. On one hand,
the ports, which are defined on a very general formal model, represent events which are in
most of the solvers. On the other hand, the data attached to each port are sufficient for
most of the existing debugging tools for solvers over Finite Domains.

The proposed trace is a first attempt of such a generic trace. We also proposed a method
to assess this trace and to improve it through a cycle of modelization and experimentation.
The first experiments showed the interest of this approach. Further experiments are still

"They are considered as (clp(fd)) platform independent tools in the sense that they are focused on general
properties of finite domain solving: choice-tree, labelling, variables domain evolution.

RR n° 4342

32 Langevine & al.

needed. They will allow the result to be refined and the generic trace to become even more
relevant.

Acknowledgements

We would like to thank our partners of the OADymPPaC project for having shared their
experience and for their fruitful comments on the ports and attributes definition.

References

[1] C. Aillaud and P. Deransart. Towards a language for clp choice-tree visualisation. In
Deransart et al. [11], chapter 8.

[2] F. Benhamou. Interval constraint logic programming. In A. Podelski, editor, Con-
straint Programming: Basics and Trends, pages 1-21. Springer-Verlag, Lecture Notes
in Computer Science 910, 1994.

[3] L. Byrd. Understanding the control flow of Prolog programs. In S.-A. Tarnlund, editor,
Logic Programming Workshop, Debrecen, Hungary, 1980.

[4] M. Carro and M. Hermenegildo. Tools for search-tree visualisation: The apt tool. In
Deransart et al. [11], chapter 9.

[5] M. Carro and M. Hermenegildo. The VIFID/TRIFID tool. In Deransart et al. [11],
chapter 10.

[6] Y. Caseau, F.-X. Josset, and F. Laburthe. Claire: combining sets, search and rules to
better express algorithms. In D. De Schreye, editor, Proc. of the 15th Int. Conference
on Logic Programming, pages 245-259. MIT Press, 1999.

[7] P. Codognet, F. Fages, and T. Solas. A meta-level compiler of CLP(FD) and its com-
bination with intelligent backtracking. In F. Benhamou and A. Colmerauer, editors,
Constraint Logic Programming: Selected Research, chapter 23. MIT Press, 1993.

[8] Cosytec. CHIP++ Version 5.2. documentation volume 6. http://www.cosytec.com,
1998.

[9] Romuald Debruyune, Jean-Daniel Fekete, Narendra Jussien, Mohammad Ghoniem,
Pierre Deransart, Ludovic Langevine, and al. A proposal of concrete format for tracing
constraint programming (based on a XML DTD), October 2001. Deliverable D2.2.2.1
of [21] (in French).

[10] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog, The Standard; Reference Manual.
Springer Verlag, April 1996.

INRIA

Tracing clp(fd) executions 33

[11] P. Deransart, M. Hermenegildo, and J. Matuszynski, editors. Analysis and Visualisation
Tools for Constraint Programming. Number 1870 in LNCS. Springer Verlag, 2000.

[12] Mireille Ducassé, Pierre Deransart, and Ludovic Langevine. Generic mechanisms for
extracting and analyzing execution traces, December 2001. To appear as deliverable
1.2.2.1 of [21].

[13] M. Ducassé. Abstract views of Prolog executions with Opium. In P. Brna, B. du Boulay,
and H. Pain, editors, Learning to Build and Comprehend Complex Information Struc-
tures: Prolog as a Case Study, Cognitive Science and Technology, chapter 10, pages
223-243. Ablex, 1999.

[14] M. Ducassé. Opium: An extendable trace analyser for Prolog. The Journal of Logic pro-
gramming, 39:177-223, 1999. Special issue on Synthesis, Transformation and Analysis
of Logic Programs, A. Bossi and Y. Deville (eds).

[15] M. Ducassé and J. Noyé. Logic programming environments: Dynamic program analysis
and debugging. The Journal of Logic Programming, 19/20:351-384, May/July 1994.

[16] ECLiPSe. Constraint logic programming system. http://www-
icparc.doc.ic.ac.uk/eclipse/.

[17] G. Ferrand, W. Lesaint, and A. Tessier. Value withdrawal explanation in CSP. In
M. Ducassé, editor, AADEBUG’00 (Fourth International Workshop on Automated
Debugging), pages 188-201, 2000. The COmputer Research Repository (CORR)
¢s.SE/0012005.

[18] GNU-Prolog. A clp(fd) system based on Standard Prolog (ISO) developed by D. Diaz.
http://gprolog.sourceforge.net/ Distributed under the GNU license.

[19] F. Goualard and F. Benhamou. Debugging Constraint Programs by Store Inspection.
In Deransart et al. [11], chapter 11.

[20] Y. Gurevitch. Evolving algebras, a tutorial introduction. Bulletin of the European
Association for Theoretical Computer Science, 43:264-284, 1991.

[21] INRIA-Rocquencourt, EMN-Nantes, INSA-Rennes, University of Orléans,
Cosytec, and ILOG. Tools for dynamic analysis and development of con-
straint programs (OADymPPaC), November 2000. An RNTL French Project.
http://contraintes.inria.fr/0ADymPPaC.

[22] E. Jahier. Collecting graphical abstract views of Mercury program executions. In
M. Ducassé, editor, Proceedings of the International Workshop on Automated Debug-
ging (AADEBUG2000), Munich, August 2000. The COmputer Research Repository
(CORR) ¢s.SE/0010038.

RR n° 4342

34 Langevine & al.

[23] E. Jahier, M. Ducassé, and O. Ridoux. Specifying Prolog trace models with a con-
tinuation semantics. In K.-K. Lau, editor, Proc. of LOgic-based Program Synthesis
and TRansformation, London, July 2000. Springer-Verlag, Lecture Notes in Computer
Science 2042.

[24] N. Jussien and V. Barichard. The PaLM system: explanation-based constraint program-
ming. In Proceedings of TRICS: Techniques foR Implementing Constraint programming
Systems, a post-conference workshop of CP 2000, pages 118-133, Singapore, September
2000.

[25] E. Koutsofios and S. North. Drawing graphs with dot. TR 910904-59113-08TM, AT&T
Bell Laboratories, 1991.

[26] L. Langevine, P. Deransart, M. Ducassé, and E. Jahier. Prototyping CLP(FD) tracers,
a trace model and an experimental validation environment. In A. Kusalik, editor, Pro-
ceedings of the Eleventh Workshop on Logic Programming Environments (WLPE’01),
Paphos (Cyprus), November 2001. CoRR. ¢s.PL/0111043.

[27] K. Marriott and P.J. Stuckey. Programming with Constraints: An Introduction. The
MIT Press, Cambridge, Massachussets, 1998.

[28] M. Meier. Debugging constraint programs. In U. Montanari and F. Rossi, editors, Pro-
ceedings of the First International Conference on Principles and Practice of Constraint
Programming, number 976 in LNCS, pages 204-221. Springer Verlag, 1995.

[29] C. Schulte. Oz Explorer: A Visual Constraint Programming Tool. In Proceedings of the
Fourteenth International Conference on Logic Programming (ICLP’97), pages 286-300,
Leuven, Belgium, June 1997. The MIT Press.

[30] H. Simonis and A. Aggoun. Search-Tree Visualisation. In Deransart et al. [11], chap-
ter 7.

[31] M. Wallace, S. Novello, and J. Schimpf. Eclipse: A platform for constraint logic pro-
gramming. Technical report, IC-Parc, August 1997.

[32] R. Zoumman. Analyse du comportement du solveur de contraintes basée sur la visuali-
sation de traces (in french). Rapport de stage, INRIA, 2001.

A Source code of the test suite

There are three programs in the test suite. For each program, the types of basic constraints
used, the number of constraints and the number of variables involved are given. The source
code has been compiled with the release 5.1.3 of the ECL!PS® system.

The first section shows some predicates used in several programs. Each of the following
sections presents only one program: the m-queens program in Section A.2, the 4x4-magic
squares generator in Section A.3 and the strictly positive numbers generator in Section A.4.

INRIA

Tracing clp(fd) executions 35

A.1 Common predicates

The following predicates are used in several test programs. ud_labelling/1 describes a
user-defined labelling procedure for a list of variables. It is a naive procedure: the labelled
variable is always the first in the list. distinct (X, L) gives the binary constraints which
ensure that each variable in the list L is distinct from X. all_diff/1 gives the binary
constraints which ensure that all the variables in a list have distinct values. The macro
expansion is switched off in order to prevent the compiler from making unknown program
transformations. Performance differences are not significant. Therefore, the code presented
below is exactly the code given to the interpreter.

:- set_flag(macro_expansion, off).

:- dynamic ud_labelling/1, distinct/2, all_diff/1.
ud_labelling([]1).
ud_labelling ([X|L]):-

indomain(X),

ud_labelling(L) .

distinct(_, [1).
distinct (X, [YIL]):-
X ## Y,
distinct(X, L).

all_diff([1).

all_diff([XIL]):-
distinct(X, L),
all_diff(L).

A.2 n-queens program

Basic constraints used:

— a # b, where a and b are variables;
— a # b+ n, where a and b are variables and n is a fixed integer.
Number of variables: n;

2

Number of constraints: 2(n? —n).

RR n° 4342

36 Langevine & al.

:- dynamic no_attack/3, safe([_]).
safe/1, safe ([X|[YIL]]) :-
queens/2. no_attack(X, [YIL], 1),

safe([Y[|L]).
no_attack(_, [1,).

no_attack(X, [YIR], I):- nqueens (N, L):-
X ## Y, length(L, N),
X ## Y + I, L :: 1..N,
Y ## X + I, safe(L),

ud_labelling(L).
I1 is I + 1,
no_attack(X, R, I1).

A.3 Generator of all the 4x4-magic squares

The following program generates all 4 x 4 magic squares: numbers from 1 to 16 are disposed
in a square such that the sum of each row, column or diagonal is equal to the “magic sum”,

M(‘lzﬂ = 34. There are 880 solutions (up to four symetric axis).

Basic constraints used:

— binary disequality a # b, where a and b are variables;

— equality a + b + ¢ + d = n, where a, b, ¢ and d are variables and n is a fixed
integer;

— binary disequality a > b.

Number of variables: 16;

Number of constraints: 120 binary disequalities, 10 equalities, 4 inequalities (to prevent
symetrical solutions from being found).

:- dynamic ms4/1.
ms4(L):-
L = [A11, A12, A13, Ai14,
A21, A22, A23, A24,
A31, A32, A33, A34,
Ad41, A42, A43, A44],
L ::1..16,

4 Computation of the ‘‘magic sum’’
Som is 4 * (4 * 4 +1) // 2,

A11 + A12 + A13 + A14 #= Som,
A21 + A22 + A23 + A24 #= Som,
A31 + A32 + A33 + A34 #= Som,
A41 + A42 + A43 + A44 #= Som,

INRIA

Tracing clp(fd) executions 37

A11 + A21 + A31 + A41 #= Som,
A12 + A22 + A32 + A42 #= Som,
A13 + A23 + A33 + A43 #= Som,
A14 + A24 + A34 + A44 #= Som,

A11 + A22 + A33 + A44 #= Som,
A14 + A23 + A32 + A41 #= Som,

A11 #< A41,
A11 #< A14,
A11 #< A44,
A14 #> A4d1,

ud_labelling(L).

A.4 Generator of the n first strictly postitive integers

This program builds a list of n numbers between 1 and n such that each consecutive integers
a and b (a is on the left of b) satisfy a < b. The result is the sorted list of integers between
1 and n (lower first). This program only works by propagation: no labelling procedure is
used because the initial constraints are sufficient to deduce the unique solution.

Basic constraints used: strict inequality between two variables, b > a;
Number of variables: n;
Number of constraints: n — 1.

constrain([_]).
constrain([A|[BIL]]):-
B #> A,
constrain([B|L]).

sorted(N, L):-
length(L, N),
L :: 1..N,
constrain(L) .

B Source Code of the Second and Third Meta-interpreters

The following program is the non Prolog part of the suspension-based meta-interpreters
presented in Section 5.1. The extra-mechanisms used to retrieve implicit attributes have
been removed because they make the code understanding more difficult.

RR n° 4342

38 Langevine & al.

tell(C) is invoked by the Prolog part of the meta-interpreter on encountering a con-
straint C. A constraint number is generated and the depth is increased. Then, the constraint
is activated.

activate(C) makes all the possible reductions and tests the solved condition of C before
the eventual suspension. If the solved condition holds, the goal succeeds.

reduce(C) applies the reduction operators of C. The value withdrawals are given by
cd_reduction as a list of pairs X - Wx where X is the variable to reduce and Wx is the
withdrawn domain. Each simple withdrawal is made by withdraw/3.

suspension(C) suspends the constraint C. It suspends two goals with the same awakening
condition: wake_up(C) with a high priority (1) and select(C) with a normal priority (3).
When the awakening condition holds, the first goal is activated. Therefore, the wake-up event
is immediately traced. The second goal is put in the queue and activated when another one
succeeds or is suspended.

B.1 The Second Meta-interpreter

tell(C):-
incval (var_constraint_number),
getval (var_constraint_number, CNum),
c_setnumber(C, CNum),
(
(inc_depth,
trace(tell, _, _, _),
/ Eztra-mechanism to record the store alteration
store_telling(C) ,
call_priority(activate(C), 3))

(trace(told, C, _, _),
/ Extra-mechanism to record the store alteration
store_tolding(C),
dec_depth,
fail)
).

activate(C):-
reduce (C) ,
internal_representation(C, Int),
(cd_true(Int)
-> trace(true, _, _, _),
/. Extra-mechanism to record the store alteration
store_solution(C)
; suspension(C)).

reduce(C) : -
internal_representation(C, Int),

INRIA

Tracing clp(fd) executions 39

cd_reduction(Int, RedList),

(
foreach((X, Wx), RedList), param(C) do
(DRetX = empty -> true
; withdraw(X, Wx, C))
).

:- dynamic awakening_context/i.

withdraw(X, Wx, C):-
get_domain(X, Dx),
trace(reduce, X, Wx, _),

/ Eztra-mechanism to record the awakening information
assert (awakening_context(info(C, X, Wz))),

d_difference(Dz, Wz, NewDomX, _),
/ 4All the corresponding ’wake-up’ are done: retract the info
retract_all (awakening_contezt(_)),
(NewDomX = empty -> (trace(reject, _, _, _),
/ Eztra-mechanism to record the store alteration
store_rejection(C),

fail
; true),
call_priority((d_update(X, NewDomX), set_active_constraint(C)), 1),
wake.
suspension(C) : -

internal_representation(C, Int),
cd_wake_up_condition(Int, CondReveil),
trace(suspend, _, _, _),

suspend (wake_up(C, Info), 1, CondReveil),
suspend(select(C, Info), 3, CondReveil),

/ Extra-mechanism to record the store alteration
store_suspension(C).

wake_up(C, Info):-
awakening_context (Info),
trace(wake_up, C, Info, _),
/ Extra-mechanism to record the store alteration
store_awakening (C).

select(C, _):-
trace(select, C, _, _),
/ Eztra-mechanism to record the store alteration
store_selection(C),
activate(C).

RR n° 4342

40 Langevine & al.

B.2 The Third Meta-interpreter

The following meta-interpreter does not manage all the event attributes as explained in
Section 5.1.

tell(C):-
incval (var_constraint_number),
getval (var_constraint_number, CNum),
c_setnumber(C, CNum),

(
(inc_depth,
trace(tell, _, _, _),
call_priority(activate(C), 3))
(trace(told, C, _,),
dec_depth,
fail)
).

activate(C):-
reduce(C),
internal_representation(C, Int),
(cd_true(Int)
-> trace(true, _, _, _)
; suspension(C)).

reduce (C) : -
internal_representation(C, Int),
cd_reduction(Int, RedList),

(
foreach((X, Wx), RedList), param(C) do
(DRetX = empty -> true
; withdraw(X, Wx, C))
).

withdraw(X, Wx, C):-
get_domain(X, Dx),
trace(reduce, X, Wx, _),
d_difference(Dx, Wx, NewDomX, _),
(NewDomX = empty -> (trace(reject, _, _, _), fail

; true),
call_priority((d_update(X, NewDomX), set_active_constraint(C)), 1),
wake.
suspension(C) : -

internal_representation(C, Int),
cd_wake_up_condition(Int, CondReveil),

INRIA

Tracing clp(fd) executions

41

trace(suspend, _, _, _),
suspend (wake_up(C, Info), 1, CondReveil),
suspend(select(C, Info), 3, CondReveil).

wake_up(C, _):-
trace(wake_up, C, _, _).

select(C, _):-
trace(select, C, _, _),
activate(C).

RR n° 4342

42 Langevine & al.
Contents
1 Introduction 3
2 Operational Semantics of Constraint Programming 5
2.1 Basicnotations L 5
2.2 Reduction operators L 5
2.3 Awakening and solved conditions Lo o L. 6
2.4 Structure of the constraint store L. 7
2.5 Propagation 9
2.6 Control e e 10
3 Trace definition 11
4 Deriving a tracer from the operational semantics 13
4.1 Primitive constraint definitions Lo L. 13
4.2 Data structures oL e e e e e e e 14
4.3 Translation of the primitive constraints 15
4.4 Translation of the semanticrules 16
4.5 Integration with the underlying Prolog system 18
5 Performance 18
5.1 The Two Other Meta-Tracers 19
5.1.1 Meta-interpretation Based on Goal Suspension 19
5.1.2 Ignored Attributes 21
5.1.3 How Equivalent are the Three Meta-Interpreters? 21
5.2 ASSESSIeNntS e e e e e e e e e 21
5.2.1 Methodology 22
5.2.2 Results e 23
5.3 Synthesis and Discussiono 23
6 clp(fd) Trace Analyzer: a First Prototype 25
7 Experimentation 26
8 Discussion 29
9 Conclusion 31
A Source code of the test suite 34
A1 Common predicates e 35
A2 m-queens program. oLo e e e 35
A.3 Generator of all the 4x4-magic squares. oot v 36
A.4 Generator of the n first strictly postitive integers 37

INRIA

Tracing clp(fd) executions 43
B Source Code of the Second and Third Meta-interpreters 37
B.1 The Second Meta-interpreter 38
B.2 The Third Meta-interpreter 40

RR n° 4342

/<

Unité de recherche INRIA Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopdle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhone-Alpes : 655, avenue de I’Europe - 38330 Montbonnot-St-Martin (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

