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Comportement asymptotique de files d’attentes suivant une
discipline de type Generalized Processor Sharing sous des
hypothéses sous-exponentielles

Résumé : Nous analysons le comportement de files d’attentes suivant une discipline de type
Generalized Processor Sharing (GPS). Les arrivées de clients pour les différentes files d’at-
tente sont des processus de renouvellement indépendants et les temps de service sont sous-
exponentiels. Nous calculons alors ’asymptotique exacte de la charge de chacune des files.

Mots-clés : distributions sous-exponentielles, queues lourdes, distribution d’excés, Theoréme
de Veraverbeke, GPS, limite fluide.



Asymptotic behavior of GPS queues under subezponential hypothesis 3

1 Introduction

Empirical evidence of the presence of heavy tails in network traffic have stimulated the analy-
sis of subexponential queueing systems [20]. The importance of scheduling in the presence of
heavy tails was first recognized in [1]. The present paper specifically examines the effective-
ness of Generalized Processor Sharing (GPS). As a design paradigm, GPS is at the heart of
commonly-used scheduling algorithms for high-speed switches, such as Weighted Fair Queue-
ing, see for instance [18], [19].

A basic approach in the analysis of long-tailed traffic phenomena is the use of fluid models with
long-tailed arrival processes. We refer to [11] for a comprehensive survey on fluid queues with
long-tailed arrival processes. See also [16] for an extensive list of references on subexponential
queueing models.

In the present paper, we consider the Generalized Processor Sharing (GPS) discipline with
subexponential service times. We determine the asymptotic behavior of the stationary work-
load processes P(W* > z) for large z.

In section 2, we investigate the case of a G/G/1 queue. We prove that under stationarity and
ergodicity assumptions, we can define a mean service rate for the queue and we prove that
the scaled workload converges in some sense to a fluid limit.

In section 3, we describe the GPS discipline and we show how the results of previous section
remains true in this context : each queue receives a mean service rate that depends only on
the average rate of the different inputs.

In section 4, we sum up the basic properties of subexponential distributions. We use results
of the paper [5] to show how to calculate the exact asymptotic. The main argument here, is
the decomposition over the typical event introduced in [5].

In section 5, we describe the model and give the stochastic assumptions (GI/GI input and
subexponential distributions). We then show how to calculate some constants of the problem
that will appear in the asymptotic. We construct in fact the fluid limit of the system.

In the last section, we give the exact asymptotic of an individual queue. Thanks to the results
of section 3, we show that the use of fluid limit is justified (what was pointed out by [13]).
The same model has been studied in [9] with instantaneous or fluid input, in the case of
intermediately regularly varying distributions. Here, we assume that we can compare the
different distribution functions with one distribution belonging to the subexponential class
(which contains the intermediately regularly varying class). In [9], the authors assume the
existence of a mean rate at which a flow would receive service when some other are saturate.
Here, we introduce the same condition (we observe the behavior of the system when some
queues saturate) and we prove the existence of this mean service rate. Moreover, we give an
explicit algorithm that calculates the constants of the exact asymptotic formula of section 6
which seems to be only available for the case of 2 queues with Poisson input and regularly
varying distributions (see last section of [9]).

2 Basic facts about G/G/1 queue

We define now the G/G/1/00 queue following the presentation of [6].

Let (2, F,P) be a probability space with a measurable flow {6;},t € R such that (P, {6;}) is
ergodic. Let N be a point process defined on (2, F). Assume N is simple and compatible with
{6;}. It is called the arrival process and its n-th point 7T}, is interpreted as the arrival time of
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4 Marc Lelarge

customer n. Recall the convention T,, < T, +1(n € Z) and Ty < 0 < T;. The inter-arrival time
between customers n and n + 1 is

Tn = n+1—Tn, n € 7.
It will be assumed that the intensity of the arrival process is finite
A =E[N(0,1]] < co.

Customer n carries a service time denoted by o, > 0, where the sequence {o,} is assumed to
be a sequence of marks of the arrival process.

Letting P%; be the Palm probability associated with P and N, we define the traffic intensity p
by

p = AEy [og].

The sequence {(Ty,,0p)},n € Z describes the G/G input. In this paragraph, we suppose that
this input feeds a 1/00 queueing station (1 server, co capacity) with capacity c.

We(t) will denote the amount of service remaining to be done by the server at time ¢. For
the G/G/1/o0 queue, the evolution of W,(t) between two successive arrivals is described by
Lindley’s equation :

We(t) = (We(Tn—) +0n —c(t —Tn))", t€ [Tn, Tni1)- (1)

Property 1. Under the stability condition
p<c

there exists a unique finite workload process {WZ(t)},t € R, compatible with the flow {6;}, and
satisfying equation (1) for all t € R. This process is such that

WE(0) = sup(cTn + Y o3)*. (2)
n<0 i=0

2.1 Existence of mean service rate

We consider the general case of stationary ergodic input with traffic intensity 0 < p < oco.
Denote by A(s,t) the amount of traffic generated during the time interval (s, ] :

A(s,t) = Z onlir, s,y for s> 0, and we take the following convention :

n

A(0,t) = Ao-l-zan]l{:r’ne(o,t}}a
n

with Ay a positive finite random variable (initial workload). We have then

We(t) = sup [A(s,t) —c(t — s)] .-

Define then, the output of the system :

B(s,t) = A(s,t) — Wc(?),

INRIA



Asymptotic behavior of GPS queues under subezponential hypothesis 5

and look at the quantity

which is the ratio of what goes out of the system over what enters the system. We then have :

e if p < ¢, then by property 1 and a coupling argument, we know that W,(t) < oo, hence

we have 7.(t) oy,

e if p > ¢, we have this time r.(t) Lo,

c.
P’
e if p = ¢, we have for any ¢ > € > 0, W,(t) < W,_¢(t), hence:

1 > 7e(t) > re—c(t), and

t—oo C—E€

Te—e(t) —
And we have : r.(t) 2oy,

Hence we can sum up this to

re(t) 2% 1A £ P-as. (3)

o
Define now
1 t
Te(t) = 2/0 C]l{Wc(u)>0}du-

We have of course
t
Bc(sat) :/ C]l{Wc(u)>0}du7
S

hence

And by ergodicity of the input process, we get

1 t
Te(t) = E/o clyw, (wy>0ydu o pAc P—a.s. (4)

Moreover, it is easy to see that the limits (3) and (4) are uniform in the initial condition Ag
on a compact set.
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6 Marc Lelarge

2.2 Fluid limit

We note D the set of cadlag functions on Ry .
We define the following bijection :

& = {feD, Hf(t)H—OOM},

£ = Ugl.

<o

We have the natural norm on £ defined as follows :

Iflle = [Hflloo with
lgllec = sup|g(t)]-
0<t

We have of course for f € € : ||flle < co. Moreover H~': (&,||llec) — (& ) is
clearly continuous.
For any [ the set & is a closed subset of D. If f, n”_)—|o°> fand Vn, f, € &, then H f(t) Lty )

lle
Moreover (D, || ||s) is a complete metric space and with the remark made before about H 1,

we see that any Cauchy sequence in & converges in D. Hence (&, || ||¢) is a complete metric
space.
Moreover, we have this very easy lemma :

Lemma 1. The norm || ||¢ is continuous for the product.

Proof :
Consider
fon =2 f,
Il'lle
n—o0
Gn —— G-

e
We have then :

angn - ngS = ||fn(gn _g) +g(fn - f)”g

< | falgn — 9lle + lg(fa — Flle

= | fullellgn — glle + llgllell frn — flle-
A
Consider the following function:

o (&l lle) = E e .
f N of with
¢f(t) = sup [f(t) — f(s) —c(t —s)].
0<s<t

INRIA
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Lemma 2. The function ¢ is continuous.

Proof :
We have :

IU—MESn@{tfll() %?:

@) _ 9
Hence for such functions, we have the following inequalities :

s<t<1 |f(t)—f((«)9)— g9(t) —g(s))| < 2n,

S v e el e e oL o e A b e R
s<i<e (BB @R -2 < B84 47 - ()l <2,
The continuity of ¢ is then clear.
A
Define now the scaling function :
Sz (Elllle) — (Ellle)
f . S.f with
5.7 =12,

Denote by ef the following function belonging to & :

ef(0) = =,
(t) = it fort>0.

~8

(&

Then we have

Lemma 3. Let {f,} be a sequence of functions in & such that :

falt) = ft)ye& fort>0,
lmf"—(o)

n—oo n

= fo < +oo.

Then the following convergence holds :

n—)oo fo
Sulfn) =0 e

Proof :
We have :
0 nt
IWMWW=mﬂML%,ﬁu4L fo) |
n t<1| ™ t>1| nt
= max[fné)—fo sup |f() lt| &_IH_
Considering the two last terms of the max we have for any T' < n:
max Sup |f() It| ; sup f) _ H < max |—sup|f(t) —It|;sup f@ ‘ ]
t>n | t N 4<T t>T7| 1
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8 Marc Lelarge

Hence the three terms in the max can be as small as we want provided that n is large enough.
A
Take for the function f :

f(0) = —Ay,
f(t) = Zo'n]l{Tne(O,t]}zgi_r)I(l)A(Sat) for t>0.

Thanks to the ergodic theorem, we have :

P-a.s.
We have then :

We(t) = sup [f(t) = f(s) — c(t = s)] = &f (2).

0<s<t
Given any sequence of initial conditions {Ag} such that

Ao no
T Ay P-as.,
n

we can define the scaled workload of a G/G/1 queue:

We(nt)

Weat) = =

We have then :

WS 7% WS Poas. with

e ¢
WE(t) = (Ao+ (p—c)t)*.

Moreover, if the stability condition holds p < ¢, then we have :

s Nn—0o s
c,n Wc
Il Moo

P-a.s.

Note T'(n) the first positive time at which the queue empties. We have of course

T(n) n—00_ AO
n "c—p

P-a.s.

Moreover after T'(n) the workload of the queue remains in a compact set, hence :

AO te, Wc(nt) S M

Ve >0, Vt > —
c—p n n

INRIA



Asymptotic behavior of GPS queues under subezponential hypothesis 9

2.3 More general results

In this section, we want to derive the same results as the both preceding sections but for a
capacity varying queue.

Suppose that the capacity of the server is not constant but is a random process ¢(¢). Denote
by C(s,t) the cumulative capacity of the server on the time interval (s, t], namely :

C(s,1) =/( ] c(u)du.

Assume that the process c(u) is stationary (i.e. c(u) = ¢(0) 0 8,). Since (P, {6;}) is ergodic,
we can define

.. o,t)
o= fim S =m0
We have now

We(t) = sup [A(s,t) —C(s,t)], and we define as before

0<s<t

Bo(s,t) = A(s,t) — We(t),
_ SC(Oat)

ro(t) = A0.0) and

1 t
fo(t) = ;/0 c(u) 1w (u)>0y du.

And we have the same result as before. Consider the process:
Al(s,t) = [A(s,t) — C(s,t) + c(t — 5)].

This process is stationary :

Al(s,t) 00, = [A(s,t) 00, —C(s,t)0b,+c(t—s)]
= [A(s+v,t+v)=C(s+v,t+v)+c(t+v—(s+v))]
= A(s+uv,t+w).

and of intensity p,

A0,
= lim 7(0’ ) =p
t—o0 t

E[A(0,1)]

t—00

We have with W (t) = supg<,<; [A'(s,t) — c(t — s)], hence r¢(t) —— 1A <
We conclude as before that
1

t
Te(t) = E/o c(u) 1w (uy>0y du Lo pAc P—a.s. (5)

Moreover, defining as in previous section :

f(O) = _AO’
f@ = 1i_I>I(1)AI(S,t) for t>0.

We have W (t) = ¢f(t). Hence, we proved

RR n° 4339



10 Marc Lelarge

Property 2. Consider a 1/00 queueing station with capacity that is a random variable which
couples with C o 0y for some random variable C' of mean E[C] = ¢ < oo and that is fed with
an input process that couples with a G/G input process (stationary and ergodic) of intensity
p, then there ezxists a mean service rate : v = p Ac.

Given any sequence of initial conditions {Ayy} such that

AO,n n—>00 A

o [P-a.s.,
n
we can define the scaled workload :
We(nt)
Weal) = 2O,

We have then :

Wen 170 W P-as. with

I ls
Wat) = (Ao + (p—o)t) ™.

3 The GPS discipline : stability issues

Consider the following model of N coupled G/G/1 queues, Q1,...,Qn. Each queue is served
in accordance with the Generalized Processor Sharlng (GPS) discipline, which operates as
follows. Queue j is assigned a weight ¢/, with Z =1 ¢’ = 1. If all the queues are backlogged,
then queue j is served at speed ¢’. If some of the queues are empty, then the excess capacity
is redistributed among the backlogged queues in proportion to their respective weights.
Denote by A7 = {Tﬂ,an} the input process of queue j. We suppose that (A7,6;,P) are N
stationary point processes of finite intensity A\’. Note that the A7 are jointly stationary, in
the sense that their stationarity is relative to the same quadruplet (€, F,PP,6;). Denote by
p = )\jE? [03] the traffic intensity of queue j.

We assume the queues are indexed in such a way that

1 N

Y Y
as S¢—N (6)
Define
o 1TXr
k N A
=k ¥
k
K = kznll,a}f {¢k<Rk}

S = {1,...,K},

R =
Zﬁésqﬁ] 297

JES

As we will see (property 3), S is the set of queues that are not asymptotically backlogged.
For any finite initial condition Y = (Y'1,...,Y"), we can construct workload processes Wi(t)

INRIA
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,j=1,...,N, that are compatible with 8; for ¢ > 0, fed by A7 and such that

Wi(0) = Y7 >0,

AW? .
Yy _ . :
g t) = —]l{ng(t»O}rg,(t) with
Iy(t) = {sWy(t) =0},
0 otherwise

Definition. We will say that a queue j is stable if we can find a finite random variable M
and a sequence of i.i.d random variables {X]} such that :

EX!] < 0,
Sy = zn:X{, S5=0
=1
Si* = max SZj ,
wi(Ti) < SI* Wn> M.

Property 3. For any finite initial condition Y, the processes {Wg,(t)} ,J €S are stable. And
we have the following limits uniformly in {Y7,j € S} on a compact set :

t . .
jeSsS = %/rg,(u)dut_)—oo)p] P-a.s. (7)
0
1 [t .
ji¢s = ¥/r§,(u)dut—_ﬂﬁ>¢]R P-a.s. (8)
0

For the study of GPS discipline with heavy-tailed service times, we will need a little more
general result. We must consider the system when some queues are backlogged for a very long
period of time. Hence we study the following system :

Saturation of A C [1, N].

We consider now that the queues ¢ € A claim continuously their full share of the bandwidth
(they are always backlogged).

We suppose that [A| = N —n and we note [1, N\A = {a1,ag,...,a,}. Let Y& =
(Yo ... Y%) be a vector with positive coordinates. We will denote for simplicity Y = Y.
Of course thanks to our ordering (6), we have :

a1
p <... <

g S S g

RR n° 4339



12 Marc Lelarge

We can construct the workload processes WJ (A )( t) for j ¢ A that are compatible with 6; for
t > 0, fed by A7, and such that

w0 = vizo,

>—(t) = 3B (@)  with
A (A
) = {i¢ AWy =0},
¢’ : (A) (1\\e
ri}’(A)(t) = Zk¢I§JA)(t)¢k+ZkeA¢k J € (L")
0 otherwise

Remark 1. We extend the definition of rgj(A) for 7 € A by:

M8 g = ¢’
v Zk¢I(A) O+ D pen P

We have of course:

Y™ =1 ve>o.

%

)
Define
k—1 4
RO _ 1=l Pl
k - . )
Yok $gay + Yjen @
k
A) P (A)
K® = k:rrll’a)f {ﬁ<Rk },

@ - Y [y .
r djgs@ ¢ (1 Z pj)

JES(A)

Property 4. For any finite initial condition Y, the processes {WJJ;’(A) )}, € S@) are stable,
and we have :

[t i~
Vi e 8B, ?/0 3 w)du 2% g Peaus, (9)

uniformly for {Y7,5 € S} on a compact set.

Proof :
We have :

N#pel < RO =

INRIA
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But we have R,(“A) =1, hence :

p

g <1 (10)
Saturation of queues i # a;.

Define the following G /G/1 workload process

W B(g) = (WoA)(T0-) + 0@ — ¢u (¢ —T))F, for te [T, TH,). (11)

Thanks to (10), we see that the stability condition holds for this process and we denote
Wa:(8) o g, the unique finite workload process compatible with the flow {6;} and satisfying
equation (11). Moreover, we clearly have

W;la(A) (t) < W;l:(A) t),
and {W;l’(m (t)} couples P-almost surely with the stochastic process {W (%) o @;}. Hence,

we proved that {W;l’(A) (t)} is stable. Thanks to the results of previous section, we have
(uniformly in Y% on a compact set)

1 t

Z/ rsl,l’(A)(u)du 1200, par,
0

Saturation of queues i ¢ {a;,as}.

Define the workload process

+

a1 a2
P |

Wz (8) t) = lWaz,(A) (T%—) + 092 — %2 (t — T2) — ﬁ - I{W;l’(m(u)zo}
JFa noit

for te [T£2,Tgil). (12)
There exists a random variable T' < oo such that :

Vu>T, Wy'™(u) =W ® o,

Hence if we only consider ¢ > T, we can change W;l’(A) (u) into We(&) o g,.

Of course T depends on Y% and is an increasing function of Y*'. But as Y*' € K, with K a
compact set, we take T as the supremum of the coupling times over Y% € K.

We denote then

A

X2 = o8 — 4 (T, — T2) -
+1 n
" Zj2a2 & (Tn2,T52,)

1 iar.a)0p, =0y 40

and we have

a9 a1 a9
an X,g == ba2 - —¢ - 7¢ ¢ 3 Oa
'‘A%2 [ ] AaQ Zj;éal ¢] ‘AQ2

a ¢a2 ¢a2 ¢a1 1ra1,(A)
— 2 _ _ _P 1, —

b - 15 AT W 0]
P R L

e Zj #a1 ¢ A%z

RR n° 4339



14 Marc Lelarge

Hence,
)\G2E94a2 [XQ] = pa2 - ¢a2 - (isaz (Qbal - pal)
ot 1
Ej#“l ¢
_ p1
= pa2 - ¢a2 )
Zj?fal ¢’
and if ag € S(®), we have
paz 1 _ pal
PZIND S
j#a1

we have :
A2E., [X2] <.

Hence, the stability condition holds for this process too and we denote Wa2:(2) 06, the unique
finite workload process compatible with the flow {6;} and satisfying equation (12). We have
for sufficiently large ¢

W;2’(A)(t) < W;z,(A)(t)’

and {W;Q’(A) (t)} couples P-almost surely with the stochastic process {W (%) o 6;}. Hence,

we proved that {W;z’(A) (t)} is stable. And it is easy to see that uniformly for (Y%,Y%2) on
a compact set

1 t
;/ rgf’(A)(u)du miNpL)
0

An other way to define the process W%:(2)(¢) is as follow (we have shown that we can take
WilA) o 6, instead of WJZ,’(A) (t)

Y = {ie{a}; W™ oo, =0},

a2(8) () — ¢
lr22 (t) - )
2jer ¥
. . +
Weeld(e) = [ (Ton) + o — firan 3 lu)du], for te [T52,12)).

And then we have :

X2 = a?—/a i rg2’(A)(u)du
Tp2, 152

(172, n+1)
a2 . -
)\112E?4a2 [X,ﬂ = paz _ ﬁp[wal,(A) 00 = 0] o d)aQ]P)[Wal,(A) 08 > 0]
j#a1
a P P
N A .
Zj;ﬁal W ( ¢a1
a a 1—p"
= p 2 __ qs 2 1 — gal .

R
iz

INRIA



Asymptotic behavior of GPS queues under subezponential hypothesis 15

And we conclude as before.
We now prove the property by induction on k.
Let

For any ﬁnitejr_ﬁtial condition Y, for any j € {a1,...,ax 1} EI{WJJ;(A)(t)} such that
WJJ,’(A) (1) < W;’(A)(t) for sufficiently large ¢, and,
Hy_1 = < WJJ,’(A) (t) couples P-almost surely with a stochastic process {W7«2) 0 §,} which is stable;

(A)

L = RYY, with I @) = {i € {a1,a2,...,a5_2}; W) 0 6, = 0}

Moreover E >

{ eIl

We show that

@7

Hy
{ ay € S(A) = Hk.

Saturation of queues i ¢ {a1,az,...,ax}.
Define the workload process as follow

INW = {i€{ayap,... a5} W 06, =0},

ak’(A) — ¢ak
lrk; (t) - 59
2 jer® ¥
~ - +
W) = [Woe@® (Tg—) + ot — fron i @lu)du|, for ¢ e [T, T35, (13)
We define

Xk = g% —/ rzk’(A) (u)du,
[Tnk T,%)

and we have to calculate :

1
A*E) [X5] = p™ — ¢“E 7] .
L ¥
But the following property is clear :
]E ng:‘{al’a?a""ak—l.} (]57] — ]E Zj%{alaa‘%---aak—l.} ¢]
2jer™ ) ¥ 2jern ¥
bandwidth of the saturated queues + aj bandwidth of the saturated‘(,}ueues at the preceding step
P
v Bl | e
2jer® ) ¥

profit due to stable queue ay_1

Hence, we have

(1= (o™ +---+ ¢ )E

1 ] a a
PIFPREN W] = R, > ¢t ) -
eI (1) j¢{a1,a2,...,a5_1}

= 1—(pa1++pa‘k).

RR n° 4339



16 Marc Lelarge

Then

E

1
—| = RW,
21 ¥ ] ’

and then the stability condition holds if a; < R((lf) < aj, € SA). We denote Wak(8) 6 g, the
unique finite workload process compatible with the flow {6;} and satisfying equation (13). We
have for sufficiently large t

W;k;(A)(t) < W;k:(A)(t),

and {W;’“’(A) (t)} couples P-almost surely with the stochastic process {W () o 6;}. Hence,

we proved that {W;’“(A)(t)} is stable. And it is easy to see that uniformly for ) on a compact

set

1 t
Z/ r;’“’(A)(u)du 1200, pak
0

A

We can now prove

Property 5. We have the following limits uniformly in {Y7,j € S(A)} on a compact set :

¢ _

jes® = %/ ri}(A)(u)duH—oo)p] P-a.s. (14)
0
t '

j¢ s = %/ r%}(A)(u)duH—oo)qS]R(A) P-a.s. (15)
0

Notation. We will denote 47(2) this limit : the mean service rate of queue j when the set A
is backlogged.

Proof :
We have only to prove (15). But since

r )y =1 vt >o,

we have
L[ ) RN
tli>11010 Z - [ ™y (u)du + Z - ™y (wdu| =1
sy 70 jgs@ © 70

Hence the limit lim;_, o % f(f ngES(A) rg,’(A)(u)du does not depend on ) as long as {Y/,j €
S(A)} stay on a compact set. We can take Y such that

Vies® vi<Mm
Vi ¢ SB Y = oo;
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hence the queue that are not in S(®) are always backlogged. We have then

> A = D
g Lt w P+ Lwea ot
hence
t
PIA) _ o L 7(A)
tliglot/ ZA - tliglot/o Z Ve (W)du
JES@ ¢S(8)
1/lt D jgs ¢
= lim -
t—oo ¢ Jo Zkgl(A) Pk +EkeA¢
, 1/t 1
jé’:‘%(:A) t—oo T Jy Zkgggjﬁg(u)qb +Zk€A¢
and then

1
lim — / du = R®),
t—o0 Zk¢I(A) &+ D hea d

what implies directly for j ¢ S(&

i 1t J,(A)( )du = ¢ R
et fy 'Y “=
A
We can now prove property 3.
Proof of property 3 :
First consider the case p < 1.
Denote {T),0,} the superposition of the N input processes. W (t¢) the unique stationary
workload process of the GI/GI/1 queue with input process {1}, on }.
The point process R defined by

Z]lc )10y (W(Tw—)),
neZ

counts the construction points 73, that is the arrival times at which an arriving customer finds
an empty queue. Clearly R is compatible with {6;}. Let {U,},n € Z, be the sequence of
points of R, with the usual convention

Uy <0< Us.

For each n € Z, let V,41 be the first time ¢ after U, at which W(t) = 0. The interval
[Un,Un+1) is called the n-nth cycle, [Uy, Vp41) is the n-th busy period and [V11,Up41) is the
n-th idle period.

We then construct on each cycle the stationary workload process of queue j such that

dwi ; .
W(t) = —]l{Wj (t)>0}'f‘J (t) with
L = {W'() =0}
¢ : c
0 otherwise
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The only thing to prove, is that each Wf,(t) couples with the stationary solution W7 (t) for
any finite initial condition Y. But we know that }_; W3,(t) couples with W (t), says that for
t>T, %, WJJ, (t) = W(t). T is finite, hence there exists V,, > T and V,, is clearly a coupling

time for each process WJJJ (1)
Consider now the case p > 1.
We can take A = (), and everything we told before is true, except :

Yoy =S #1 ve>o,

7 7

But thanks to previous section, we have

Hence we can conclude as before.

A

Notation. We will denote v/ = p’ A ¢/ R the mean service rate of queue j.

4 Subexponential distributions and asymptotic scale

4.1 Subexponential distributions

We only give here the definitions and notations for more general results see [15] or [17].

Definition. Let F' be a distribution function on (0,00) such that F(z) <1 for all z > 0. We
say F € L if

N ) Y

Wy > 0.

Definition. A distribution F on R, is called subezponential (F € S) if F*2(x) ~ 2F (z).

Let F be a distribution on R, with positive and finite mean m. We use the notation F¥
for the integrated tail distribution of F' defined by

Sy & [T
Fia) = o [ 1=,

For simplicity of notation, we will denote F (z) = FS(z) = 1 — F5(z).

Lemma 4. If F € L, then F(z) = o(?s(x)) as r — 0.

Lemma 5. There ezists a function g : Ry — Ry such that

e g(x)F(z) = o(FS(J;)) as T — 0o,

T—00,

e g(z) — oo,
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e g(z) = o(z) as z — oo.

Proof :
Note e(z) = Fif’(z) Thanks to lemma 4, we have : €(z) —— 0.

We must find a function such that

1. g(z)e(z) 2720 0,

IT—00,

2. g(z)/Jz —— 0,
3. g(z) — 0.

But conditions 1 and 2 are redundant because e(z)and1/z L% 0. We replace both conditions

by the stronger one and we denote it : g(z)f(z) 27 0 with f(x) L2,

We now see that g(z) = ;( ) fits the conditions.
T
A

Remark 2. If we note N, = |g(x)], we have

Ny
ZP({ >z+na) < NP> z)
n=0

= N,F(z)
= o(F5()).

Moreover, we have

Y P >ztna) = Z/Oo f(t)dt with /0 f(u)du =P(& < t).

We have then :

oo

S P(E > s+na)~ Y P(§>w+na)~é/ Pl > 1)dt.

n n>Ng z

&

4.2 Asymptotic scale

Let (A7,6,,P) (1 < j < N) be N independent stationary renewal processes with (finite)
intensity A’. We denote T} the n-th point of the process AJ interpreted as the arrival time
of customer n of class j and 77, the inter-arrival time. We denote by o3, the service time
of customer n of class j, where the sequence {7} is assumed to be a sequence of marks of
the arrival process A7. Let (4,6;,P) be the superposition of this point processes. We denote
A ={T,,on,Cy} with the following interpretation : T}, is the arrival time of customer n which
carries a service time o, and which is of class C,,.
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We assume that the stability condition holds : p < 1. Hence we can consider the stationary
workload :

We assume that the following assumption holds :

(SE). The required amounts of service {03} are i.i.d random variables (IE? [O"g] = b/). There
erists a distribution function F' on RT such that :

o I €S, with finite first moment m = [;° F (u)du;

1 [*_—
_/F
m Jo

e the following equivalence holds when x tends to oo :

e the integrated distribution of F' :

is suberponential;

PY(c} > z) ~ d'F (),
with Zj d’ > 0 and where IP’? is the Palm probability of point process AJ.
We then have :
MNdi_—
J

We take the same notation as in [5] and we define the typical event for a G/G/1 queue as
follows :

put & = 0p — Tn, S—n = Yo » &, So =0, S_oo = —00. Put S*, = maxg<j<n S—;. Let Ny be
defined as in previous paragraph.

Property 6. We define the following event :
Hy, = {‘——— <€, Ng <l<n—1}

1—
Apn = {0n>$+n(Tp+en)}ﬂHI’n;

4, = | 4o
n> Ny

Under (SE), there ezists a sequence €, such that €, | Oand ne, 1T oo, and such that

P(W > 2, Ay) ~ P(W > ) ~ %Fs(z). (16)

INRIA



Asymptotic behavior of GPS queues under subezponential hypothesis 21

Proof :

see [3] and [5].

A

Let X be a random variable such that : X < W. We have :

P(X >z) = P(X>z,A4,)+PX >z,W >z, AS)
< P(X >z,A;) +P(W >z, A7).

Thanks to (16), we have :

P(X > &, 4,) < P(X > 2) <P(X > 2, 4,) +o(F" ().

IFP(X >z,4;) = O(Fs(m)), we have the exact asymptotic for P(X > z). Hence, we have
the following property :

Property 7. Take :

_ —p
Ozmn = T+ n—/\ ,
Bym = {o_n>o0gn}-
We have :
S

If EnZNz P(X > xaBm,n) = O(F
If Yuon, P(X > 2,Byp) = ofF
Proof :
We have of course P(X > z,4,,) < P(X > z,B;,). Hence, if ZR>NZ P(X > z,Bzn) =
—9 -
o(F" (z)), we have :

(z)) then P(X >z)~ 3 sy P(X >z, Byp).
(z)) then P(X >z)=o(F (z)).

P(X >1) < P(X >1,4,)+o(F (z))

Z P(X > z,Azn) +oF
n>Ny

S

(z))

< Y P(X >,Bp) +o(F (1))
n>Ny

= o(F’(z)).

In the other case, we have :

P(X >z,0.n>0ppntne) = PX >z,0.0> 050+ 06, Hyp) +P(X > z,0_0 > 040 + 1€, Hy )
< P(X >2,Ap0) +P(o—pn > 0zn + nen)P(Hy ),

because o, and H;, are independent. Hence, we have :

Z P(X > z,0_5 > 03 +nep) < Z P(X >z, Az ,) + O(FS

n>Ng n>Ng

())

= P(X >z,4,) +o(F" (z)).
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Hence, if we prove that :

N B(X>2,Bop) S Y PX > 2,0 4> 04 +n6a) +o(F (2)),

we have :

Y P(X >2,Byn) < P(X >z,A.)+0o(F (), and,

n>Ng

P(X >z,A4;) < P(X >z), and,
P(X>a) < Y PX >a,Byu)+oF ().
n>Ng
And the property is proved.
But, we have :
P(X >z,Bypn) = P(X >z,0.0>05n+n€6)+P(X >z,0p,+n€e,>0_p>0gy)

< P(X >z,0-5 > 035 +16p) +Plogn +ne, > 0y > 05.5)-

£ Fs(m), we have

Since anNz Plo > opn) ~ anNz Plo > oppn + nep) ~ s

3" P(X >#,Bop) < . B(X > 2,00 > 0+ n6n) +0(F ().
n>Ng n>Ny

A

5 Generalized Processor Sharing queues with heavy tailed ser-
vice times

5.1 Model description

We consider the following model of N coupled GI/GI/1 queues, Q1,...,Qn. Each queue is
served in accordance with the Generalized Processor Sharing (GPS) discipline.

Denote {T3,0%} the input process of queue j. Denote by M the intensity of this arrival
process, by p! = M IE? [03] the traffic intensity of queue j. We suppose that assumption (SE)
is satisfied.

We suppose moreover that

Hence, the framework described before applies. Denote {Ty,, oy, Cpn} the superposition of the
N input processes. Cp, € {1,..., N} is the class of customer n, W o 6; the unique stationary
workload process of the GI/GI/1 queue with input process {T},, o, }and W7 o ; the unique
stationary workload process for queue j (see section 3).

We assume the queues are indexed in such a way that

ol e o

&< < g
We end this section with an easy lemma and some remarks (recall that we give a superscript
{2) when we consider the system with queues in A that are backlogged) :
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Lemma 6. If A C T, then S ¢ S®) and R > RM) and S®) £ 5T R(®) > R,

Remark 3. Consider the case A = {k}. Instead of ({k}), we will use the notation (k).
o If pF > ¢F then K*) = N,
e If 7 is an unstable queue then i > k.
e We have R¥) gk > pF.

&

5.2 A typical busy period : deterministic calculus.

We consider a typical busy period induced by a very big service of type k. We will give a
superscript .15} to the constants that are calculated in this busy period.
We denote

s® = {1, KO \{k},
Uk = {K(k)Jrl,...,N},

i =
{k} _ 1
1 - ¢kR K
Pl (f{k}( ¢1R(k)>
L = u®,
N = ju®)| =N - K®,

We have then SUV) = {1,..., K;} with K; = K(*) because

(k)_ ,
1- Y0 P geny Sk P
Z]:K(k) P Liieny + 2 jern ¢ E;-V:K(k) ¢

K (k)
P

v

2 ¢K(k) :

Then, SU1) = §®) U {k} and then by lemma 6, R(1) > R(K),

We denote
{k}
itk argmln — ),
2 ¢ZR(I1 _

A4
A = it {7’ pz}+ 8,

iEES ¢ZR I) _

A (z{k}+f{k}( _ 4R ))+
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1
<z
\ SN
=2 v
e
\ 21
.\
v - (X) B
k k 1
FEE T
We define recursively
{k} oy {k}
; = inf { ——2 4 4 1
T zgllff {QS’R(I]') _ pZ} 1
{k}
{i{'i}1 = argmin 21’71 ,
J iers | ¢'RWU) — pi
i {k i {k k k ; rn T
% = (Y + -1 -6 rD))
{k
Iy = I;\ {Z} }},
SUitt) = {1, K\
We now consider a particular queue % such that p* > ¢*R¥).
There exists an integer j such that i}k} = i, we will denote it j{¥}(s).
We define the following function :
whikl s R, — Ry .
¢ — w%{k} (t) Wlth,
i{k} () — idk} (i gipiy g )T
w (k) (1) OZ (5™ + (0" = R~ 1) 1y g (17)
) i{k k
with zo{ Y=o f& Y=o,
In fact we sum only over j < j1¥}(i). We will denote f5{k} = fj{{kk}}(i).
For any z, we define the following domain of ]Rﬁ_ :
D) = {us, w)>2] (13)
z z

Observe that the function w”{#} is concave, then :
Lemma 7. We have the following properties for the domain :

e The set D"k} (z) is a convex subset of {(t,z), z > fthk}}z
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e For any > 0, we have : D*}(uz) = pD»{k}(g);
o There exists a pieceweise linear function b1¥} such that

D (@) = B (@), +oo),
t>ti(z)

(k) gt}
L]

and for the function bk} there ezist some constants a;- and 'y;-’{k} depending

only on p* and ¢*, such that
Vi<j< j{k} (1) =1, for xaé-’{k} <t< xaj-’ﬁ}, bi’{k}(t) = zﬂ;’{k} + 'y;’{k}t.

Examples :

The case N=2

We suppose that

e
Pt P
We have 55—1 < 1, if not p' + p? > ¢' + ¢? = 1. Hence, queue 1 is always stable.
We study the only interesting case, when queue 1 receives a very big service (that induces a

busy period for this queue) and when Z—Z > 1.
We have R = 1.

7
AN ’O\
, V4
2
‘L —~
T
gt
We have for D) :
XCONNE.
[0 - ’
1 p2 _ ¢2
/B%)(l) — 1’
,yfa(l) — 1 _ p
And then :
DY) = {(t2), 2>+ (' —p))t},
D2’{1}($) = {(t,z), t > ﬁ, z>xz+ (1 —p)t} .
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¢1 — !

xag{ time

The case N=3

In the previous case, if you fix the traffic intensities p' and p?, the behavior of the system
1

depends only on one parameter : d’—2 But, in the case N = 3, we have a lot of different cases,

so we take one of this case and compute the algorithm with the following parameters :

p1=0.2,¢1 = 0.55 po =05, =0.4; p3=0.1,¢3 = 0.05.

Here we have :

Plar<cB2 o8

1 d2 @3

Thanks to remark 3, the only case to study is the typical busy period induced by a very big
service of type 1. We then have for the first step of the algorithm :

s =g,

o = {2,3},
o=,

{1} _ 1

1 - ¢1 pl’
2,{1} _ P2—¢2
“1 ol
3,{1} _ P3—¢3
“1 T ool

L = {2,3.

Here we have zf’{l} > zf’{l} : when queue 1 is backlogged, queue 2 growths faster as queue 3.

For the next steps, we have :

R = ﬁ
¢? + ¢
i = 2
I, = {3},
p _ 1=p—p
= FEE
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This correspond to the following figures :

12 T T T T T T T T T 0.4

1

0.8

0.6

0.4

0.2

0

-0.2
0

In this configuration, we have for the domains :
D"M(z) = {(t,2), 2>z+(¢' —p"t},

2 43 3
D> (z) = {(t,z), " R +1 [1 —pt —p? <1+ —)]}

Y ”
) 2 3 2
D3 (z) = {(t,z), M%%Zt>p2f¢2a z>m¢ ;;"?5 +t<1—p1_p3 (1+%))}
U{(tz) t>I;’52 z>z+(1—P)t}-
12 ) p3¢2_p2¢3’

6 A typical busy period : probabilistic calculus.

6.1 Stable queues

We consider a queue j such that j € S*) so that,
P p®
& < R] .

Hence, we have

Lemma 8. There exists 1 —p > € > 0 such that when replacing p’ by pZ = pl + €, queue j
remains stable under condition (k) (saturation of queue k).

And we conclude (recall that Cy, is the class of customer n, see section 5.1) :

Property 8. We have for j € S :
> PWI > 3,0_n > 055, Cp = k] = o(FS(x)).
n>Ng

Proof :
Consider the workload process of queue j when saturating queue k and with input {77, 0%, +
€/A;}. This queue is stable and then :

%/ ri®@)dt 22 gl = pl te
0
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We define W7 the workload process of queue j with input {Tﬂ;, O'%} and service rate rg’(k) (t).
We have for ¢ such that 7(t) > 0, r(t) > rg’(k)(t). Hence we have

Wi(t) < Wi(0) + Wi(t).

We have
PWI(0) > 2,0y > Opn,C-n=k] = PWI(~T_,) > z,00 > 04n,Co = K
< PWI(0) + WIH(~T_,) > z,00 > 040, Co = K]
= PWI(0) + W (~T_,) > z|Plog > o4, Co = k]

because for t > 0 (WJ(0), WJ (t)) and (09,Co = k) are independent. Moreover as Wi(t)
has negative drift, P[W7(0) + W7(—T_,) > z] < §; and then we have

Y PWI>z,00>000,Cn=k = 8 Y Plog>0sn,Co=k
= o(F5(z)).

A

6.2 Unstable queues

We must keep in mind the very basic result that follows.

Remark 4. For any function f such that f(0) =0, f(T) =0, Vt € [0,T],f(t) > 0, Vt > s >
T, f(t) < f(s), we have :

sup [f(t) = f(s)] = F(E A T).

0<s<t

In particular, a convex function such that f(0) = f(T) = 0 satisfies the previous equality.

&

We denote
) 1 .
X'(t) = —W'(too),
a9
A{Tke} = max sup |Xi(5) — wi’{k}(s)| <ep,
’ icU®) 0<s<T

where the function w®{#} is the one defined in (17).

Property 9. We define the function ¥ (which is not random) as follows
k(o) =P [Ag’?‘ oo =0,Cy =k|.
We have

VT < o0, Ve, lim Uik}(z) = 1.

Z—00
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Proof :
For simplicity of notation, we assume that Téc =0.

We consider the processes {W)j,’{k}, j € [1, N]}, where Wg;{k} is the workload process of queue
4§ with initial condition Y7 and fed by A7 except for j = k for which instead of A* we take the
following input process :

~k
k ~k 0y =0,
= {T, on} with { Gk =0k fork > 1.

If we take for initial conditions the stationary workload at time 0, Y7 = W7, we have of course

i [Vj, v > 0, Wit (1) = Wj(t)‘ o0 = 0,C = k] -
We omit the subscript ) and we denote
xRk (1) = lWi’{k}(ta).
o

We denote Fi(o) the end of the busy period of queue k containing 0. In section 5.2, we
defined a sequence of indices {z{ }} which correspond to the queues that are not stable when
queue k is saturated. Moreover this sequence induces an order on these queues, namely we

k) will empty before queue " Denote

j+1-
then by Fj;(o) the end of the busy period containing F (o) of queue i}k}. Admit first that
0< Fi(o) <--+ < Fyuy (o), then, with the same notation as in section 5.2, we have :

know that in the deterministic calculus, queue i

vi € [0, Fi(0)] ri(t) = rt0(1),
Vt € [Fi(0), Fy(0)] ri(t) =r ( D (¢),

Vie [Fi(o), Fyi(0)]  ri(t) = (1),

Vt € [Fygy 1(0), Fy (0)] ri(t) = r (Z {k})( t).

We see that we cannot apply directly the result of section 2, because the assumptions of
Lemma 3, namely,

falt) = f(t)e& fort>0,
li f"_(o) = f
1m = 0-

n—oo n

are not true here since f,,(t) depends on the scaling factor n(= o here) for ¢ > 0 through the
varying capacity. We then need the following lemma,
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Lemma 9. Let {f,} be a sequence of functions such that there ezists k functions (g1 (t), ... gk(t))
and a sequence (19, ..., t8)en such that,

gi €&, and t220<ti<"'<tlri,

t :
lim = = ¢,
n—oo n
k o
fnt) = Z]l{t%qd}gi(t/\t;) fort >0,
=1
fim 120 _ fo-
n—oo n

Then the following convergence holds :

Sy (fn) TT"% 1% with
£

k

)= 1 pell(tAt).

=1

Proof
Consider the following functions :

£00) = £(0),
j—1

fTJL(t) = Z l{t};1<t}gi(t A t:z) + ]l{tg';1<t}gj(t)'
=1

We have of course f¥ = f,. Moreover, we have f} = g; and thanks to the result of section 2,

we have:

Sulfn) "= eff

n 1"
II'lle !
Then we have :

o) = falt) + L cnge(t),
Sn(f2)t) = Sulfa)(t) + Lt <y Sn(g2) (1)

T— 00,

And it is easy to see that S, (f}) T—) elfo + ]l{t1<t}ef°. And finally that the lemma follows.

1 la
[le
YA
We now prove property 9. First consider queue k. Take :

Ak(S,t) = Za-'lnc]l‘{T,’fE(s,t]} for s > 0, and,
n

jlk((),t) = 6'16: +26£€11{Tn6(0,ﬂ}’

whik4) = sup flk(s,t)—/ rk’(k)(u)du],
0<s<t (s,t]

Xkl ) = lwk,{k}(ta)_
o
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Thanks to the result of section 2, we have :

KhAR) T2 ki) g
Il

But we have X} (t) = X!,c’{k}(t) for t < F1(0), and by definition F (o) is the first time after
0 at which queue k empties. Hence we have shown :

Fl(O')

o

2=, fl{k} P-a.s.

We can now apply previous lemma to see that :

Xhik} 220 kbl P,
7 Il lle

We consider then F(o) = min(Fy(0),...,Fyu (o)), on [Fi(o), F(o)], we have : ri(t) =
r(E1)(t). Hence we can show that for sufficiently large o, we have F (o) = Fy(0) and that :

2{k} P-a.s.

Thanks to the previous lemma, we see that ;

{k
X(z} },{k} g—00
e

w’ék}’{k} P-a.s.

We conclude the case T' < oo with the same type of arguments.

Now to see that the limit holds for T = oo, we use the same argument as in section 2 (the
workload remains in a compact set after f ]’f] (k)

A

Consider now a queue j € U®) U {k}. Instead of {09 = z,Cy = k}, we will note {owy = 2}
Then we derive from the previous property the following corollary :

Corollary 1. There ezists € > 0, n(z) 270 and a finite random variable M independent
of {ogx) = 2} such that

X7(s) —w k()| < p(z2), Vs > fO} p e XI(s) <

H, = sup
0<s< fo ik te

P[H,|opy =2 == 1.
We then have the following property :
Property 10. We have for j € U®) U {k} such that p/ # ¢/ R*),
| KOG) el o
S PWI > 2,00 > 000, Cn=k ~ X3 /m L Plow > 2B 4 P My ar,

n>Ng =1

where the constants ag’{k},ﬂg’{k} and %j,{k} were defined in section 5.2, see (18).
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Proof :
We have

P[W](O) > T,0_p > Ogp, Cn= k] = P[Wj(_T—n) > z,00 > Ua:,’n,CO = k]
— Py = k) / / PIWI(t) > loo = 2, Co = klfs(2)gn (£)dedt .
ZZO’zyn R+

7

e

In

with fi, the density function of o4y and g, the density function of —T',,. We denote A, the
domain of integration and p,(dz,dt) = fr(2)gn(t)dzdt. Hence we have :

I, = / ]P’[Xj (3) > 7 U{k}zz] in(dz, dt)
Ay z V4
- / p [Xj (f) > 2 H,| oy =z] un(dz,dt)+/ i [Xj <f> > me
Ag z V4 Ay V4 z

v~ v~

7} 72

n n

Oky = z] pn(dz,dt) .

First examine the second term. Thanks to last corollary, there exists a function §(z) £z, 0,

such that
([t T
P [XJ <—) > —, H;
z z

But on A, we have z > z, hence we have d(z) < d(z), and

k) = z] < 4(2).

12 < 8(0) [ nldz.dt)
Aa
= 5($)P[U{k}>0z,n].

Hence, we have
Y 12 = o(F°(2)).
We now study the first term :

7 =

n

P[.|.] pn(dz,dt) + /A NS }IF’[| J pin (dz, dt)

/Am{§>fi’{k}+e}
= A, + B,.

On H,, we know that

z z z

iy [Xj <f> >2 m,
z z

Hence, we have :

O{k} = Z:| < PM > z],
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and we see that
—S
> Ap=o(F (z)).
n

Let study the second term. On H,, we have

b pidk} ik} (L i (! ik} (L
V- < fP% e [ wh —)—n(2)) <X'|{-)<w’ — ) +n(2).
VA A VA zZ

From this we get (with A, = A,z N {% < ik} 4 (—:})

/A' 1y i (k) (o4 2m(2)) P (d2, dE) < By < /A' Ly i, (4 (g— ()} P (d7, d1)

x

Hence, we see that

Bu = (1 +o(1)) / tin(dz, di).
DAk} ()

Hence, we have :

2T

n

(1 +°(1))Z/D,-,{k}( im0

iBG) g

= (4ot Y /a

i+
sl 1k}

P[O’{k} > LE,BZJ’{]C} + ’)’Z-.7{k}t]dt.

i=1

For simplicity of notations, we note PP instead of the Palm probability.

A

6.3 General result

We consider the model of section 5 with the following assumptions :

Vi, k, p # ¢ R®.

We take the same notations as in the previous paragraph.
Recall that :

P(od > z) ~ d'F(x).

Property 11. The asymptotic of the stationary workload of an individual queue j behaves
the following manner :

o ifd >0, then :
Aj

J

o
/ Plog;y > t)dt + (19)
T
iPG)  aallE

2 N /mz,{k} Plogey > o) + 7 FHdt + o(FS ().

{k:jeU®)} =1
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e ifd =0 and Zk:jeU(k) d* >0 and FS is dominatedly varying, that is :

s
hmlan (a )

>0 for some (equivalently, all) a > 1. (20)

then :

iMG)  pad ik
PW/ >z = Y A Y /] " Plogy > o8 4 B at 4 o(FS (2)).
{k:jeU®)} i=1 "%

(21)

e clse :
PWI >z] = o(FS(z)). (22)
Remark 5. e As told in section 4, we are able to determine if the asymptotic scale is

O(FS(z)) or not. And we can calculate the exact asymptotic only in the first case :
equations (19) and (21). The additional assumption (20) ensures that the asymptotic is

O(F5(z)).

e In the paper [17], the class of dominatedly varying function is called dominated-variation
distributions and denoted D. It is shown that F'S € D if and only if F¥ € DN L. And
DNL is a subclass of S. Moreover, if F € DN L has finite expectation, then F* € DNL.
Hence in these conditions, every heavy tails assumptions that are needed for this paper
are satisfied. For more details concerning relations between the classes D, S, L, see [14]
(but as pointed out in [17], FS € D does not imply F € D and the remark (i) on p. 84
of [14] is not true).

Examples :

The case N=2

We take the same conditions as in section 5 :

1 2
p 14
E <l< ?
Hence the technical assumption is satisfied and we have :
d'A\'m —5
PW! >z) ~ i FS( ),
dl)\l ot —p d*N’m —<
P(W?2>z) ~ FS ( ) + F5(x).
( ) 1—p p*—=¢*) = p? (=)
This must be understood of the following manner :
e if d' =0 then
PW'>z) = o(FS(z)),
d2)\2 . .
P(W? >z) = ? _7: FS(z) + o(FS (z)).
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e if d> = 0 then

P(W!>z) = pra—— FS5(z) + o(F5(z)),
dl)\l’m,— 1_ 1
PW?> 1) — 1—stGﬁ2 ;)+owﬂw»
e else
dl)\l - -
PW!>z) = r_:ﬁpb’(m) +o(F5(z)),
C dWmeg [ ¢ =l d®A2m —

P(W?>z) = ﬁFS (mpZ — ¢2) + pa szS(x) + o(FS(z)).

The case N=3

With the same parameters as in section 5.2 , we have :

2

ozt 2 3 2
P(Ws>z) ~ M p3¢2_p2¢3P[0(1)>x¢ ¢ —l—t(l—pl—p?’(l—l-%))]dt

3
257 ¢
Al - P (o} 1—p)t]dt
+ o Plog>z+(1-p)t
362293
)\3 oo 5
¢*+¢°

Here, we see that if the service times of class 3 are light-tailed and the service times of class
1 are heavy-tailed (d' > 0), then the stationary workload of queue 3 behaves like O(F5(z))
and we have the exact asymptotic.

7 Conclusion

We analyzed the behavior of Generalized Processor Sharing (GPS) queues with heavy tailed
service times. We showed that the qualitative behavior of the individual queues depends on
the relative values of the weight parameters and of the traffic intensities.

We can determine if the asymptotic of the stationary workload of an individual queue is
O(FS(z)) or not. In the first case we calculated the exact asymptotic.
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