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Abstract: We study the optimal reinsurance policy of an insurance company which gives
part of its premium stream to another compagny in exchange of an obligation to support the
difference between the amount of the claim and some retention level. This contract is known
as excess of loss reinsurance. The objective of the insurance compagny is to maximize the
expected utility of its reserve at some planning horizon and under a nonnegativity constraint.
We suppose that reinsurance incurs a cost proportional to the size of risk run by the reinsurance
compagny. We first prove existence and uniqueness results for this optimization problem by
using stochastic control methods. In a second part, we solve the associated Bellman equation
numerically by using an algorithm based on policy iterations.
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Controle de risque avec réassurance d’excés de pertes

Résumé : On étudie la politique optimale de réassurance d’une compagnie d’assurance qui
reverse une partie des primes qu’elle recoit & une autre compagnie en échange d’un enga-
gement de celle-ci & payer la différence entre la taille de chaque sinistre qui survient et un
certain niveau de rétention donné.Ce contrat est connu sous le nom de réassurance d’excés de
pertes. L’objectif de la compagnie d’assurance est de maximiser ’espérance de 1’utilité de son
capital terminal sous une contrainte de positivité du capital a tout instant. On suppose que
la réassurance engendre un coiit proportionel a la taille du risque encouru par la compagnie
de réassurance. On prouve l’existence et I'unicité de la solution de ce probléme d’optimisation
en utilisant des méthodes de controéle stochastique. Dans une seconde partie, on résoud numé-
riquement, 1’équation de Bellman associée a ce probléme en utilisant un algorithme basé sur
lalgorithme d’Howard.

Mots-clés : Controle stochastique, Contrainte d’état, principe de programmation dyna-
mique, solution de viscosité, algorithme de Howard, assurance, réassurance, controle de risque.



Optimal risk control under Ezcess of loss reinsurance 3

1 Introduction

This paper concerns the theoretical and numerical study of optimal risk control of an insurance
company. The reserve process of the insurance compagny consists of a premium stream which
commits the compagny to pay the amount of the claims at their arrival.

To reduce the risk, the insurance compagny gives part of the premium stream to another
compagny, in exchange of an obligation to support the difference between the amount of each
claim and some fixed level called retention level. This contract is known as excess of loss
reinsurance. We suppose that reinsurance incurs a cost proportional to the size of the risk
taken by the reinsurance compagny.

The objective of the insurance compagny is to maximize the expected utility of the terminal
wealth over all admissible strategies which satisfies a nonnegative wealth constraint over the
whole interval [0, 7], and to determine the optimal policy of reinsurance. This problem was
formulated by Asmussen, Hgjgaard and Taksar (2000) who considered the issue of optimal risk
control and dividend distribution policies. They modelled the wealth process as a diffusion
process and reparametrized the problem by considering the drift term of the diffusion as the
basic control parameter, which leads to a standard stochastic control problem.

In this paper, we model the risk process of the insurance compagny by using a compound
Poisson process. In Mnif and Pham (2001), stochastic optimization problem is studied when
the state process belongs to a convex family of semimartingales. Existence and uniqueness of
the solution of the optimization problem is proved by converting the dynamic problem into a
static problem. The characterization of the solution is obtained by using a dual formulation.
In the present paper, the convexity property of the risk process does not hold because of the
excess of loss contract, in contrast with the proportional reinsurance case (see Touzi (2000)).
Due to the Markovian context, the reinsurance problem may be studied by a direct dynamic
programming Hamilton Jacobi Bellman equation (HJB in short).

For control problems and associated HJB equations, the notion of viscosity solution, first
introduced by Crandall and Lions in 1983, is known to be a powerful tool. Here, owing to
the state constraint, we need to consider contrained viscosity solutions. This notion was first
introduced by Soner (1986a).

The purpose of this paper is to prove an existence and uniqueness result for the dynamic
programming equation associated to this problem and then to solve it by using an efficient
numerical method, the convergence of which is ensured by the uniqueness result.

The paper is organised as follows. The problem is formulated in Section 2. In Section 3, we
study the properties of the value function. In Section 4, we prove that the value function is
a constrained viscosity solution of the associated HJB equation. In Section 5 we prove the
uniqueness of the solution of the HJB. Section 6 is devoted to numerical analysis of the HJB
equation: The HJB equation is discretized by using finite difference schemes and solved by
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4 Mohamed Mnif, Agnés Sulem

using an algoritm based on the “Howard algorithm”( policy iteration). Numerical results are
presented. They provide the optimal policy of reinsurance.

2 Formulation of the problem

Let (2, F, P) be a complete probability space. We consider an integer valued random measure
p(dt,dz), defined on (92, F, P), associated to the marked point process (N, {Y(n),n € IN}).
Here, {N(t),t > 0} is a counting process corresponding to the random time points {T},,n € IN}
of arrival of the claims and {Y (n),n € IN} is a sequence of random variables with values in the
mark space B C IRy . We take B = [b,00) with b > 0. As usual, x and (N,{Y(n),n € IN})
are identified by the formula

w([0,t] x A) Zl{an}lA

n>1

for all t € [0,7] and A € B, where B is the Borel o-field on B.

We assume that p is right-continuous and (0, A) = 0 for all A € B. We denote by IF =
{F(t),0 <t < T} the P-completed filtration generated by the random measure u(dt, dz). We
assume that Fy is trivial and Fr = F. The random measure ;(dt,dz) is assumed to have an
intensity measure ¢(dt, dz) = m(dz)dt with [, 7(dz) < oo which means that there is a finite
number of jumps during any finite time 1nterval. By definition of the intensity ¢(dt, dz), the
compensated jump process defined by:

p(dt,dz) = p(dt, dz) — w(dz)dt,

is such that {i([0,¢] x A),0 <t < T} is a (P, F(t)) martingale for all ¢ € [0,7] and A € B.
We shall assume that the following non degeneracy condition holds:

gg/wm<m, (2.1)

for some 7 > 0, and

Lfmm<m. (2.2)

Example 2.1 Suppose that 7 is a finite measure on B such that w(dz) = Ah(z)dz, where h is
a probability density which admits second order moment. Then the technical conditions given
above are satisfied.

A retention level process is an (F;)-adapted process a = (ay,0 < t < T') interpreted as the
risk level which is supported by the insurance compagny.

INRIA



Optimal risk control under Ezcess of loss reinsurance 5

Given a retention level «, we denote by p(ay) the difference between the premium rate per
unit of time received by the compagny and the premium rate per unit of time paid by the
compagny to the reinsurer.

The risk process of the insurance company under this excess of loss contract is then given by :

Xbme = x+/ p(au)du—/ /z/\ ay p(du,dz), t<s<T,
¢ t JB

for an initial reserve x at time t.
Observe that the state process can also be expressed as:

s Ny
R R T
t i=1

where N; is a Poisson process with intensity 3 = |, 5 T(dz), and U; are i.i.d random variables
independant of N, having finite first moment v.

>From now on, we consider a premium rate of the same form as in Asmussen, Hgjgaard and
Taksar (2000):

p(a) = pr — (1 + k(a))B(v — E[U; A ), (2.3)

where k(«) is a proportional factor satisfying £(0) = 0 and k(a) =k > 0 if a > 0.

The first term of the r.h.s of Equation (2.3) is the expectation of the amount of the claims
during a unit of time. The second term of the r.h.s of Equation (2.3) is the premium, which is
given to another compagny of insurance to support the difference between the amount of the
claims and the retention level a during a unit of time.

We impose the following constraint on the family of state process X:

X >0, forallt <s<T. (2.4)
Given K > 0, we impose
oy < K forallt<s<T. (2.5)

An admissible policy « is an adapted stochastic process (o;)i<s<r , right continuous, such
that Conditions (2.4) and (2.5) are satisfied. We denote by A(t,z) the set of all admissible
policies.

Remark 2.1 The set A(t,z) is not empty, since 0 € A(t,x) for allt € [0,T] and x € R,
Let U denote a utility function such that

U is uniformly continuous, non decreasing and concave . (2.6)

RR n°® 4317



6 Mohamed Mnif, Agnés Sulem

The objective of the insurance campagny is to maximize the expectation of the utility of the
terminal value of the risk process defined by

J(t,z,a) == E(U(X5™)),
over all policies o € A(t, z). We define the value function v as

v(t,x) = ES.E(I; )J(t,x,a). (2.7)

The terminal condition is given by
(T, z) =U(x). (2.8)

Remark 2.2 When the state process reaches zero, it remains there. Because of the jump term

and the state constraint, the only admissible retention level is « = 0. Since p(0) = 0, we have
v(t,0) =0 for all t € [0,T].

3 Properties of the value function

In this section, we focus on proving that the value function v belongs to UC,([0,T] x IR, ),
the set of continuous functions in [0, 7] x IRy and uniformly continuous in z.
By the dynamic programming principle, we have :

v(t,x) = S.Ll(p )E(v(t +hAT, Xff,’;fw’)), (3.1)
acA(t,x

for any stopping time 7 € T;r, 0 <t < T and 0 < h < T — ¢, where 7, p is the set of all
stopping times between ¢ and 7.
Let us establish some preliminary estimates on the moments of the state process.

Lemma 3.1 For any k € [0,2], there exists C' = C'(k,T) > 0, such that for all t € [0,T],
r€R, and0< h<T —t:

E|X!5e — g |F< C'ho. (3.2)

Proof. According to the Hélder inequality, it suffices to prove (3.2) for £ = 2. For notational

simplicity, hereafter, C' denotes a generic constant. Applying It6’s lemma to (Xttf,’f‘ — )%, we

obtain

E| XK —z’<C (E [/tt+hp(as)2ds] +F Utm /B(z A as)Zm(dz)dsD :

INRIA



Optimal risk control under Ezcess of loss reinsurance 7

Since p(c) is bounded and z A oy < z for all s € [t,T] and for all z € B, by (2.2) we have:
E|X;5% —x|’< C'h,
which implies (3.2). O
In the following lemma, we prove that when the reserve process reaches a low level at time
s € [t, T], the optimal control is a,, = 0 for all u € [s,T.

Lemma 3.2 There exists x € IR,, such that for all t € [0,T] and z € IR, the following
property holds: if there exist s € [t,T] and « € A(t,x) such that X\** < x, then the optimal
control is o, = 0 for all u € [s,T.

Proof. >From the premium rate expression (2.3), we have

p(a) { —kBv+ (1+k)vE[UiANa] ifa>0

0 ifa=0.
Let z := lli—ﬁk In this case :
if 0 < o < z then p(«) < 0. (3.3)
Define u; := inf{u > s such that a,, > z}. Since the control « is rightcontinuous,
Qy, > I (3.4)
Using the hypothesis X»** < gz, the definition of u; and (2.3), we obtain

0 < Xpo©

U1 u1
= X;faz,a + / p(oy)dt — / / z A\ oy p(dt,dz)
s s B

< g—/ /z/\ oy pu(dt, dz),
s B

/ / 2N\ o p(dt,dz) < z,
s B

ZA qy <z forall ze B.

which implies that

and consequently

For z large enough, we have: «,, < z, which contradicts Inequality (3.4). Consequently all
admissible controls must satisfy: for all u > s, o, < z. Using (2.3) and since p(a) = 0, if

RR n® 4317



8 Mohamed Mnif, Agnés Sulem

a = 0, the optimal control is o, = 0 for all u € [s, T]. O

Define A%(t,x) as:
A%(t,z) = {a € A(t,z) such that: if there exists s € [t, T] such that X"** < g,
then for all u € [s,T] , o, = 0}.
Lemma 3.3 Let x,y be such that 0 < x —y < x. Then,
Ax(t,z) C A(t,y) C A(t, ).

Proof. The second inclusion is obvious since z > y. It remains to prove the first inclusion.
Let a € A%(t, x). Define

T = inf{s > ¢ such that X*** < z} A T.

If s < 7, then X5®® > x which implies X% > 0. If s > 7, then X>*»* < z and so a, = 0,
which proves that o € A(t, y). O

Let us approximate the function U by a sequence of Lipschitz functions.

Lemma 3.4 Under Assumptions (2.6), there exists a sequence of Lipschitz functions (U™, n >
0) which converges uniformly to U.

Proof. Since U is uniformly continuous in x, we can define the modulus of continuity
wy(r) = sup{U(xz) — U(y) such that |z —y |<r and z,y € R, }.
Fix n € IN. Define U™ as follows:
Ux), if z= % where p € IV,

U'(z) :=
p+1 p p Py .o P p+1
U——)-U(= —=)+U(=) if =—<z<
n0E=) -~ -2y +ud) it Ly <22
For all z € IR, there exists p € IN such that 2 < z < Z’Tl Using the concavity and the

monotonicity of U, we have

and thus
sup | U() = U"(a) | < wl).

This implies the uniform convergence of U" to U, when n goes to co. It remains to prove the
Lipschitz property of the function U™. Let x,y € IR,. We suppose that x > y. There exists
k,l € IN such that z € [£, 5L} and y € [£, 1),

n’ n n’> n

INRIA



Optimal risk control under Ezcess of loss reinsurance 9

e Suppose that £k —1 > [+ 1. Then,

Una) - UMy) = UM - U + Z<U< ooy o - o)
= @ - O v +Z§1<U<i vy
- n(y—lf)(wl;l)—w%»_
< nun( )@ —y) + Z(U( )
< omun()(e ).
e Suppose that k — 1 = [, then
k [+1

Ua) - UMy) = UMe) - UM+ UM — Un)
1
< nwu(ﬁ)(x - ).
e Suppose that k£ = [, then
UM~ UM) < ()@ )
which proves the Lipschitz property of U,. O

Consider now the auxiliar value function

v"(t,x) = sup J(t,xz, ),
a€A(t,x)

where J"(t,z,0) := E[UM(X%"*)]. In the following lemma, we study the properties of the
function v".

Lemma 3.5 Lett € [0,T] and x € IR,, then the function v™ is non decreasing Lipschitz in x
and satisfies

v"(t,x) = sup J'(t,z, ). (3.5)
a€AZ(t,z)

RR n°® 4317



10 Mohamed Mnif, Agnés Sulem

Proof. The monotonicity of the function v™ in z is trivial. Equality (3.5) is a consequence of
Lemma (3.2) . To prove the Lipschitz property , we fix z,y € IR, such that > y. There exists
a subdivision y = zy < 21 < ... < 2, = x, where m € IN such that 0 < z;—z;_1 < z Vi € [1,m].

v"(t,x) —v"(t,y) = Zv"(t, zi) —v"(t, 2z 1)

m

= sup E[Un (X;,Zi,a)] _ sup E[Un (X;,’Zi*l’a)]
i—1 ®€A(tz;) a€A(tzi—1)

= Y swp BUMXEI) - sup  B[UT(XF)
=1 O{EAQ(t,zi) aEA(t,zifl)

<Y sw BUMGE - s E[UT(XGE)
i—1 @€A(tzi-1) a€A(t,zi—1)

S ZKTL‘ZZ—ZZ,1|
i=1

where the first inequality is deduced from Lemma (3.3),the last inequality is deduced from
Lemma (3.4) and K™ is the constant of Lipschitz of U™. This proves the Lipschitz property
in z of the function v™. a

The regularity of the value function v can be stated as follows:
Theorem 3.1 Under Assumptions (2.6), the function v € UC,([0,T] x IR,).
Proof. Let t € [0,T], z € IR,. Since U"(z) < U(x) for all n € IN, we have

0 <w(t,z) —v"(t,x) < sup E [UX;™) —U"(X3")].
a€A(t,x)
Using the uniform convergence of U™ towards U in IR, we obtain that v™(¢,x) converges to
v(t,z) when n — oo for all z € IR, which proves the uniform convergence of v™(t,.) to
v(t,.) in IR,. From Lemma (3.5), we deduce the uniform continuity of v in z. It remains to
prove the continuity of v in [0,T] x R,. Let (z,y) € IR%, 0 < ¢ < s < T. Using the dynamic
programming principle (3.1) with h = s — ¢, Lemma (3.5) and Lemma (3.1) we obtain

[ 0"(s,9) =" (L) | < [0"(s,9) = 0"(Ly) [+ | 0"t y) — 0" (¢, 2) |
= |v"(s,y) = sup B [o"(s, X;")] [ +[0"(t,y) —o"(t, @) |

a€A(t,y)
< K" sup E| XMW —y|+K" |z —y|
acA(ty)
< K'C'\/|s—t|+K"|z—vy]|.
Since v™ converges uniformly to v, we conclude that v is continuous in [0, 7] x R,. O

INRIA



Optimal risk control under Ezcess of loss reinsurance 11

4 Viscosity solution

As it is known, the dynamic programming principle yields that the value function is a viscosity
solution of the corresponding HJB equation (see Fleming and Soner (1993)). Here, because of
the state constraint, we will prove that the value function is a constrained viscosity solution
of the following HJB equation

max {a—w(t, ) + A%t 2, 0t 7), 228, x))} —0in[0,7] x Ry,  (4.1)

a€[0,K], z>zNa Vz€B ot 0z

where

A%(t,z,(t, x), g—jﬁ(t, x)) = p(a)g—qi(t, x) + /B(w(t, r—zAa)— Yt x))r(dz).

We first recall the definition of constrained viscosity solutions.

Definition 4.1 (i)A function v in C°([0,T] x IR,) is a viscosity supersolution of (4.1) in
[0,T] x R, if

max AR 0+ 40,0, o0 a) | <o

a€[0,K], z>zAa VzEB

whenever ¥ € C*([0,T] x R,) and v — v has a global minimum at (t,x) € [0,T] x IR,
(i4)A function v in C°([0,T] x IRy) is a viscosity subsolution of (4.1) in [0,T] x IR* if

max {%(t, @) + A%(t,z, (¢, z), g—i}(t, x)))} >0,

a€[0,K], z>zAa V2EB

whenever 1 € C'([0,T] x IR%) and v — v has a global mazimum at (¢,z) € [0,T] x R%.
(111)A function v in C°([0,T] X IR,) is a constrained viscosity solution of (4.1) in [0,T] x IR,
if it is both a viscosity supersolution of (4.1) in [0, T] x Ry and a viscosity subsolution of (4.1)
in [0,T] x IR,

Remark 4.1 The state constraint implies the inequality p(«(0)) > 0, which imposes a con-

0
straint on —v(t, 0) (Neuman condition) (see Soner (1986a)). In our case, at x = 0, we have
a(0) = 0 (see Remark 2.2), which imposes a condition on v(t,0)(Dirichlet condition).

The following theorem relates the value function defined in (2.7) with the Bellman equation
(4.1).

Theorem 4.1 Suppose that the value function v belongs to C°([0,T] x IRy). Then v is a
constrained viscosity solution of (4.1) in [0,T] x R, .

RR n® 4317



12 Mohamed Mnif, Agnés Sulem

Proof. We first prove that v is a supersolution of (4.1) in [0,7] x R,. Let (t,z) €
[0, 7] x R, and ¥ € C*([0,T] x IR,) such that without loss of generality

0=(—9)(t,z) = min (v—1).

[0,T]XR+
For all 0 < h < T — t, the dynamic programming principle

v(t,x) = SE:([; )E [o(t + h, X5
a €Atz

implies

it > sup E [¢(t+h, X;59)].

Applying It6’s formula to ¥ (t + h, Xff,;a), we get

sup {%E [/Oh %_‘f(t, 2) + A% (4, 3, (t, 7). g—i’(t, x))ds} } < €(h).

a. €A(t,r)
Choosing oy = « € A(t, ) for all s € (0,h) and letting A — 0T, we obtain

0 0
6—7’5(15, x) + A% (t, z,Y(t, ), a—iﬁ(t, x)) <0.

Since

t+h U A « if there is a claim with size U
z AN ap(dt,dz) — i
: B 0 if not,

when A — 0F, X"%* > 0 P.p.s implies that z — z A a > 0 for all z € B and thus

t+h
9 9
sup {6—1”(1:, 2) + A%t @, 0(t, 7). a—"f(t, x)} <o,

a€[0,K] z>2NaVzEB

which provides the supersolution inequality. It remains to prove the subsolution property.
Let (t,z) € [0,T] x Ry and ¢ € C'([0,T] x IR% ) such that without loss of generality

0=(v—9)(t,x) = max (v—1).

[0,T]x R+

Applying the dynamic programming principle with 0 < h < T — t, we get

v(t,x) = sup )E [v(t+h AT, X 507)]
aE ,w

INRIA



Optimal risk control under Ezcess of loss reinsurance 13

where T} is the first time jump. This implies

P(t,x) < sup E[Y(t+h AT, X 500)]-

a €A(t,r)

Applying It6’s formula to ¥(t + h A T, Xttfho,‘\T ), we obtain

hATy a 8
sup E [/ a—qf(t + 8, XPE) + A% (t 4 8, XPES 0t + s, XEE®), a—w(t + s, Xff;“))ds} > 0,
a €A(t,x) 0 X

which implies

w < mp G [[7 G0 rensen Foe])
oy

E [hATl sup {%qf( x) + A%(t, z, Y(t, z), e —(t, a:))} (4.2)

h :| a€[0,K], z>zAaVzEB

<
Consider the event {77 < h},

P(Ti<h) = P /t o /B > u(ds, dz) > b)

_ P(/Oh/Bzu(ds,dz)>b),

where the last equality follows from the homogeneity of the integer random valued measure
u(dt,dz). Since p(dt,dz) is cadlag and u(0,B) = 0, foh [ zu(ds,dz) — 0 when h —
0". Using the fact that a.s convergence implies convergence in probability, we deduce that
P(foh [z u(ds,dz) > b) — 0 when h — 0F. Taking the limit when A — 07 in Inequality
(4.2), we get

%

sup E | —=(t,z) + A%(t,z,¢(t, :1:) (t z))| >0,
a€[0,K] z>2AaVzEB ot
which proves the subsolution inequality. O

5 Uniqueness

Uniqueness proofs of viscosity solutions of first order integrodifferential operators have been
given in Soner (1986b) and Sayah (1991). Since the utility function is not bounded, we shall
work in the space of functions UC, (][0, 7] x IR, ).

Sayah (1991) proved a uniqueness result for unbounded viscosity solutions of first order inte-
grodifferential operators. She studied the case where the measure 7(dz) depends on the state
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14 Mohamed Mnif, Agnés Sulem

variable . In our case, the Levy measure is independent of x. We adapt the proof of Pham
(1998) to first order integrodifferential operators. We first need an equivalent formulation of
viscosity solutions in C;([0,T] x IR, ) where

Ci([0,T) x Ry) ={® € C°([0,T] x R,), sup ?)

< 400}
07k 11+ | 2|

(recall that UC,([0,T] x IR,) C C1([0,T] x IR,)).

Proposition 5.1 Let v € C1([0,T] x IRy). Then v is a viscosity supersolution (resp subsolu-
tion) of (4.1) in [0,T] x IRy (resp [0,T] x IR’ ) if and only if

max {%(t, o) + A%tz o(t, ), 221, x))} >

a€[0,K] z>zAa VzeB | Ot ox

(resp < 0) whenever ¢ € C'([0,T] x IRy) and v — % has a global minimum (resp mazimum)
at (t,xz) € [0,T] x IRy) (resp (t,z) € [0,T] x R}) .

Proof. The proof is an adaptation of a similar lemma in Soner (1986b). We prove the
statement for subsolutions only, the other statement is proved similarly.

Necessary condition: Let v € C1([0,T] x IR, ) be a viscosity subsolution, (o, z¢) € [0,7] x IR
and 9 [0,7] x IRy — IR such that

(v —¥)(to,x0) = max (v —1)(t,x).

[0,T]x IRy

Since v(t, x) — v(ty, zo) < ¥(t,x) — ¥ (ty,xo) for all (¢,z) € [0,T] x IR, and 7(dz) > 0 we have

0 0
A% (o, zo, v(to, o), a—f(to,xo)) < A%(to, zo, Y (to, zo), %(to,ﬂfo))-

Hence the viscosity property of v provides the expected result.
Sufficient condition: Let ¢ € C*([0,T] x IRy) and (to, zo) € [0, T] x IR, be such that

(v —¥)(to,x0) = max (v —1)(t,z) =0.

[0,T]x IR+
For each ¢ > 0, we define
O(t, x) = Y(t, z)x(t,x) + v(t, z)(1 — x (¢, z)),
where x¢ is a smooth function satisfying

x(t,z) € [0,1],
X(t,z) = 1 if (¢t,z) € B((to, x0),€),
X(t,z) = 0 if (t,z) € [0,T] x R, — B((to, o), 2€).

INRIA



Optimal risk control under Ezcess of loss reinsurance 15

We have v(tg, zg) = ®(to, xo) and v(t,z) — (¢, z) = (v(t,z) — D(¢, z))x(¢,x) < 0.
Hence

_@E t’ = a. —@E t, .
= ¥ om) = | max (0= 8(6)

Since v satisfies

oy oY
— (¢ A%(t 14 — (¢ >0
ae[o,K],leggi(/\a VZEB{ ot (to, o) + A% (to, 20, v(to, 20), ax( 0’$0))} =
and V@e(to,io) = Vd)(to,l‘()),we obtain:
0D 0P
i @ i > (.
aE[O,K],g;g)z{/\a VZEB{ ot (to, 20) + A (to, %o, v(to, 20). ox (to,xo))} 20
Since m(dz) > 0 and ®*(to, x9) = v(to, zo),we obtain:
0d° 0P
— (Z A%(t (¢ — (¢ —
ae[o,K],ImI;g}z{/\a VzEB{ ot (to, o) + A% (to, 2o, ®*(to, o), ox ( 0,330))}
o0d° 0P
— (to, A%(t » Lo, V(to, » - (o, ‘
ae[o,K],iIﬁfm VzEB{ ot (to, o) + A%(t0, 7o, v(to, 20) or (to xo))}

<

max {/Cv(to,xo — 2 Aa) — O (to, o —z/\oa)7r(dz)}‘. (5.1)

a€[0,K], zo>2zAa VzEB

Observe that, for (0, —z A «) ¢ B((0,0), 2¢), we have ®¢(tg, o — 2 A ) = v(to, To — 2 A x). For
(0,—z A «) € B((0,0), 2¢), we have

| ©(tg, 20 — 2 AN @) — v(tg, 29 — 2 A @) |
| Y(to, z0 — 2 A ) — v(to, x0 — 2 A ) | x(to, To — 2 A cv)

< | Y(to,xo — 2 A ar) — P(to, o) | + | v(to, xo — 2 A ) — v(to, To) |
(0
< w1 Zuyznal s znal)
(to,y)€B((to,70),2¢) z
<2 sp | Pty | +uae), (5.2)
(tosy)€B((to,0)2¢)  OT

where w, is the modulus of continuity of v. From (5.1) and (5.2), we conclude that v is vis-
cosity subsolution. O

Uniqueness of the solution of the HJB equation (4.1) with terminal condition (2.8) is a conse-
quence of Remark (2.2) and the following theorem:

RR n® 4317



16 Mohamed Mnif, Agnés Sulem

Theorem 5.1 Letu (respv)e UC,([0,T]x IR,) be a viscosity supersolution (resp subsolution)
of (4.1) in [0, T] x IRy (resp [0,T] x IR%), then

u(t,z) —v(t,z) < sup {u(t,x)—ov(t,z)}, (5.3)
(t,x)€0Q

with 0Q = [0, T[x{0} U{T} x R,.
Proof. It suffices to prove Inequality (5.3) for ¢ > 0. By continuity of v and v, Inequality

(5.3) will then be satisfied for all ¢ € [0, T] and = > 0.
For 3, €, 6, A\ > 0, define ® in |0,7] x IRy x IR, as

(1, 7,9) = ult, ) ~ v(t9) 5 - %(m — ) — Sexp (AT — )(22 + ).

Since u,v € C1([0,T] x IR,), there exists (t*,z*,y*) € [0,T] x IRy x IR, which maximizes ®.

By using 2®(t*, z*, y*) > ®(t*, z*, 2*) + ®(t*, y*, y*) and the uniform continuity of v and v, we
easily check (see Ishii H. (1984)) that:

@) < wlevo), (5.4)

where ¢ is independent of 3, €, §, A and w is the modulus of continuity of v and v.
>From the inequality ®(7,0,0) > ®(¢*, z*, y*), and since u,v € C1([0,T] x IR,), we obtain
that

6z + %) < e(1+a* +y).
Using Young’s inequality, we deduce that
[z [, | y" |< Cs, (5.5)
where (s is a constant depending on ¢ but not on €, and
ox*, 6y* is bounded uniformly in 6. (5.6)
Using (5.4) and (5.5) along a subsequence, (t*,z*,y*) converges when ¢ — 0. Let’s denote

(t,z, ) its limit.
If t* =T, then from the inequality ®(¢, z,z) < &(T, z*,y*) we deduce that:

u(t,z) —v(t,z) — g —26exp (A(T —t))z?

< w(T,z*) —o(T,z") — (T, y*) + v(T, z")
< sup {u(t,z) —o(t,z)} +w( 2" —y" ).
(t,2)€dQ

INRIA
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Sending (3, 6,¢ — 07, we have
u(t,z) —v(t,z) < sup {u(t,z)—v(t,z)}. (5.7)
(t,x)€e0Q
Assume that t* < T.
If z* = 0, then
p 2
u(t,z) —v(t,x) — e 26exp (AT — 1))z
< wu(t*,0) —v(t",0) + v(t*,0) — v(t*, y")
< sup {u(t, ) —v(t,2)} + w(ly" ).
(t,x)edQ
Let 3,6,¢ — 07. We obtain
u(t,z) —ov(t,z) < sup {u(t,z) —v(t, z)}. (5.8)

(t,x)€oQ

When y* = 0, we conclude similarly.

When z* and y* # 0, applying the lemma 2 of Crandall and Lions (1986), we obtain

g + 6Xexp (MT — t9)) (=" + y*?)

IN

a€[0,A], z* >z

max {p( )(=(z" —y") + 26 exp(A(T — t*)x™) + B*(t", =", u(t", x*))}

_ max {p( )(=(z" —y*) — 20 exp(A(T — t*))y") + B*(t*, y*, v(t", y*))}

a€[0,A], y* >z A

a€l0,A], z* >z A, y* >z A

2
:

< max  {op(a)sesp\(T - )" +°) }
{B

+ max
a€l0,A], z* >z A, y* >z A

= Il + IZ)

(t*, ", u(t', ) — (t*,y*,v(t*,y*))}

where B*(t,z,w(t,z)) == [pw(t,z — 2 A a) — w(t,z)7(dz). Since p(c) is bounded uniformly

in « and by using (5.6), we have I} < Cexp(A(T — t*)).

In order to get an upper bound of the term I, we need to evaluate the following term

w(t*, " —z Aa) —u(t',z") —o(t*,y" — 2z A a) + o(t", y")

Stz —zAa,y* —zAa)— (", 2", y")
Sexp AT —t')N((z* — 2z A @)* + (" — 2 A a)?
§exp(A(T — t*))(z* + y*?),

IN +

RR n® 4317
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18 Mohamed Mnif, Agnés Sulem

and so I, < §exp(A(T —t*))(z** + y*?) [ m(dz). Sending € — 0, we obtain
B s . _
- < exp(A(T — t))(C + 26Cz* — 26)z%).

For X large enough, we obtain # < 0 which is impossible, so * = 0 or y* = 0, which proves

the comparison theorem (5.1) . 0

6 Numerical study

Here we restrict ourselves to the case where the integer valued random measure u(dt,dz) is
a Poisson process with constant intensity 7. All the claims have the same size denoted by

6. Since the amounts are relatives, we take 6 = 1. We consider the HARA utility function
2!

Uz) = T with v =0.5. We choose K = §. Our purpose is to solve the following equation
Y

max {gt (t,x) + A%(t,z,v(t, x), Z(t, x))} =0, forall (¢,z) € [0, T[xIR},

a€[0,6] z>a
v(t,0) =0, forallte|0,T],
v(T,z) =U(z), forall z € Ry,

(6.1)

where
A%(t,z,v(t, ), Z—Z(t, x)) = p(a)g—;(t, z))+7m(v(t,z — a) —v(t,x)).

We proceed with a technical change of variable which brings [0,7] x IRy into [0,T] x [0, 1],
namely

{ Bt 2) = (1 — 2)o(t, 7).

The function % is defined in [0, 7] x [0, 1] and satisties

( e 5} {—(t z) + A%(t, 2, 9(t, 2), gqj(t, 2))} =0, forall (¢,2) € [0,7] x (0,1)
 P(t )—0, for all t € [0, 7]

P(t,1) =0, forallte0,T]
| ¥(T,2) =U(%)(1 —2), forallze(0,1),

(6.2)
where
At 2,0(0,2), 50(0,2)) = PO~ 2750 (1,2)) + (@)1 — 276, 2)
z—(1-2)x
b (- (- D 52 — .2

INRIA
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In Section 3, we have proved that the value function (2.7), within a change of variables, is
the unique viscosity solution of Equation (6.2). This solution can be approximated by the
following numerical method:

(i) approximate Equation (6.2) by using a consistant finite difference approximation which
satisfies the discrete maximum principle (DMP) ( see Lapeyre, Sulem and Talay),

(ii) solve the discrete equation by means of the Howard algorithm (policy iteration) (see
Howard (1960)). Finally a reverse change of variables is performed in order to display results
of Equation (6.1).

6.1 Finite Difference Approximation

Let h = % , (N € IN*) denote the finite difference step in the time coordinate, p = % ,(M €
IN*) denote the finite difference step in the state coordinate. Let (t;,2;) = (ih,jp) denote
the points of the grid Q,, = [0,T] x (0,1)N(hZ x pZ),0 <i < N-1,0<j< M-1.
Equation (6.2) is discretized by replacing the first partial derivatives of ¢ by the following
approximation

at v h I
W) = | ety )20
Oz 1) %J — 1p(zh,jp)—d;)(zh,(j—1)p)’ ’Lf p(a) < 0.

For the boundary conditions, we set

1ﬁ(tz,0) = 0 for all t; € [O,T] NhZ
d](tz, 1) = 0 forallt e [O,T] NhZ

(T, z) = U(1 ij )(1 —z;) forall z; € (0,1) N pZ.
%

We choose a fully implicit -scheme, which leads to a system of N x (M — 1) equations with
N x (M — 1) unknowns {¢(th, jp) , (ih, jp) € Qp1}:

max {RA " (ih, jp) + (i + 1)h, jp) — (ih, jp)} = 0, for all (ih, jp) € .
. D . . (6.3)
¥(T,jp) = U(5 ijp)(l — jp) for all jp € (0,1) N pZ

where

U = {(aij)o<i<n-1,1<j<m—1, 4 € [0,6] and 1 I >q;,0<i<N-1,1<j<M-1}

RR n® 4317



20 Mohamed Mnif, Agnés Sulem

and A%™ is the (M — 1) x (M — 1) matrix associated to the approximation of the operator
A% at time ih. Let A, denote the set of control functions o : €, — U. The system of
equations (6.3) can be written as a system of N stationary Bellman equations:

max { RAG i, + O — itk =0, i=0..N - 1,

a€A,

oy = OG0 = )10

(6.4)

where Q/J}L’fp a vector which approximate (¢ (ih, jp))j=1..m—1.The system of N stationary Bell-
man equations (6.4) can be solved by value iteration or Howard algorithms. We describe below
these algorithms.

6.2 The value iteration method

Suppose that the matrix flg"ih,i = 0...N — 1, is diagonally dominant, that is, there exists
r > 0 such that
M-1
(A2™);p>0Vj#k and > (A2™");,=—r<0V1<j<M-—1, (6.5)
k=1
then fla i =0..N — 1 satisfies the discrete maximum principle (i.e (A%"yi" < 0) =
(43, < 0 )), which is a sufficient condition for the stability of (6.4). In our case Property (6.5)
is not verified, however stability of A‘;’“‘ , = 0...N —1, is confirmed by numerical experiments.
Suppose that Property (6.5) is verified, then there exists £ > 0 and a submarkovian matrix
Mg i =0..N — 1 such that

Ayt 1
Ap’ h — —’l"[+ E(

where I is the identity matrix. Problem (6.4) is then equivalent to

a,th
Mp - I)a

ih (Z+1)h ih \ _n s —
(Eréa): {h( TI'—f— k(M‘” D)y, }L’p} =0, i=0..N—-1,
W, = (UG = jp))jmrar
D 1— jp 7j=1...
which implies that
h (i+1)h
th k azh h,p :
= max{ —*+—— — 5> i=0.N-1.
P aEAp{l—l-frh—i—% Vi + 1+7“h—|-%}
h
Since the contracting factor 1+r1;1+ is less than 1 and [|M2]| < 1, ¢}, i = 0..N — 1 exists

and is unique. Under the hypothes1s that the discrete maximum principle holds, Equation
(6.4) can then be interpreted as a discrete-time HJB equation.

INRIA
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6.3 The Howard algorithm

To solve Equation (6.4), we use the Howard algorithm (see Lapeyre Sulem and Talay), also
named policy iteration. It consists on computing two sequences (a*»"),cv and (zb%")ne w,1 =
0...N — 1, (starting from «y) defined by:

e Step 2n. To the strategy o™", we associate the solution w’h ™ of

1hn

(RAZ "™ — Dyt + M = 0, = 0...N — 1.

e Step 2n + 1. To Wh " is associated another strategy o/nt1

ot € arg max {(hﬁz,’m Dyt + Tﬁ(zﬂ)hn} =0,7=0..N~-1
‘4

ac

When Az”;h, 7 = 0...N —1 satisfies the discrete maximum principle, the sequence (zbzhp")ne w,1 =
0...N — 1 increases and is bounded and so converges to the solution of (6.4).

6.4 Numerical results

Equation (6.1) is solved by using the Howard algorithm. Two tests are performed:

Testl: 6=1 h=p=0.02 7n=5

Test2: 6=1 h=p=0.02 7=1.

For Testl (resp Test2), the optimal policy, the value function and their contour lines are
displayed in figures 1-3 (resp figures 4-6). The Howard algorithm is very efficient: it converges
in two iterations. We observe that the compagny of insurance increases its risk when its
reserve increases which is coherent with the intuition. When the intensity 7 increases, the
value function v and the optimal policy of reinsurance decreases. The dependence of the value
function on time is shown in figures 3 and 6.
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