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Abstract: We develop a model for TCP that accounts for both sublinearity and limitation
of window increase. Sublinear window growth is observed when the round-trip time of the
connection increases with the window size. The limitation is due to the window advertised by
the receiver. First, we derive the required conditions for the stability of the model. Then,
we write the Kolmogorov equation under Markovian assumptions. The model is solved
lanalytically for some particular cases. A good match between the throughput predicted by
the model and the throughput measured on real TCP connections is reported.
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La modelisation de TCP dans le cas de la croissance
sous-linéaire de la fenétre

Résumé : Nous developpons un modele de TCP qui tient compte de la sous-linéarité et de
la limitation de la croissance de la fenétre. L’evolution sous-linéaire de la fenétre peut étre
expliquée par la relation entre le débit instantané d’une connexion et le RTT (Round Trip
Time) associé. La limitation de la fenétre est imposée par le récepteur. Tout d’abord, nous
établissons les conditions de stabilité pour le modele. Nous obtenons alors les équations
de Kolmogorov qui nous permettent de résoudre analytiquement le modele dans quelques
cas particuliers. Ces résultats analytiques ont été ensuite validés par des mesures sur des
connexions réelles.

Mots-clés : TCP, la croissance de la fenétre non-linéaire, les équations de Kolmogorov
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1 Introduction

TCP congestion control is often analyzed using linear-increase multiplicative-decrease mod-
els for window variation [2, 8, 9, 13]. These models assume that the window increases
linearly with time until a congestion occurs. At the moments of congestion, they assume
that the window decreases multiplicatively by a factor of one half. The average round-trip
time is used to calculate the window increase rate between congestion events. In particular,
the window increase rate is taken equal to 1/(bRTT') packets/s, where b is the number of
packets covered by a TCP acknowledgement (ACK) and RT'T is the average round-trip
time.

This simple model for window variation holds on long-distance paths where the through-
put (that is, average transmission rate or the ratio of the total number of packets transmitted
and the connection time) of a TCP connection is small compared to the total bandwidth.
However, on short-distance paths where much bandwidth exists for each connection, two
phenomena may appear making this model inaccurate. The first phenomenon is related to
the receiver window. A TCP source cannot inject into the network in a single round-trip
time more packets than the window advertised by the receiver [13, 14]. This puts a maxi-
mum limit on TCP window and, hence, makes an unlimited-window model overestimate the
real performance.

The second phenomenon is related to the dependence between the window size and the
round-trip time. When the share of a TCP connection from the total bandwidth is significant
(due to a small number of concurrent connections), an increase in the window size very likely
results in an increase in the round-trip time. The reason for this simultaneous increase is
that at a large throughput, a TCP connection contributes considerably to the queueing
time in network routers. An increase in the round-trip time together with an increase in
the window size is known [1, 2, 4, 8] to result in a sublinear increase of the window size in
time (the derivative of the window size with respect to time decreases). Hence, assuming
that the window increases linearly with time while it increases sublinearly also results in an
overestimation of the real performance [2].

We present a complete model for TCP congestion control. We account for both sub-
linearity and limitation of window increase. Some works in the literature account for such
phenomena but they only consider simple networks of one bottleneck router and a single
TCP connection [1, 4, 8]. In this paper, we consider real networks. To this end, we present a
model for the variation of the round-trip time as a function of the window size. We propose
a technique to infer the parameters of such model from the traces of a TCP connection.
We then write the Kolmogorov equation of the window size in the stationary regime (we
prove first the existence of such a regime) and we solve this equation numerically for the
distribution of window size. The throughput of a TCP connection is computed from window
size distribution. This throughput can be corrected for timeouts and the discrete nature of
TCP congestion control using the heuristics in [2, 13].

In addition to the model for window variation, the modeling of TCP congestion control
also requires a model for the moments at which the window is reduced [2]. We call these
moments congestion moments or loss moments. First, we formulate the problem and we
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4 Altman et. al.

derive some stability results for any stationary and ergodic process of congestion moments.
Then, we present a Markovian model for which we write the Kolmogorov equation of the
window size distribution. This Markovian model is further specified in some particular cases,
such as the cases of always-linear window growth and always-sublinear window growth.

The paper is organized as follows. In the next Section 2 we present the general model
for the window size evolution as well as some stability results. The Markovian model is
described in Section 3 with the help of its Kolmogorov differential equation. In Section 4 we
present analytic solutions to the Kolmogorov equation for some particular cases. In Section 5
we show how to identify the parameters of the sublinear window size evolution, namely, we
explain how to infer the parameters of the model for the round-trip time as a function of
the window size. Finally, in Section 6 we present numerical and measurement results.

2 A general model for TCP

We first consider a very general model for the evolution of TCP congestion window. Our
general model is composed of two parts: the model for window increase between loss moments
and the model for loss moments. Recall that by a loss we mean an event that causes a
reduction of TCP window.

Window evolution model between losses: Consider a fluid model of a TCP window [4,
8]. In the absence of losses, the window W (¢) (measured in packets) evolves according to

dw

— = f(W), 1

= 1(") 1)
where f is some nonnegative function (i.e., the window only decreases at the moments of

congestion).

The main model that we shall analyze later will be the following special case of (1).
It corresponds to the congestion avoidance mode of current TCP implementations [14]. In
the absence of losses, the window W grows linearly with time until some threshold Wj is
achieved. Once the window size is greater than Wy, the growth becomes sublinear [1, 4, §],
and once a maximum window size M (determined by the receiver) is reached, the window
remains constant at M. The sublinearity of window growth between Wy and M is assumed
to be caused by a linear increase in the round-trip time with the window size. Note that
TCP sources increase their windows by the same amount of bytes in a round-time, whatever
is the duration of the round-trip time. Hence, an increase in the round-trip time slows the
window growth. Between 0 and Wj, the round-trip time is assumed to be constant and
independent of the window size. The right hand side of the general model (1) is then given
by

L =1{W<M 1

bRTT(W) W< }b(RTTO +p YW > Wo H(W — W)’

where b is the number of data packets covered by an ACK (usually 2), RT'Ty is a basic
round-trip time and the term p='1{W > Wy}(W — W;)) corresponds to the increase in

fW) =1{Ww < M} (2)
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RTT

RTT ut/tan/

Figure 1: The dependence of round trip times on the window size

round-trip time caused by the queueing delay induced by the large window size. Figure 1
shows an example of how the round-trip time varies with the window size. For a simple
network of one router and a single TCP connection [4, 8], RTTy represents the two-way
propagation delay, u represents the router bandwidth, and Wy is simply equal to RTTyu. In
a real scenario, these quantities may have different interpretations. For example, the basic
round-trip time can be seen as the sum of the propagation time and the contribution of
the other flows to the queuing delay. We will propose in Section 5 to use the technique of
non-linear least squares to infer these parameters from the traces of the TCP connection.

To see in more details how (2) is obtained, we recall that in the congestion avoidance
mode, the window grows by approximately 1/W (packets) each time an ACK arrives. Let
ack(t) denote the number of arrivals of ACKs by time t. We can thus use our fluid approx-
imation to express the rate of growth of the window by:

d_W _dw 9 dack
dt  dack dt '’

3)

When the window size reaches some value W, then the input rate of TCP reaches the
capacity (bandwidth) of the bottleneck router, u. At this point, packets leave the network
at rate p and enter at a larger rate. Wy is given by Wy = RTTopu. When Wy is reached, the
excess is queued, so that the queue size at time ¢ is W (t) — Wy, and the queueing time is
(W (t) — Wo)/u. Thus the round trip time at time ¢ is indeed RTTy + (W (t) — Wy)/u. At
this point, the rate at which ACKs arrive is given by

dack  W(t) w

dt ~ b-RTT(t) b(RTTo+p 'L{W > Wo}(W — Wo))

Substituting this in (3) together with the rate of window growth (with respect to arrival of
ACKs) finally yields (2).
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to

Figure 2: The sub-linear window evolution

Let to denote the time when W(tg) = Wy. Then, the window evolution for our main
model is given by the function

Wo—}—ﬁ(t—to) 0< W <W,,
W(t) =

Wo + £[\/D2RTTE + 2u~1b(t — to) — bRTTy] Wo <W < M,

see also Figure 2. We shall allow below as special cases to have M = oo (infinite receiver
window) and /or Wy = co (always-linear growth) and/or Wy = 0 (always-sublinear growth).

The loss model: We consider a stationary ergodic point process defined on some probability
space (2, F, P) with a finite rate v > 0, which will stand for the process of loss moments.
We define a loss moment as the instant at which the window of a TCP connection is divided
by a constant factor v > 1. Typically v = 2 [2, 13]. We consider a general reduction factor
to account for other possible congestion control policies.

Let T;, ¢ € Z, be the time instant at which the ¢th loss occurs, and denote by 7; = T;4+1—T;
the ith inter-loss time. We take ... <T_; <Tp <0< T; <.... We shall allow in particular
T; = 0 with positive probability, which means that losses may arrive in batches.

We begin by establishing conditions for the tightness of the process W, and construct
another simpler process that will serve as a majorant. This will allow us to obtain both
bounds for performance measures as well as stability results.

Consider the process W (t) which is defined on the same probability space as the original
process W and is constructed as follows: it is also divided by 7 at each loss, yet between
losses it always grows linearly with some rate v, i.e.

dw
@ = (4)

INRIA
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This process is well defined for any initial state. It has a unique stationary ergodic regime
W*, as was shown in [2]. In particular, if we consider the corresponding discrete time process
embedded just prior to loss instants, then its unique stationary regime, which we denote by
W, is given by

(o)

A —k

W, =v E Y T Tn-1—k-
k=0

Lemma 1 Consider a stationary ergodic loss point process with finite positive rate. Assume
that there are two nmonnegative numbers v and u such that f(w) < v for any w > u. Then,
for any fized initial state at some time s which is taken to be the same in the original and
new system (i.e., W(s) = W(s) ), we have W (t) +u > W(t) for all t > s.

Note that the conditions of Lemma 1 apply in particular to our example (2) with v =
1/(bRTT,) and u = 0.

Define the correlation function between the inter-loss times: R(k) = E [1,7n4x]- The
above lemma, implies that

Corollary 1 _Under the conditions of Lemma 1,
(1) W(t) <st W +u for any t, and is therefore W (t) is tight.
(i) For any increasing function h:

lim sup E [W(W(£))] < E [h(W*(o))] +u

t—oo

limsup E [W(t)] < A (%R(O) + i v_kR(k)) + u.
k=1

t—oo

In the above corollary, "<" stands for the stochastic ordering (see e.g. [15]). The last
equality follows from Proposition 2 in [2].

Remark 1 Note that one can construct in a similar lower computable bounds for the process
E [R(W (¢))] if we replace the condition f(w) <wv for w > u in Lemma 1 by f(w) > v.

In the next two theorems we provide two stability results. The first establishes the
existence of a stationary ergodic regime, whereas the second one establishes its uniqueness
and convergence of the window size to that regime.

Theorem 1 Assume that the loss process is stationary ergodic. Assume further that there
are two nonnegative numbers v and u such that f(w) < v for any w > u. Then there exists
a stationary ergodic process W*(t) satisfying the evolution (1) between losses and for which
W (t) is divided by a factor of v for each loss.

RR n° 4312



8 Altman et. al.

ProOF: Define on the same probability space the family of processes {W(*)(t),t € R},
n € R as follows. W(*)(t) := 0 for t < —s, and for t > —s it is given by the TCP evolution
described by (1) and with the window divided by ~ for each loss. Thus all the processes
W () experience losses at the same instants. For each t, W(*)(¢) is increasing with respect
to s and thus it has a limit W*(¢). The limit is clearly finite if M < co. Next we show that
in the case of M = oo, the limit is finite almost surely. e

Consider the process W (t) defined on the same probability space defined in (4). Let W*
be the unique stationary regime corresponding to W (see [2]). It follows from Lemma 1 that
our limit process W* is majorized by the stationary ergodic process W + u, and therefore
it is finite a.s. (and tight). Since W* is a function of the stationary ergodic loss process, it
is also ergodic. This establishes the theorem.

O

We call the process W*, defined in the previous theorem, the minimal stationary regime

of W.

Theorem 2 Assume that the loss process is stationary ergodic. Assume that f(W) is non-
increasing. Then there is a unique stationary regime W* and for any initial value W(0), we
have

Jm [W(t) — W ()] =0

almost surely.
We shall use the following obvious observation:

Lemma 2 Let W(t,wo) be the process W (t) obtained when starting initially at W(0) = wp.
Then, for any t > 0, W (t,wo) is monotone in wq.

PROOF OF THEOREM 2: Define S,, = T, for n > 0 and Sy = 0. Consider the embedded
process W,, := W(S,,) for all nonnegative integers, with some initial condition Wy = W (0).
Consider on the same probability space another embedded process W, := W'(T;,) which is
obtained similarly using the same dynamics as that defining W, but with an initial condition
W§ > Wy. It follows from Lemma 2 that W/ > W, for all positive integers n. Now,

(e [ [P0 - )

Sn+1
771 (erb - Wn+ /
Sn

erb+1 —Whp

(FW' (1) — f(W(t)))dt)
< AW, - W)

where we used the fact that f is non-increasing and Lemma 2. It follows that

ri1 — Wagr <y MWy — W),

INRIA
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which shows that the processes W,, converges to a limit regime that does not depend on
the initial state. Since T; are finite P a.s. (as the loss point process is assumed to have a
positive rate), we conclude that W (t) also converges to a unique limiting process that does
not depend on the initial state. This proves the theorem.

O

Remark 2 One can easily show that in general, when f does not satisfy the conditions of
Theorem 2, there need not be a unique stationary regime for the process W. Consider, for
ecxample, the case where

v=2, fw) =149 x 1{w > 5}.

First we suppose that losses occur just after T, = n. If W(0) = 0, the window process
converges to

W*t)=t—-[t]+1, teR
where |t| denotes the largest integer number which is smaller than t. This process takes
values in the interval [1,2]. However, if the process starts at sufficiently large W(0), it
converges to another limit process:

W' (t) = 10W*(¢),

which takes values in [10,20]. Although in this ezample the limit processes are not stationary
ergodic, by adding slight perturbation to the time between losses (e.g., by letting 7, be i.i.d.
random wvariable, uniformly distributed in [1,1 + €] for some € small), we obtain the same
features as in the above example yet with the limiting processes being stationary [5].

3 A Markovian model

In this section we study the window evolution according to the dynamics described by (2).
For the loss process we consider the following Markovian batch model.

We assume that batches containing a random number of losses arrive according to an
independent Poisson process with intensity A. The window is divided by a factor v > 1 for
each loss in a batch. We denote the sizes of (i.e., the numbers of losses in) consecutive batches
by N1, N2, Ns,..., and we assume that these constitute an i.i.d. sequence. The size of an

arbitrary batch is generically denoted by N < Nj.. The Poisson process and the sequence
Ni, k = 1,2,..., are independent of each other and independent of the past evolution of
the window. For a batch containing n losses, the window is multiplicatively decreased by a
factor v~™. Immediately after the multiplicative decrease, the window restarts its growth
(linear or sublinear). Furthermore, the window stays constant at M when this maximum
level is reached until the next batch of losses appears.

Note that W (t) is a so-called “Piecewise Deterministic Markov Process”, see [6]. We
denote the probability generating function of the distribution of N by

Q) =B[N =Y 2", |ol<L. (5)

RR n° 4312



10 Altman et. al.

We are interested in the calculation of the stationary distribution function of W(t), that is

F(z) = lim % /t TOP{W(t) <a}dt. (6)

T— oo

Once this distribution is calculated, the throughput (in packets/s) can be deduced in the

following way [2]
B W M+ T
X=E [RTT(W*)] = /0 RTT(2) F @)

Note that the throughput is no other than the expectation of the instantaneous transmission
rate X (t) = W(t)/RTT (W (t)). To correct for the burstiness of TCP, the instantaneous
transmission rate is supposed to be averaged over the last round-trip time.

The next theorem states that the distribution F'(x) exists and is unique. It also provides
the Kolmogorov steady-state differential equations.

Theorem 3 There exists a unique steady-state distribution of the window size for the win-
dow evolution model defined in (2) and the batch loss Poisson process. The complementary
distribution function F(x) =1— F(x) = P{W > a},x € (0, M], is a solution of the follow-
ing Kolmogorov steady-state differential equations

1 d— — S~ —
- b(RTTO _'_Mfll{x > W()}(.QZ _ WO)) EF(x) =A (F(.’L‘) - T;QnF(mln('Y xaM))> ) (7)

where z € (0, M)\{M /" }n=1p2,....

PROOF: The existence and uniqueness of the steady-state distribution follows immediately
from Theorem 2, as the function f(W) defined in (2) is indeed non-increasing and the
batch loss Poisson process is stationary and ergodic. To derive the Kolmogorov steady-
state differential equation we use the up and down crossing argument. Namely, assume that
the process is in equilibrium and consider a level z € (0, M). Whenever the window size
increases from less than or equal to x to more than z we say that an up crossing of the
level z has occurred. Similarly, if the window size decreases from more than z to less than
or equal to z we say that a down crossing of the level z has occurred. Let [t,t + A] be
a small deterministic time interval. When the process is in equilibrium, the probability of
up-crossing

1
b(RTTo =+ M711{$ > Wo}(l‘ — Wo))

(1—)\A)P{x— A<W§x}+o(A)

is equal to the probability of down-crossing

AA Z g P{z < W < min(y"z, M)} + o(A).

n=1

INRIA
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After equating these probabilities, we pass A | 0. We note that the derivative of F(x)
exists and is continuous for all = except at + = Wy and © = M~~", when ¢, > 0. For
z € (0, M)\{M~""}n=1,2,... we obtain the following steady-state Kolmogorov equation

]. d [oe]
b(RTTy + p11{z > Wy }(z — Wy)) d= W <z} )\Z g P {z < W < min(y"z, M)}

n=1

The above equation immediately imply (7).
O
The differential equation (7) can be solved in a recurrent manner. Namely, we solve
the equation successively on the intervals [M /v, M), [M/+% M/~],... Note that at each
step of this recursion one needs to solve a linear differential equation of the first order.
Thus, in principle, one can obtain an analytic solution for any number of the intervals
[M/y™*1, M /4™]. However, the analytic solution is very messy and it is recommended to
use any standard numerical differential equation solver. The probability Pyy = P {W* = M}
can be found from the normalization condition. Furthermore, Py; as well as the moments
of the window size distribution can be obtained explicitly in some particular cases (see
Section 4).

4 Some important particular cases

In this section we present some particular but important cases when we can obtain simple
analytic expressions for the distribution and the moments of the window size as well as for
the constant Pjy.

4.1 The case of only linear window growth

Here we present the results for the case Wy > M, that is, we assume that the window
growth is always linear. The linear window growth holds on paths where the connection
under consideration does not contribute significantly to queueing delays. For the detail
derivations we refer an interested reader to [3]. If Wy > M, the coefficient in front of the
derivative in (7) becomes constant « := 1/(bRTTp). Consequently, on the interval [M /vy, M)
the distribution function is given by

_ M
F(z) = Pye~M=2) —Se<M

We recall that Pyy = P {W* = M}. Let F,(z) denote the truncation of F(z) on the interval
[M/~%, M/~*=1). Then,

A

k .
Fr(z) =Py Y cPe a7 7'e k=12, (8)
=1

RR n° 4312



12 Altman et. al.

(k)

The coefficients c; ’ are calculated by the following double recursion on k and ¢

PR -
z+1 -

(k—n)
1—n+1°

(k)

with ¢’ given by

AP o b

(klf’kM (kfl"M
zc Zc .

The probability Py, of the window size being at the maximum level can be calculated by

the formula .
Py = <1 F (1= QU ) Y (e R - 1)) ’

%

€; 1 _n €i—n .
— = ; n ] Z>17

where

n=1

-1
=1+ qnzw‘f:,{efl

Next, define for Re(w) > 0 the LST (Laplace-Stieltjes Transform) of the window size distri-
bution by

N M+
Flw) = / =T dF(z).

=0
Taking Laplace Transforms in (7) leads to:

A 1— £ o 1— £ln—n
o (f(w) = Parem) = ALy 57 ymng 120770 (9)
Since E [Wk] < MF, k=1,2,..., we may write

Substituting the above series in (9), using the absolute convergence of the doubly-infinite
series to interchange the order of summation and equating the coefficients of equal powers
of w we get the following recursive formula for the moments of the window size distribution

ka (E [Wh=1] — Py Mk-1)

PV =T ey

k=1,2, ..

INRIA
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In particular we find for &k =1, 2:
_ a(l —PM)
EARPYCELTCRA
27 2 [OA (1 — PM) — APy M (1 - Q(’y_l))]
BV = =N a-erma-en2)

The round-trip time is constant in this case (linear window growth) and the throughput
is simply equal to X = E[W] /RTTo.

4.2 The case of only sublinear window growth

Here we study the cases when the round-trip time always grows linearly with the window
size. This corresponds to congested paths where a queue of packets always exists in routers.
A path crossed by TCP connections is congested either because the bandwidth-delay product
is small compared to the buffering capacity of routers, or because the number of connections
is large [8]. First, we consider the case when the constant component of the round-trip time
(RTTy) is negligible compared to the increase in round-trip time induced by the connection.
In our model such a situation would correspond to RTTy ~ 0 and Wy ~ 0. If we assume
RTTy, = Wy = 0, the differential equation for the window size evolution between losses takes
the following form

dw

dt bW’
The window reduction at instants of losses is as before and W (¢) stays constant until the next
loss when the maximum window size M is reached. As before, we seek to find a stationary
probability distribution for W (t) that satisfies these dynamics. Our approach will be to
transform (10) into an equation of the type studied in Section 4.1. This can be achieved
using the transformation® X (t) = W(t)2, which indeed leads to

(10)

dX  2p

at b’
i.e., a constant linear growth in between loss instants. The maximum value of the trans-
formed process X (t) is, of course, M. If at the k-th loss instant ¢ = T}, the window W (T},)
is reduced by a factor ™ due to ny clustered loss events, then

X(TF) = W(TF? = (v W(T)* = (+3) ™ X(Ty),

that is, the value of the process X (t) is reduced by a factor 72 (instead of v) for each
individual loss event. We can compute the stationary distribution of X (¢) as in Section 4.1

1 The transformation X(t) = W(t)™+!/(m + 1) has been used in Ott et al. [12] to analyze the more
general case dW/dt = ¢ctW ™™, ¢ > 0,m > —1 for single losses (g1 = 1) and unlimited window growth
(M = o0).
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14 Altman et. al.

taking a maximum level M? (instead of M), a linear increase rate a = 2u/b and a reduction
factor 42 (instead of 7). With these substitutions, the complementary distribution function
of X (t) is given by (8) and, hence, the stationary version W of the process W (t) satisfies:

k
P{W >a}=Py > Me a7 e MpE MY, k=12, (11)
=1
The probability Py := P{W = M} =P {X = M?} and the coefficients " are calculated
as in Section 4.1 (with M, a and v replaced by M?, 2u/b and 2, respectively). The
throughput in this case is simply equal to u. Note that from the results of Section 4.1 we
can also immediately obtain a recursion on the even moments of the window size distribution.
In the following we show, however, how such a recursion can also be obtained for the odd
moments, in the more general case where RTTy > 0.

Next, we consider the case when the constant component RTTy of the round-trip time
is significant. Wy is still assumed to be negligible due to a persistent congestion of the
path. This leads to the following Kolmogorov equation for the steady-state window size
distribution

1 d = — .
e _CF@) = F@) - ¢.F(min(y"z, M)) | .
S W < )= X wFminy"s >>>
By multiplying the above equation by 2*b(RT Ty + x/u) and then integrating from 0 to M,
we obtain the next recurrent relation between the moments W) = E [W*] k> 1

ARTTy
E+1

Abpt

W) _ MEp,, = n- Q(,y—(k+1))]W(k+1) + W[1 _ Q(,y—(k+2))]W(k+2).
_+_

If the first moment W (1) = E [W] and the constant Py are determined (e.g., after having nu-
merically determined the distribution function), then the higher moments can be calculated
by the simple recurrent formula:

(k+2) _— _“RTTO(’C +2)[1 - Q(’Y_(kﬂ))] (k+1)
" (k+ DI - Q-G
(k+2) (k) _ (k +2)M*
XL = QUy )] Nop1[l = O -FFy L k22

5 Identification of round-trip time model parameters

For networks of one bottleneck router and a single TCP connection (see [1, 4, 8]), the three
parameters of the model for round trip time (RTTy, u and Wy) can be directly deduced.
For more complicated networks, these parameters have to be inferred on end-to-end basis
from the traces of the connection. Assume that we have some measurements of the round
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Figure 3: Round-trip time vs. window size

trip times and the corresponding window sizes seen by the connection. Figure 3 shows an
example of such measurements for a TCP connection that we ran for twenty minutes between
a machine at INRIA Sophia Antipolis (south of France) and another machine at ESST about
1 Km from INRTIA location. Each point in this figure represents a measurement of the round
trip time and the corresponding window size. These points are obtained by a tool that we
developed and that monitors the flow of packets and ACKs at the output interface of the
TCP source machine. The thick line in the figure represents the average round trip time
over close windows. It is clear how the round trip time tends to increase with the window
size. Next, we explain how we can infer the three parameters of our model from such traces.

Let RTT; be the i-th measurement of the round-trip time and let W, be the corresponding
window size. When using our model to predict the round-trip time for the window size W;,
the error we introduce is equal to

€i = RTTy + p ' 1{W; > Wo}(W; — Wy) — RTT;.

Let n be the total number of measurements. We propose to use the non-linear least-square
technique which consists in finding the parameters of the model that minimize the sum
>, €. We solve numerically such minimization problem for the traces presented in Fig-
ure 3. The program in C that we developed using the non-linear simplex method of the
NAG library [11] gives the curve shown in Figure 4. The figure also shows 95% confidence

intervals.
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Figure 4: Expected round-trip time vs. window size

6 Measurement results

We use the traces of the TCP connection between INRIA and ESSI to validate our calculation
of the throughput and the window size distribution. This connection was run for a whole day
in January 2000. We only consider the working hours. Approximately every twenty minutes,
we store the traces of the connection in separate files. Then, we apply our Markovian model
to predict the throughput of the connection in each time interval. We use two variations of
our model. First, we use the model for the case of always-linear window growth. Then, we
use the general model which takes into account the both cases of linear and sublinear window
growth (see equation (7)). The non-linear least-square technique is applied to the traces for
different time intervals to find the parameters of the model for round trip time variation.
In both cases, we take N = 1, that is, the moments at which the window is reduced are
assumed to follow a Poisson process. The maximum window size on this connection is equal
to 64 Kbytes and the New-Reno version of TCP is used in the source machine at INRIA [7].

First, we plot in Figure 5 the variation of the throughput of the connection during the
day corresponding to the both models we considered. We also plot the variation of the real
throughput. The linear model overestimates the real throughput on this connection, whereas
the estimation given by the general model is much more accurate. The overestimation given
by the linear model is the result of the sublinearity of the window increase on this short-
distance path. The model of round trip time for this connection shown in Figure 4 is a clear
proof of such sub-linearity.

Second, we plot the window size distribution function F'(z) at different hours during the
day. Two samples are shown in Figure 6. The figure shows the distribution function given by
our linear and sublinear models as well as that calculated from window size measurements.
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A good match is noticed between the model and the reality. The figures (especially the right-
hand one) also shows that the linear model overestimates the real throughput by giving more

weight to large windows.
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