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Nouvelles lois de paroi pour I’équation de
Nayvier-Stokes instationnaire dans des domaines
rugueux

Résumé : Dans ce travail nouvelles conditions aux limites équivalentes (lois
de paroi) sont proposées et implémentées pour I’équation de Navier-Stokes
nonstationnaire dans des domaines avec une frontiére partiellement rugueuse.
L’approche suivi a été celui de I'analyse asymptotique, et des lois de premier et
deuxiéme ordre ont été obtenues. Les rugosités de la frontiére ont été supposées
périodiques, et leur influence siir I’écoulement global est prise en compte via des
constantes calculées a partir de la solution de problémes de Stokes dans une
cellule contenant une seule rugosité. Plusieurs résultats numériques validant
notre approche sont présentés.

Mots-clés : loi de paroi, équation de Navier-Stokes instationnaire, analyse
asymptotique, frontiére rugueuse
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1 Introduction

Numerical simulation of flows over rough interfaces is a critical problem in
CFD because of many situations involving rapidly varying micro structures
near the wall. The direct solution of the Navier-Stokes equations in real 3D
domains (with thousands of roughness elements in the computational domain)
becomes a difficult task, specially when the interest is to simulate unsteady
viscous flows. There are many practical problems where unsteady flows over
rough boundaries are relevant such as:

e In aerodynamics, space shuttles are covered with tiles and its walls have
an array of periodic gaps between the tiles. Similarly, in the drag control
of an airplane wing, small injection jets are introduced over the wing in
order to decrease the drag [4].

o In weather forecast the effects of hills, trees and buildings must be taken
into account. In many climate applications, water waves should be in-
cluded to properly simulate ocean-atmosphere interactions (see [15] and

[12]).

e In optimal shape design, particularly in active control, the shapes are
time dependent. In several cases it is possible to replace active shape

control by a boundary control using wall laws or transpiration conditions
[4].

e In hemodynamics, the cell surfaces of the endothelial has the property to
modify the wall shear stress produced by the flow field [22]. Therefore,
wall laws could be useful in order to simulate in an accurate way the cell
geometry influence on the blood flow.

The problem of fluid flow simulation over rough boundaries has already
been studied mathematically in [9] where a domain decomposition method
was proposed to construct wall laws for flows over periodic rough interfaces.
This approach was extended to turbulent flows in [5] where some geometric
dependent cases were considered. Their argument was analyzed in [1] for the
Laplace equation and in |2] for the Stokes problem where the authors developed

INRIA
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a theoretical framework coupled with a convergence analysis showing good
performance of the boundary conditions.

Recently (cf. |3]), effective boundary conditions (wall laws) for the steady-
state incompressible Navier-Stokes equations on a rough domain with periodic
roughness elements were derived within the framework of two-scale asymptotic
expansion techniques (for a survey on such techniques, see [7] and [18]). The
two-scale analysis of wall laws was pursued by considering steady laminar flow
dominated by viscous effects in the roughness elements. Under this assump-
tion, the flow near the wall tended to be Stokes-like with corrections due to
convection. This choice led to the obtention of accurate numerical results as
was pointed out in [3] and [21].

On the other hand, wall laws have been used for unsteady flows giving
satisfactory numerical results (cf. [17] and [16]). However, the same wall laws
have been used for both steady and unsteady flows without any mathematical
justification. The purpose of this work is then to derive accurate, mathemati-
cally justified wall laws for time-dependent flows, assuming that the flow varies
slowly, which implies that we have only one time scale to deal with. This choice
has proven to be the right one, at least for the laminar flows we consider in this
work. We introduce first and second order wall laws for unsteady flows. We
observe that, for the first order approximation (and for the first order only) the
same wall law is obtained for both steady [3] and unsteady flows, which gives
a possible justification of the fact that the same wall laws are commonly used
for both steady-state and unsteady flows. This is not the case for the second
order approximation which gives us more accurate numerical results than the
first order one as we shall show in the numerical results, where we validate the
specific unsteady wall laws by several numerical simulations and we verify the
approximation improvement produced by the second order wall law.

The outline of the paper is the following: Section two contains the descrip-
tion of the problem. First order approximation and the first order effective
boundary condition are introduced in Section three. Second order approxima-
tion and boundary conditions are derived in Section four. Section five contains
a brief description of the time discretization of our problem and the implemen-
tation of wall laws, and the validation is performed by numerical experiments
in Section six. Finally, some conclusions and perspectives of future work are
given in Section seven.

RR n° 123456789



6 G. Barrenechea, P. Le Tallec and F. Valentin

2 Definition of the Problem

We begin by describing a domain that is partially rough with periodic
roughness elements. Let (e, e;) be an orthonormal basis of R?, and let Y C R?
be a semi-infinite domain in the e, direction, such that the boundary of Y is
decomposed into three parts (figure 1):

dY = 9Y; U dY, U dYs,

where

0Y; = {0} x [0,00[ , 0Ys= {27} x[0,00],

and 0Y3 is a connected Lipschitz bounded curve such that
9Y1 N aYs = {(0,0)}, dY, N dYs = {(27,0)}.

Let € be a small positive real number, and let Y* be the image of Y by a di-
latation of ratio € and center (0,0). Further, let ©¢ be the semi-infinite domain
of R? obtained by merging together all the images of Y¢ by the translations
by 2mkee; where k takes all the integer values. The infinite domain ©° is con-
tained in the half plane x5 > 0. Let © be a bounded domain of R? intersecting
the half plane {zo > 0}. For simplicity, we suppose that this intersection
is connected. Thus, for ¢ small enough, ©° N Q has a fast oscillating rough
boundary, with wavelength of order ¢ (figure 2). The amplitude of the rough-
ness elements is also of order e. We denote ° = ©° N2 and I'® the rough part
of 09°. We also denote by Q° = {x € Q : 2o > 0} and I'° = 9Q N {z, = 0}.
When € — 0, Q° converges to 2° in the sense of Hausdorff. As usual, we
. Ty T2 .
use notation (z1,z3) and y = (y1,y2) = (z, ?) for the macroscopic and
microscopic variables, respectively. We consider a unique time scale ¢ € (0, 7],
where T' € R" is the final time of the process.

Let us introduce the space L2,.(Y") of functions in Y, 27-periodic in the y;
variable, and square integrable in Y, and the subspace H,,,.(Y) C L2, (Y) of
the functions whose first derivatives belong to L2,.(Y"). We also introduce the
following space

Sper(Y) := {f € L2,.(Y)/ lim f(y)e®* = 0 for some o > 0}.

per Y2—+00

INRIA
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6Y1 6Y2
oY,

L

i o on

Y2

Figure 1: The cell Y

Without loss of generality we have chosen to work in two dimensions. Nonethe-
less, all that follows can be generalized to the three dimensional case.

We consider an unsteady fluid flow over a rough interface modeled by the
usual unsteady incompressible Navier-Stokes equations

a £
8‘; Fus VU - sAE 4+ VE = £ in QF x (0,17,
V-u® = 0 in Q° x (0,77, (2.1)
uv =0 on I'* x (0,77,
v = w inQ®att=0,

and for simplicity, we assume that the support of the source term f does not
intersect I'. Of course, it is possible to assume other boundary conditions,
typically, inflow-outflow boundary conditions, but they introduce only tech-
nical difficulties, and hence the present setting is sufficient for our derivation
purposes. The initial velocity w is given and defined in €2°. The coefficient v
is the viscosity. When v is small, the flow exhibits boundary layers near the
walls. Thus, the problem has three characteristic lengths, namely, the macro-
scopic scale (linked to ¢ and f), the Prandtl’s boundary layer scale (of order
/v for laminar flows), and the roughness element scale . We are interested in
the case where these scales are well separated, specially when /v > ¢. Under
this assumption, it is reasonable to expect a viscous sublayer of size O(e) due

RR n° 4306



8 G. Barrenechea, P. Le Tallec and F. Valentin

Q= QO QE‘)

r° ! 5

Figure 2: The domains Qf, Q° and Q°.

to the roughness elements inside the Prandtl’s boundary layer. Thus, we set
v = pe, with p being a real constant. This choice is convenient and permit to
cover several practical applications, as numerically proved in [21]. Of course,
other regimes with other asymptotic expansions are possible, but one has to
keep in mind that asymptotic expansions are rather artificial since for prac-
tical applications, the viscosity and the geometry are both given and fixed.
Therefore, adding this scaling law the problem can be rewritten as

a £
(;:; +ut-Vu® — peAuc +Vpt = f in Q¢ x (0,77,
V-ut = 0 in Q° x (0,77, (2.2)
uv = 0 on I'* x (0,77,
uw = w inQ*att=0.

We shall assume enough regularity on the data such that all the Navier-Stokes
problems introduced below have isolated branches of solutions corresponding
to laminar regimes [20].

In the following, we shall denote £ the partial differential operator

L (u,p) = g—? +u-Vu — peAu+ Vp,

INRIA
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and make the important assumption that the mean flow is not strongly affected
by the roughness elements, i.e., the solution of (2.2) is a perturbation of the
solution of the following problem:

a o
811 +u®-Vu® — pucAu® +Vp® = f in Q° x (0,7],
V-uw = 0 in Q° x (0,7], (2.3)
uw =0 on I x (0,77,
u = w inQ°att=0.

In the case of the linear steady state Stokes equations, the above assumption
can in fact be rigorously proved (see [2]). We also assume that the solution
of the above system describes a laminar flow, in such a way that we have the
following Prandtl’s length scales on I'°:

o 2,,0 2,,0
ouj 0“uj 0%

— -1/2 — -1 — —-1/2
O0xs 0 (V ) T O @), 0x1025 0 (y ) ’
ous u; 1

We finally recall some derivation rules. For a function ¢(x) = ¢(x,y) we
have

Vo = Vyd+ Vo,

Vo = Vb4V,

1 - 2 - -
A¢ = g_sz¢+gAxy¢+A¢a
- o (0¢ : :
where Ayy¢ := Ei£ @ , and the absence of subindexes denotes deriva-

tion with respect to x.

As we shall see in the numerical tests, zeroth order approximation (2.3)
fails to correctly predict the velocity and pressure inside the boundary layer,
as these variables are influenced by the roughness elements. Therefore, we
are interested in constructing higher order approximation problems based on
asymptotic expansion techniques.

RR n° 4306
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3 First Order Approximation

3.1 The Ansatz

At the first stage of the calculation, we want to correct the error generated
by the fact that we have replaced u® by u® in (2.2). Since Q¢ C Q°, the error
arises from the fact that u® does not satisfy the no-slip boundary conditions
on ['*. However, since u°® vanishes on I'° and since I'* is close to I'°, the error
is small and given by the following Taylor expansion in the x5 variable:

o 2,40

u T 5 0°u T2)?
o (@,0. )= + &% = (21, 0,1) (S(X)E) :

for all (x,t) € I'® x (0,7] and where 0 < £ < 1. Here, the assumption that
(2.2) describes a laminar flow implies that, at leading order,

u’(x,t) = —¢

o

u
(.’E1,0,t
n

w(x,t) ~ —¢ )2

o

Uq
S

Now, since u = 0 on I'° x (0, 7], we have =0on I x (0,7], and using a

Taylor series we obtain

_0uS 0?u
(Il,.’EQ,t) - Os (mlaoat) + T2 m(‘rlaﬂat) + 0(6)

0%us
anas (.Tl,o,t) - O(\/g),

for every x5 inside the boundary layer, thanks to Prandtl’s scales. Hence, using
the incompressibility condition we arrive at
Ouij  Ouy
ds  On
inside the boundary layer. Thus, using (3.1), we arrive at the following ex-
pression for the error

o
ou

0s

X EY2

= O(Ve), (3.1)

w(x,t) = —¢ ‘?;;1 (21,0, 1) %el V(x,t) € T¢ x (0,T]. (3.2)

INRIA



New wall laws 11

Now, we observe that from the Prandtl scales we have that the error is of
O(y/e) magnitude. Hence, we propose the following ansatz

u® (x,1)

u’ (X’ t) + \/gulBL (Xa Yy, t) )
P (x,1) (3.3)

po (X7t) + ‘\/EplBL(x’yﬁ t)’

where the terms ul; (x,y,t) and pk, (x,y,t) are called boundary layer correc-
tors because they correct at first order the fast oscillating error when replacing
u® by u° in (2.2), and they are of O(1) magnitude. The influence of the cor-
rectors is mainly restricted to the boundary layer. The term (3.2) is the error
at leading order which is expressed in terms of the product between a function
of the macroscopic variable and a fast oscillating periodic term. Therefore, a
natural way to look for correctors is

Q Q

o

0 _
ulBL(X7y7t) = \/g%(xlaoat) (XI(Y) _X1> 3

o
ouj

on

where x! (resp. 7!) is a function with values in R?, (resp. R), periodic in the

y; direction, and y! € R? such that x! — x! and 7' decay exponentially fast to

zero as Yo tends to infinity (see Theorem 3.1 below). We may note that, even

if the correction depends on x and ¢, the one time scale assumption leads us to

the fact that the dependence on ¢ is only present in the slow variable; this will

have a direct impact in the calculation of the homogenization constant below.
Now, the leading order of £¢ (u® + v/ uk;,p° + Vepg) — f is

PeL(x,y,t) = Ve —(z1,0,t)7(y), (3.4)

. R ous
L (u + \/EulBLap + \/‘Ep}BL) —f= 8111

(21,0,1) (_NAyX1 + vy7rl) . (3.5)

0
At a first glance, the convective term %(ml, 0,t)u’ - Vyx! looks like of the
n

same order, but since Vyx' decays to zero exponentially fast as ys goes to
infinity and u® vanishes on I'°; this term is actually smaller. Likewise,

. ous 0?ug
V ’ (1.1 + \/EHEL) ~ 61’11 (xla Oat)vy : Xl + 681’163171 ('7;1’ Oat) X1
ou;
~ 8—111(x1,0,t)vy X (3.6)

RR n° 123456789
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Therefore, in order to correct these errors, correctors x!, 7! and the con-
stant vector x! should satisfy:

—pAyx' +Vyrt = 0 in Y,
Vy - x'=0 in Y,

X1 - ? = Y€ on 0Y3,

X' =X €S (Y): , 7 €S (Y).

Now, it is not difficult to realize that, in general, this corrector problem does
not have a solution. Indeed, it suffices to take 0Ys = {y» = 1}, and in that
case, the solution y! — x! = (1,0) does not tend to zero. That is why we relax
the definition of this problem, and we only ask the triplet (x!, X, ') to satisfy

—pAyxt +Vyrt = 0 inY,
Vy-xt = 0 inY,
X1 = & on 9Y3,
X=X E€Spr(Y)? |, e S (Y).

(3.7)

This cell problem is well posed, as stated in the following result, whose
proof can be found in [3].

Theorem 3.1 There exists a unique pair of functions (x%, 1) and a unique
vector x* € R? such that x' —x* € Hp,,(Y)*NSper (Y)?, 7' € L2, (Y)NSper (YV),
and (3.7) i_ssatisﬁed in a weak sense. Moreover, x' is an horizontal vector,

i.e., X! = xie;, and the constant X_% 1s bounded as follows

0 < X% < Hpae i= max{yQ : (yl,y2) S aY},} .

Remark 3.1 We observe that even for an unsteady problem one has to solve
just a steady Stokes problem in the cell Y, and hence the homogenization con-
stant X' is calculated only once at the beginning of the calculation. On the
other hand, even for periodic roughness elements, here we allow general non-
periodic assumption for the correctors. In other words, we do not impose the
periodicity in the macroscopic scales, which was a common fact in the first
works concerning wall laws (cf. [9]). O

INRIA
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Now, from the definition of the correctors (3.4) we have that

—ou’
u’ + veup, = —ex! 81:11 (1,0,t)  on T x (0,7,

which shows that adding /guk; to u® does not improve the error since it
remains of the same order. However, a closer inspection shows that now, the
error is no longer fast oscillating. Therefore, it can be corrected by modifying
the ansatz in the following way:

w(x,t) & u'(x,t) +Veuy,(x,y,1),
p(x,t) =~ p'(x,t) + VeppL(x,y,t), (3.8)

where the pair (u!,p') is a solution of the following macroscopic problem: find
(ul, p') such that

0 1
i—i—ul-Vul—usAul—f—Vpl = f in Q° x(0,7],

ot
Veoul = 0 in Q°x (0,7],
u! = 0 on 9N°\I x (0,77,
— Ou°
up = exi 81;1 on I'° x (0,T],
uy = 0  on I°x (0,77,
ul = w in Q° att=0.

(3.9)

3.2 The Related Effective Boundary Condition

In practice, the computation of (u° p°) and (ul,p') require to solve two
Navier-Stokes problems in 2°. Alternatively one may notice that near I'°,
u'! &~ u°, which shows that the boundary condition on I x (0,7] can be

replaced by the Navier boundary condition

1
— Ouy

X% a—n on I'° x (O,T] (310)

1 _
uy =¢

Using the same argument, we modify the definition of uk; and pk; using u'
instead of u°. We remark that (3.1) is still valid for u', using now first order

RR n° 4306
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wall law (3.10) instead of the no-slip condition on I'° x (0,7]. However, (3.9)

may be ill-posed since the constant x! is positive (cf. Theorem 3.1) and the
variational formulation contains the term

_il U%’Ul.
Xi /T
To avoid this difficulty, we introduce the domain Q° (see Figure 2):
Q° = Q° N {xy > de},

and the (fictitious) boundary I = 9Q° N {z, = ¢}, and we shall solve (3.9)
in Q% rather than in Q°.
The following Taylor expansion on u]

Oul §%e2 0%uq

uj(21,0,t) = wui(zy,de,t) + de 8—111(:131,(58,t) + Tw(xl,ﬁés,t),

Oul Oul 0%ui

a—n(ajl,O,t) = 8—n(x1,55,t) + de o0’ (z1,0'0¢, 1), (3.11)

with 0 < 0,60" < 1, gives the first order effective boundary conditions

Ouj Ko

bt S = 0 3.12

/’1/6 an X% . 6U1 ’ ( )

u% = 0,

on I x (0, 7).

Remark 3.2 Despite considering the problem to be unsteady, first order wall
law (3.12) is exactly the same as the one obtained for the steady problem [21],
[8]. This provides a good explanation for the fact that classical steady wall laws
have being used for unsteady flows with reasonable success [17]. We shall see
that this is not the case for second order wall laws. [

Remark 3.3 [t is easily seen that the effective first order condition is equiv-
alent (at this order of approxzimation) to a no-slip condition on a flat wall at
an average height, computed by the asymptotic expansion, which is known in
fluid mechanics as the mean effective height (see [10]). This shall not be the
case in general for the second order effective condition. [J

INRIA
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4 The Second Order Approximation

4.1 The Ansatz

In order to improve the approximation of u® and p°, we propose the ansatz
uE ~ ul + \/EulBL(X: y, t) + 6u2BL(X7 Yy, t) )
ps ~ pl + \/EPEL(Xa Yy, t) + EP%L(X, Yy, t) ’ (41)

where the first order boundary layer terms have already been computed. Let
us evaluate the error made when we substitute (u! + \/zuk;, p' + /epk;) in
(2.2). This error is, at the leading order, given by

. 1
LE(u' +eug,, pt +Vepy,) —f = ﬁul-vyulBL + Veukg, - Vu!

Now, to simplify the calculations, we give a more explicit expression for each
term above:

a).- Using a Taylor series, the definition of ul, and the first order wall law
we have

L 1 L Ouy Ouj 1
% u - Vyug, =~ % (u (21,0,t) — 52/28—11(-’131, 0,t)e1) - \/ga—n(l“l, 0,)Vyx

I
™

—Ooul oul 1

<X1a_nl($1’ 0,t) — yQa—nl(xl, 0,t)e1> . —nl (1, O,t)VyX1
aul 2 I

= (52) (000 (- ) Vi (42)

b).- Now, using a Taylor series for Vu', the definition of up;, (3.1), and
x! = xle; we get

Ve (upy - V)u' = e (up, - V)u'(z,,0,1)
Oul

= &5t (@1,0,0) ((X1 ~X0) - v) u'(z1,0,1)

RR n° 4306
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1
oe) -4
Oul on
~ 88—n(l'1,0t) ) (.’131,0t) (X _X)
Ouy
B O(Ve)
oul oul Oulk 1"
= S0 | -2y 3 2og x|
oul\?
N - (%) (21,0,1) xpes (4:3)

c).- Similar to a) and b)

— Ou — Ou
(s Vb = =¥y (0 =05 01,0,0)) - (0 = XD G 0.1

— (out\?
= eV -0 (G2) (@0, (4.4
On
d).- Finally, since we have only one time scale
Oupy, _ — 82u1
= — 4.5

Therefore, the leading order term of £¢(u' + v/euk,, p* + /epg) — £ is
L(u' + Veup,p' +Vepp) —f &

© (%ﬁ) (21,0,8) (X' (v) = goe1) - Vyx' (¥) = xa(v)er) +

(.’El, 0, t), (46)

(0 -%) G

which is of O(1) order of magnitude.
On the other hand, the error on the divergence is

0*uq —
V.(ul—i_\/gu}BL)% UI (xlaOt)(X _X)'el,
© Onox 1
2,1
but, since € 9nd L (1,0, t)‘ = O (y/€), this error does not need to be corrected
1

at leading order.

INRIA
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The error on the boundary condition is:
2 92,1
1 1 T3 0%uy

u £u ~—=
(u' + veuy,) 22 On?
As in § 3, we notice that the errors are given by products of fast oscillating
periodic terms by slowly varying functions, involving three dominating terms,

(z1,0,t)e; on I'* x (0,7].

2,1 2,1 1\ 2
namely %(ml, 0,1), %(xl, 0,t), and (%) (x1,0,t). Therefore, to both

have correctors of O(1) magnitude and correct this error, it is natural to look
for correctors of the form:

uy(x,y,t) = ¢ (XQ(Y)_X_> On2

2
52 1
p%L(Xa}’at) = 57r2(Y) <—) (xlﬁoat) +87T3 (Y)aTqu(xl,O;t)

+ et (y) —=
2

where again x*, x?, x* (resp. 7% @°, n*) are functions taking values in R?,
(resp. R) and periodic in the y; direction, x2, x*, x* € R? and we assume that
X2 —x2 x* = x% x* — x4, 72, @ and 7* decay to zero exponentially fast as ys
goes to infinity. To correct the error, from (4.6), the triplet (x?, x?,72) must
satisfy:
—pAy x>+ Vyr® = —((x' —ye€e1) - Vyx' —xge1) inY,
Vy-x) = 0 inY, (4.8)
x> = 0 on 0Yj,
X2 - X2 € Sper(Y)2 ) 7T2 S Sper(Y) )
whereas the triplet (x*, X3, 7%) satisfies
—pAyx® + Vym® = 0 inY,
Vyx® = 0 inY,
2 (4.9)

¥ = —Zei  ond,

X=X €S (Y)? , 7€ Su(Y),

RR n° 4306
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18 G. Barrenechea, P. Le Tallec and F. Valentin

and the triplet (x*, x*, 7*) satisfies

—pAgx* + Vyrt = — (xl - ?) inY,
Vyxt =0 Y, (4.10)
xt =0 on 0Y3,

X=Xt €S (Y)? , T €Sk (Y).

Remark 4.1 These local (cell) problems were derived by doing the same con-
siderations made in § 8 regarding the boundary conditions on JYs3. On the
other hand, the new corrector (x*,7*), and the homogenization constant x4,
are assoctated with the time derivative term and therefore they were not present
in the steady second order approzimation [3]. O

Theorem 4.1 There exist unique pairs (x*,7%), (x*,7) and (x*,7*) and
unique constant vectors x2, x* and x* such that x* — x* € H'(Y)* N Sper (Y)?,
7 € Sper(Y), @ = 2, 3,4, weak solutions of (4.8), (4.9) and (4.10), respectively.

Proof: The proof of the result for Problem (4.9) is completely analogous to
the proof of Theorem 3.1 (see [3] for the details). The existence result for
Problems (4.8) and (4.10) is detailed in Appendix A. O

Remark 4.2 For the new cell problems introduced to treat the second order,
we also note that by integrating by parts the divergence free conditions on x2,
x? and x*, we obtain that

X3=0,x3=0, x=0.

In fact, for instance for x* we have

0:/ Vy-x2dx:/ X2-nd8+/ x> -nds
Yn{y2<C} Y3 y2=C

:/ [y2]-nd$+/ X% -nds

Y3 0 y2=C

:/Vy-{yg}dx-l-/ X2-nd3=/ X% -nds,
Y y2=C y2=C

for each C' > 0. Hence, letting C tend to infinity and remarking that_XQ-n = X3
on the boundary {y, = C}, we obtain the desired result, i.e., x> = x3e;. O

INRIA



New wall laws 19

At this stage we observe once again that, with the definition (4.7) of the
correctors, the error on the boundary condition is not corrected, but it is not
dependent on the fast variable neither. Hence, as we did in previous section,
we redefine our ansatz as

£

~ 112 + \/EU};L(X,y,t) + gu%L(X,Y:t)a
P~ PP+ Vepp (XY, t) + eph(x,y, 1),

where we look for second order macroscopic approximations of (u®, p®) which
are solutions of the following boundary value problem: find (u?, p®) such that

8i+u Vu? — peAu® +Vp? = £ inQ° x (0,7],

ot
V-ur = 0 inQ°x(0,7],
u’ =0 on 0Q°\I'* x (0,77,

Ou} Ou} 0?u}
up = exig+e’ (X (anl) X
— %y
-I-Xl(9 at) onI'* x (0,77,
uy = 0  onI®°x (0,77, (4.11)
w o= w inQ°att=0.

4.2 The Related Effective Boundary Condition

As in Section 3.2, it is more convenient to compute (u?, p?) by changing

the boundary conditions on I'° slightly. Indeed, if x1 # 0 one may use the
second order effective boundary conditions

62 o —822 —822
pegk — Lot + £ (x1 <ﬂ> +36 o+ ul) = 0,

on on? L onot
uy = 0,4.12)
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As for the first order approximation, the boundary value problem in Q°
may be ill-posed. However, it is possible to construct a (possibly) well-posed
problem in Q°. From a Taylor expansion, we obtain that

2
ui(z1,0,t) = ui(xy,de,t) + O %1; (z1,0¢,t) + O(6%),

82 ou?

€ 50 1(:61,0 t) = e— n L(x1,0e,t) + O(de),
ou? _(ouf
(8n) (21,0,1) = (8—11) (21,8¢,1) + O(8e),
8211,1 82 2
o 8t( z1,0,t) = o 8t(x1,(5€ t) + O(d¢).

Hence, the second order effective boundary conditions read

Oui  p 5, p 62 0*uf
,usa—n—x_%_(sul-l-sﬁ 5X1—5+X 2

— (0ui\2  — 0%l
+x%(ﬂ) + xi 1) = 0, (4.13)

on

u; = 0,

on I x (0, 7).

Now, these boundary conditions are rather complicated to implement due
to the presence of second derivatives and squares of derivatives. That is why
we transform them into boundary conditions which involve only first deriva-
tives, and which also include pressure gradients and convective effects near the

boundary (which have been shown to be important (cf. [17])). First, by using
2

0
the first order approximation of % given by (3.12) we get

R ouy Zz X (u2)* (4.14)
(x}—¢) " \on P '

and
2 M ?32713 ~ e H FaU%
YL —6)"! Onot YL =62t ot
(x1—9) (xi —9)

(4.15)
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Further, the Navier-Stokes equations restricted to the boundary I’ indicate
that at leading order we have
2,2 2 2
1

Op Ouj
Hegs (z1,0e,t) ~ 8—:Ul(x1’5€’t) + E(xl,ée,t). (4.16)

Therefore, from above considerations we obtain the following set of bound-
ary conditions on I'’:

ou2
L S
1—90 X1 —90

an X
52 NG Ou V2
: (m -5 A= 5)) S = (u%)2) = 0,(417)

(x1 —

on I x (0, 7).

Remark 4.3 The wall law (4.17) is different to (4.13), but the approzimation
error associated with each boundary law is smaller than the actual leading
error. Also, in the two sets of boundary conditions above, we have neglected
the corrections from the Taylor expansion of u2, since this term is of a smaller
order. [J
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4.3 Summary: the Proposed Effective Problems

The first order initial boundary value problem in ©° x (0, T] is the following:

ou' 1 1 1 1
W—i—u.Vu —peAu +Vp = f
V-u! 0
u! 0

8 1

,usﬂ __H uj = 0
uy = 0
u = w

where ! is calculated from (3.7).

in Q° x (0,77,
in Q% x (0,77,
on 9Q°\TI x (0,77,

onT? x (0,77, (4.18)

on I x (0,77,
inQ%att=0,

The second order initial boundary value problem in Q° x (0,77 is:

2
88% +u?.Vu? — ,usAu2 + Vp? f in QY x (0,77,
V-u? 0 inQ%x(0,7],
u’? 0 ondP\I" x (0,7T],
a 2 a 2 a 2
pest 4+ Ol + G550 + G5+ Gi(d)” = 0 on T x (0,71, (4.19)
1
u3 0 onT? x (0,77],
u’ w att =0,
where
Cl = _—'u )
Xi—9
;= =5 (5x_}— —+x_?>
X1 — 90 ’
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. € R A— A
U5 = = <5x%——+xi’+u X ) (4.20)
Xi—0

Gy = p=0—
(xi —90)?

and where X2, x3 and x? are calculated from (4.8), (4.9) and (4.10) respectively.

For § large enough, (4.18) and (4.19) may have a solution. We shall not dis-
cuss that subject in this paper, but we shall solve (4.18) and (4.19) numerically
in § 6, and compare its solution with the original flow.
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5 Numerical and Implementational Aspects

The numerical validation of the procedure proposed herein is performed using
a 2D unsteady incompressible Navier-Stokes code implementing the Operator
Sppliting scheme originally proposed in [11], in a linear version proposed in [19],
refereed also as the fractional step #-scheme. In order to describe the method,
let At be a given time step, let us denote " = nAt and f” := f(x,¢"). The
precise formulation of the method is as follows: Let 6 € (0,3),«,8 € (0,1),
such that oo + 8 = 1, hence, if ug is given and divergence free in Q°, compute
u',u?, ... via
n+6 n
% — av Aun-l-e 4 Vpn-i-e —

af™ + Bf" + frAu® — u"-Vu*  in Q°,
V-ut? = 0 in Q°, (5.1)
u"™? = 0 on 0°\T?,

u"t1-f — ynto
T L
BETIT0 L oaf"t 4 av Au™? — vp"t? in O, (5.2)

"’ = 0 on 9°\I?,

un—|—1 o un—|—179

_ aVAu"+1 + Vpn—l—l —

AL
af ™ 4+ gt L gy AT ? - wt o vurTt? in Q°
V . un+1 = 0 in Qd , (53)
"t = 0 on 0Q°\TI?,
where
9 = 1 - i )
2
1-26 0
R R
20 — 1 1-40
u = 7 u” 0 u"t?
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Now, we describe the implementation of our wall laws in the framework of
this method. First order wall law reads
(9u1
on ’

u = Ci——

Ug = 0,

on I x (0,T], where C; is a negative constant. Inspiring us in [11], this law
is implemented in the following way:

aun—|—0 o n+9 _ aul B n (5 4)
Oon 01 - on C '
and ui*? = 0 on I, for the first Stokes-like problem (5.1),
aun-l-l 0 ﬁ g aun—FG a o
"o T oM™ “Tn oM (5:5)

and uj ™™ % = 0 on I, for the advection-diffusion-reaction problem (5.2), and

8u"+1 «o 8u"+1 0
—uptt = L — + — LA uptt=t (5.6)

on Cl on Cy

and uj "' =0 on I'?, for the second Stokes-like problem (5.3). This implemen-
tation has been proved to be second order accurate in time (see [6]).

In an analogous way, second order wall law imposes also uy = 0 on '’ x
(0,T], which allows us to forget this variable and concentrate us only on u;.
Denoting u; simply by u, second order wall law reads

ou ou op
1ot T on T 2o
on I'? x (0,T], where C, Cy, Cs, Cy are real constants.

We remark now that since second order wall law is a nonlinear bound-
ary condition which also contains pressure gradients, we have to propose a
linearization and an operator sppliting inside this boundary conditions. Com-
bining [11] and [19] we propose the following implementation of this law

+ Cgu — C4U, = 0, (57)

un—|—0 — " 8un+0 apn—|—9
C C
oAt "% am T 9275

— aCyu™t? =

RR n° 4306
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ou™

—IB n - 03 (’U,H)Q + ﬁ04 ’U,n, (58)

on I, for the first Stokes-like subproblem

un-}—lfG _ un—|—9 aun—klf@
cy—— C *  ,n+l—0 C n+1—8 —
aoaar P e TG Plau
0 n+49 o n+6
-« gn — O, %s + aCyu™t?, (5.9)

where u* denotes the first component of u*, on I'?, for the advection-diffusion-
reaction subproblem, and

n+l _ , n+1-0 0 n+1 o n+1
01 —U HAUI; + « ,gn + 02 pas — 0104 Un+1 =
Qunt1-* 1-0 1-9
_ﬁ on - 03 u* - Un+ U+ ﬁ04 U,n+ -, (510)

for the second Stokes-like subproblem. This implementation has also being
proved to be second order accurate in time (see [6]).

Finally, we remark that the spatial discretization is performed within stable
P,/ P, elements (see |14, 8|) for the Stokes-like subproblems, and a stabilized
finite element method presented in [13| for the advection-diffusion-reaction
subproblem.
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6 Numerical Experiments

In this section we report three different sets of numerical experiments to vali-
date our wall laws. The direct computation of (2.2) is done with high accuracy,
with a large number of elements close to the rough wall. We investigate the
first order (4.18) and second order (4.19) wall laws which allows to use a coarser
mesh.

6.1 Rough channel with a steady state limit

The domain is the channel [0, 1] x [0, 0.5] with the bottom boundary divided in
two parts. First, a flat plate [0, 0.18], followed by a rough boundary [0.18, 0.98]
constituted of 20 periodic sinusoidal roughness elements of period 0.04 and am-
plitude 0.01. A no-slip condition is imposed in the bottom and top boundaries,
while a parabolic profile is imposed on inflow boundary and a free exit is im-
posed on exit. For this case, we choose the magnitude of the viscosity to be
1072, with # = 1 and € = 0.01. The direct computation is performed with
11500 elements, and with a time step At = 0.002.

Before employing the wall laws, we must solve the cell Stokes problems
(3.7), (4.8), (4.9) and (4.10). Because the solution decays fast to a constant
as Yo grows, the cell is truncated in the y,—direction where a homogeneous
Neumann condition is imposed for the first component and a homogeneous
Dirichlet condition for the second one. This decay of the solutions allows
to use coarser finite element meshes. We only explicit the new cell problem
(4.10), the others have been already reported in [3, 21]. The horizontal size
is 4 and it is truncated at yo = 10. The calculation has been made using
2500 isoparametric stabilized (1/@Q; elements. Figure 3 depicts the contour
lines of the third corrector x*, where we can observe the fast convergence to a
constant.

The values of the computed constants for the roughness element are

XE=0.74723, 2 =-75x10"% 3 =-0313, x*=0.0219.
For the first and second order effective boundary value problems, the wall

laws are imposed on the line 9 = de = 0.01. The number of elements used is
2500.
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AT Y1=2
TIME CORRECTOR

0.038 7

0026

0.015

0.004

-0.006 T T T 1

Figure 3: Isovalues and vertical cross section of the tangential velocity

In figures 4 and 5 we show an horizontal cross section of the tangential
velocity at ¢ = 0.01 and ¢ = 0.1, respectively. We can observe the improvement
obtained by the use of high order approximations, even if, as this stage, the
improvement given by the second order is not very clear, due to the fact that,
since roughness are small, first order wall law gives an accurate description of
the mean flow. Also, in Figure 6 an horizontal cross section of the pressure field
is presented. Finally, in Figure 7, an horizontal cross section of the tangential
velocity is presented a t = 0.6, where we can see that, for this example, the
improvement provided by the second order is restricted to an interval of time
in the beginning of the calculation. This will not be the case for the subsequent
examples.

6.1.1 Unsteady rough channel

For this case, the viscosity, geometry, meshes and time step are the same
than for the previous one, but now, instead of imposing a fixed parabolic profile
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At t=0.01 and x2=0.01

DIRECT COMPUTATION

... ORDER ZERO

1
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Figure 4: Cross section of the tangential velocity

At t=0.1 and x2=0.025
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Figure 5: Cross section of the tangential velocity
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At t=0.1 and x2=0.025

0.662 —

0.465 —

0.268 —

0.071

-0.125
O

d.25

a.5 0.75 1

Figure 6: Cross section of the pressure field

At t=0.6 and x2=0.025

— DIRECT
ORDER
FIRST ORDER

0.198

0.175+

0.152+

COMPUTATION
ZERO

0.130
O

Figure 7: Cross section of the horizontal velocity
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at entry, we impose the following oscillating function at entry:

ul((),xg,t) = 16 X z9 X (05 — .TQ) X (1 + 0.5 X SIH(Q’/Tt/Ol)), (61)
UQ(O,.IQ,t) = 0.

In Figure 8 we present the isovalues of u; at ¢ = 0.06, where we can appreciate
the improvement provided by the use of wall laws. To precise this fact, we
perform horizontal cross sections of the horizontal velocity at different times.
In Figures 9-12, cross sections are presented at ¢ = 0.02,0.06, 0.08, 0.1, and at
the horizontal line zo = 0.015. We may observe that the second order wall
law captures the unsteadiness of the flow, while the first order wall law fails to
follow the changes. In particular, in Figure 10 we see that above the roughness
elements there is a recirculation zone that only the second order wall law
captures completely. Finally, in Figures 13-14, we present the nodal values of
the horizontal velocity at the point of coordinates (z1,z2) = (0.98,0.015), point
lying inside the boundary layer, in the time intervals [0, 0.6] and [0.11,0.13],
respectively. We can observe that higher order wall laws improve drastically
the approximation, and that second order wall law is more efficient. The time
derivative term is the responsible for this behavior. Indeed, if we retire this
term from the formulation and use the same steady wall law from [3], the
approximation degradates since in that case the approximation is no longer
second order accurate.

6.1.2 Unsteady channel with two types of roughness

For this case we consider the channel [0,0.9] x [0,0.5] in which the bottom
boundary is constituted of a flat plate on the interval [0,0.1], followed by
a rough boundary in which the interval [0.1,0.7] is made up of 12 periodic
roughness of semi-circunferencial form with radius equal to 0.015, separated
by straight lines in such a way that the whole roughness element is of an
amplitude of 0.05, and the interval [0.7,0.9] has 4 non symmetric roughness
of height 0.015 and amplitude 0.05 (see Figure 15 below). In the top and
bottom boundaries a no-slip condition is considered, we take the periodic in
time parabolic profile from (6.1) at inflow, and impose a free exit on outflow.
The viscosity is taken as v = 0.003, with 4 = 0.2 and ¢ = 0.015. Both
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DIRECT COMPUTATION ORDER ZERO

FIRST ORDER SECOND ORDER

At t=0.02

0.715+-
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Figure 9: Cross section of the horizontal velocity
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Figure 10: Cross section of the horizontal velocity
At t=0.08

D T
. ORDER ZER
0.07° A4 IRST ORDER 3

COMPUTATION 1
Z o 2
......... 3

0.019+

-0.00¢<

-0.0 T T

Figure 11: Cross section of the horizontal velocity
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0.281

0.213

O.07F
O
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Figure 12: Cross section of the horizontal velocity
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Figure 13: Horizontal velocity
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Figure 14: Horizontal velocity

first and second order wall laws are imposed at the line zo = de = 0.015.
The direct computation has been made using 16500 P,/ P; elements, specially
concentrated in the region close to the rough boundary, while the computations
using wall laws have been performed using 3000 elements.

The cell problems have been solved using 2900 stabilized Q/Q1 elements.
In Figures 16-19 we report the isovalues and a vertical cross section of the
tangential velocity for the first order cell problem (3.7) and for the new correc-
tor problem (4.10), for both geometries, and we observe the fast convergence
to a constant in the cell solutions. The obtained values for the two kind of
roughness are

XE=0.84535, x2=-1.31x10"2%, 3 =-0.3673, x*!=0.052
for the semi-circunferencial roughness, and

[ =0.43968, x2=25x10"% x3=-01171, x%=10.053,

for the non symmetric one.
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QS

L 7 -

/ v \ 0.025
~ 1 |oo1
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Figure 15: Geometry of the problem

AtY1=1.6
FIRST CORECTOR : FIRST CELL
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Figure 16: Isovalues and vertical cross section of the tangential velocity
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AtY1=1.6
FIRST CORRECTOR : SECOND CELL
0.463 1
0.425 4
0.387
0.349 4
0

% 0.311 : T T \
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Figure 17: Isovalues and vertical cross section of the tangential velocity

AtY1=1.6
TIME CORRECTOR : FIRST CELL

0.095 4

0.067 1

0.038 1

0.010 4
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Figure 18: Isovalues and vertical cross section of the tangential velocity
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AtY1=1.6
TIME CORRECTOR : SECOND CELL
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0.333 275 5.166 7.583 10

Figure 19: Isovalues and vertical cross section of the tangential velocity
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Figure 20: Isovalues of the tangential velocity at t=0.09
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At t=0.024

___ DIRECT COMPUTATION (1
1.10 —---- ORDER ZERO 2
S I IRST ORD 3

0.847A
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0.339

0.085 T T T
O 0.225 0.45 0.675 0.9

Figure 21: Cross Section of the horizontal velocity at x2=0.02

We first present the isovalues of the tangential velocity in Figure 20, where
we see the improvement provided by the use of higher order wall laws. In
Figures 21-24 we plot horizontal cross sections of the horizontal velocity at
different heights and at ¢ = 0.024, 0.04, 0.07,0.08. We observe the improvement
provided by the second order wall law, which is specially notorious in the
transition zones between different kind of roughness, which leads to a notorious
difference between both approximations in the zone above the second type of
roughness. There is also a difference from the point of view of the following of
the changes in the flow, as was pointed out in last section. We stress the fact
that second order wall law provides a very good approximation of the mean
flow. Finally, in Figures 25-26 we present the evolution of tangential velocity
at the point (z1,z3) = (0.9,0.02) and make a zoom in order to show only the
first period of in time. Exactly the same remarks made at the end of last
section may be done for this case.
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Figure 22: Cross Section of the horizontal velocity at x2=0.02

At t=0.07
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Figure 23: Cross Section of the horizontal velocity at x2=0.03
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Figure 24: Cross Section of the horizontal velocity at x2=0.015
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Figure 25: Horizontal velocity
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"DIRECT C [—
09 ; »
'SE — |

Figure 26: Horizontal velocity

7 Conclusion

In contrast to the first order unsteady wall law which is the same as adopted for
steady flow, second order wall law takes explicitly into account the unsteady
nature of the flow through a new term in the law and a new corrector problem,
which play an important role in the numerical results as it has been shown in
last section, specially for the case in which the flow was unsteady. We stress
the fact that the derivation of the wall laws lies in the laminar flow setting.
One posibility to construct wall laws when the flow is almost turbulent is to
consider a higher order asymptotic expansion. In this case, the next laws may
present non-zero second component of velocity which improves the numerical
results, as in has been shown in [21] for the steady case. Another possibility to
treat higher Reynolds number flow is to change the viscosity scale assumption
(v = pe) and to perform a different asymptotic expansion. These matters, as
well as theoretical issues as existence of solutions and energy conservation will
be the subject of future research.
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A Appendix : Existence and Uniqueness results
for the Cell Problems

We now give an existence result which applies to both cell problems (4.10) and
(4.8).

Theorem A.1 Let g := (¢',6%) € Sper (V)2 N H'(Y)? be a function such
that, for yo > H (with H > 0 sufficiently large), g admits the following Fourier
erpansion

+0oo
d'y)= Y phlyp— H)e WMk =1 9,

k=—o0

where, for each k € Z, pj(t) = Y_7_,aftt and pi(t) = Y_7_, Bt are polynomes
of degree p, and p} = p2 = 0. Then, there exists a unique pair of functions
(x,m) and a unique vector X € R? such that x — X € Hpo (Y)? N Sper(Y)?,
7€ L2, (Y)NSper(Y), weak solution of

per

—pAyx +Vyr = g inY,
Vy-x = 0 inY,
x = 0 on 0Y3, (A.1)
X=X € Sr(Y)?, 1€ S (Y).

Proof: The proof consists in studying an equivalent boundary value problem
obtained by truncating the cell Y in the y, direction. For the sake of simplicity
we suppose that g = 1, and we denote ¥ by < x >. Let Yy :=Y N{y < H}
and Xy := 0Y N {ys = H}. Assume that problem (A.1) has one solution;
then, for y, > H, these functions can be expressed by means of the following
Fourier expansion in the y; variable:

+oo +oo
xi1(y) = Z Xl,k(yz)elkyl ;o oxe(y) = Z Xz,k(y2)€my1, (A.2)
k=—00 k=—00
—+00 )
nly) = > m(y)e™.
k=—00
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Hence, from the Stokes equations we see that the Fourier coefficients must
satisfy the following system outside Yy

_Xlll,lc + k2X1,k + kT, = p,lc (yo — H) e |kl(y2—H) :
_XI2,,1€ + kQXZ,k + 7TIIc = P%(ZJQ — H) €—|k|(y2—H) , (A3)
ile,k + Xlg’k =0 y

together with the boundary conditions
e x;r(H) given, for i = 1,2 (H' continuity of the velocity on Xg),
o limy, oo Xik(y2) = 0, i =1,2, for k # 0,
o limy, .o Xio(y2) = constant, i =1, 2,
o limy, ,o mx(y2) = 0 for k € Z,

the limit being reached exponentially fast.

The solution of this system may be calculated for k£ # 0 (see Appendix B
for the details in the case of Problem (4.10)). Indeed, we can check that the
solution of (A.3) is given by

o xik(v2) = [xus(H) + {k(=sgn(k)xip(H) = ixau(H))
Z (sgn(k))H1! (—sgn(k)(l — Daf + (1 + 1)z'ﬁf) } (4o — H)

I+1
— (2k)H 2

T {1(—a§—sgnwﬁﬁm+-

8
(sgn(k))" 11! (—sgn(k)(l — 3)of + (I — 1)iBf 2
4(2k)! ( 2 ) } (v2 — H)

M=

=1

+

—N
—

S~k — sgn(k)iBh) +

= (sgn(k))' 1! (—sgn(k)(l — 4)of + (I — 2)iBf 3
12(2k)—1 ( 2 ) } (v2 = H)

=

[\
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+

_|_

(y2 - H)j

pllsn l+1-7l' —sgn(k)(l— (G +1)af+ (1 — (5 —1))iBF
ZZ 0 < gn(k)(L— (G + 1)of + (1= (4 W)

25!(2k)HH2-1 2

=2 j=4

p
_H l+2] —|k|(y>—H)
Z:4 l+1 (I +2) (v )7 )e ’

=2

X2,k(y2) = e IFl(w—H) [XQ,k(H) + k(—=ix16(H) + sgn(k)x2k(H)) (y2 — H)

(sgn(k)'1! [ sgn(k)(l — 1)iaf + (1 +1)8F )
e ( 2 )

(sgn(k)) 11 (sgn(k)(l — 2)iak + 18P 3
12(2k)-1 ( 2 ) (v2 - H)

@IIM@IM@
— [e=)

142 (sgn(k))' =910 (sgn(k)(l — ( — 1))ick + (I — (j — 3))BF }
1=2 j=4 251(2k)H> ( 2 ) (yo — H) ] ’

mi(ye) = |2k(=ixix(H) + sgn(k)xo(H)

P (sgn(k) 1! — (1 + 1)ick — sgn(k)(I + 3)8F
Z (2k)l+1 2
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In other words, the coefficients x;x,? = 1,2 and 7 are polynomials of degree

p+2and p+1in (y, — H), respectively, within the multiplicative coefficient
—|k|(y2—H)
e i

For k =0, x1,0 and X2, do not depend on ¥, and hence the constant < x >
is given by < x >= (x1,0, X2,0)- To see this, we write the system for £ = 0,
yielding

X2o0 = py =0 (by assumption),
m = py =0 (by assumption),
XIZ,O = Oa

and from the boundary conditions at infinity we get 79 = 0, x1,0 =< x1 > and

X2,0 =< X2 >.
Now, to build an equivalent boundary condition on ¥y we calculate:

_aax_yl;k = —k(—2sgn(k)x1x(H) — ixox(H))
— (sgn(k)' 1! (—sgn(k)(l — Dof + (I + 1)iff
- lz:(; (2k)1H+1 ( 2 ) ’
_%X_;; +71 = k(=ixi.(H) + 2sgn(k)xox(H))

+

i (sgn(k)) 1! (—( + 1)iaf — sgn(k)(l + 3)BF
(Qk)l—H 2 ’

1=0

Hence, after solving the equation outside Yy and substitution, we obtain the

following equivalent boundary condition

0
=X mes =Tx + Hg on Xy, (A.4)
o

where 7y and Hg are given by

Foo  k(2sgn(k)xuk(H) + ixax(H)) e

Tx = , : (A.5)
02 o k(—ixik(H) + 2sgn (k)Xo (H)) e

k=—00
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and
I3)A EY(=1a* — (1+1)igF
Zk;ﬁo S (3?;5)&)1 sgn(k)( )Zl (I +1)ip iy
Hg =
kll!—l 1"“— lek
S0 S0 (sgzk()ll)l (14 1)ic ;gn( )(I + 3)B] i

(A.6)

The proof is then reduced to show that there exists a unique solution to the
problem: Find (x,7) € (H!  (Yy))?> x L?_(Yy) such that

per per

—Ayx + Vym = g in Yy,
Vyx = 0 in Yy, (A.7)
x = 0 on 0Yj,
_— — H E ,
3?/2 + 7 TX + g on H
and then to extend it to the whole cell Y via (A.2). Let H be the space defined
by
H .= {X € (H;er(YH))2/Vy' X = 0in YH} ,

and
Hy:={x € H/x=0o0n0Y3}.

The variational formulation of (A.7) reads: Find x € Hy such that

Vx:Vn+ <Tx,n>= —/ gn— <Hgn> VneH, (A8

Yo Yy

First, we note that the right hand side of this formulation is well defined since
in Hg there is a division by at least one power of k, and since g was originally
H~! in y,, after division by k, Hg is L? in 3. Now, to prove our result
we have to show that the sesquilinear form in the left hand side of (A.8) is
coercive in Hy, and then apply Lax-Milgram Lemma. The positivity comes
from Poincare’s inequality, and the fact that 7 is positive semi-definite. In
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fact, we have from the orthogonality of {e*¥1}}/>° in L?*(Xp), that

<Tx,x>=

<< S oo k(2sgn(k)xau(H) + ixo(H)) € )

i k(_iXLk (H) + 239n(k)X2,k(H)) ey

k=—o0

( Yo o X1 (H) e >>
D o X (H) €71
+o0

= Z 2 (< k(2sgn(k)x16(H) +ixex(H)), xa6(H) >

k=—00

+ < k(—ixis(H) + 25gn(k)xon(H)), Xop (H) >)

= > 4x 2Rl (e (B + o (H) ) + 2ki-i Im(x1 4 (H)- Xou (D) ]

k=—00

> Am? R2IkI(xak(E) P + [xen(H) ) — [k (H)P + Dew(H)P)]

k=—o0

v

> Y An” k(s (H)P + [ex(H)) > 0. (A.9)

k=—00

We then apply Lax-Milgram Lemma to conclude that the problem has a unique
solution, which can be extended to the whole cell Y via (A.2). We have hence,
since both problems (A.1) and (A.8) are equivalent, that (A.1) has a unique
solution. To see that this solution is real, we remark that the real part of it
satisfies (A.1) itself (because the right hand size of (A.1) is real), and then, by
uniqueness we conclude that we have a real solution. [
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B Appendix : The solution of the ODE system

For the case of problem (4.10), we simply denote x! by &. First, we see that
the right hand side —(§— < £ >) admits the following Fourier expansion:

+00
—(G—<&>) = Z &1k (yo) €91

k=—00

+oo
(L=< &>) = > —buly) e, (B.1)

k=—00

where, since & is the solution of (3.7), following [3], the Fourier coefficients
€1k, &2, aTe given by

e = (EnalH) + k(=son (s (H) — i€au(H))(1n  H)) e 20210,
bor = (Eop(H)+ k(=i&x(H) + sgn(k)éop(H))(yo — H)) e~ *llw2=H)

which, from now on, we will denote by

& = (Gp(H)+Fi(§)(y— H)) e~ kllw2—H)
Gop = (Gox(H)+ Fa(§)(ye — H)) e M2t

for k # 0, and & = €2 = 0. With this right hand side, system (A.3) reads

—Xlll’k + kle,k +tkm, = — §,i ,
—Xog + KXk + M = — &, (B.2)
ikxik +Xop = 0.

Now, to solve system (B.2), we first multiply the first equation by ik, derivate
the second, make the addition and use the third equation to obtain the follow-
ing equation for the pressure coefficient 7:

Ty — k*m, = 0.
This differential equation admits solutions of the form

e = A\ e B ) 4 ek(yz—H)’

RR n° 4306



50 G. Barrenechea, P. Le Tallec and F. Valentin

where A, and Ay are constants to be determined. Now, we have to split the
two cases k > 0 ad £ < 0. We will only detail the case £ > 0, the other one
being completely analogous. By the decay condition when y, — oo, we obtain
that Agy = 0, and then the pressure is given by

T = )‘l,k 67k(y2*H)‘
With this expression for the pressure we rewrite system (B.2) as
_XI1I,1c + k2x1,k = (—ikMg — & p(H) — Fi1(&)(y2 — H)) e k(y2—H) ’
_XIQI,]c + kZXQJc = (k)‘Q,k — 62,k(H) — F2(§) (y2 _ H)) e*k(ysz) ]

This uncoupled system is solved by using the technique of variation of param-
eters. First, the equation for x; , admits solutions of the form

Xik = myz) e " 4w (yp) b2,
where n; and w; are functions satisfying
ki e R@2mH) gt k@2 =H) = (N — & (H) —
Fi(€)(y2 — H)) e o1

This system has the solutions

M) = g(=ikAg — & alH) ~ B0~ H)),
wy(ya) = —i(—z’k)\l,k — & p(H) = Fi(6)(y2 — H)) ¢~ 2k(wa—H)
and then
m(y2) = %(—ik)q,k —&p(H) — F12(§) (yy — H))(yo — H) + 12,
i) = prm(=ikAs — a(H) = FL()(ys — H)) e 0
_ % ¢=2kn—H) | 4,0
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where 7% and w? are constants to be determined. Hence,

L F e
XLk = ﬁ(_m)‘lyk — &ui(H) - 12(5) (yo — H))(yo — H) e F>~ 1D
1 ) o
+ e g s (kA — Ek(H) — Fi(€) (v — H)) e
_ Fl(g) e k(y2—H) + w? eky2—H)

8k3

Now, from the decay condition when y, — oo we have w) = 0. Moreover, if
X1,%(H) is known, then

1 , Fi(¢)
Xus(H) = 1 + (kA — us(H) — 08
which gives
1, . Fi(e
0 = xoalH) — g (=ikAue — Eu()) + 018,
We then obtain
1 . F
S R N S (U
Fl(g) —k(y2—H
- (yo— H)| e (ya—H)

Now, for x,, we obtain in an absolutely analogous way

X2k = [XQ,k(H) + %{k/\l,k - f2,k(H) - F22(§) (y2 - H)}(y2 - H)
FQ(g) —k(yo—H
) ()| v

Finally, using the equation for the divergence (the third equation in (B.2)) we
get that A\, is given by

—i&1,(H) 4+ 3&1(H)
2k ’

A = 2k(=ix1,(H) + xo(H)) +
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which gives us the following solution for (B.2):

X1k = [Xl,k(H) + {k(_XI,k(H) — ixor(H)) + —fl,k(H)2; i€ (H) } (yo — H)
Yok = [Xaw(H) + k(=ixae(H) +xeu(H)) (42 — H)
- Fz—gf)(yz - H)Z_ e~ Hu=t),
and .
T = [Qk(—iX1,k(H) + Xxok(H)) + —251,1@(H)22— 352’k(H)} e kw2—H)

Now, the case £ < 0 is treated in the same way, giving the solution:

X1,k = [Xl,k(H) + {k(Xl,k(H) —ixor(H)) + &ip(H) Q—kifz,k(H)}(yQ —H)

Fi(§) 2| kya—m
4k (yQ_H) ] € )

Yok = er(H) + k(=ixue(H) = xou(H))(v2 — H)
+ Fz—f)(yg — H)?| M,

_|_

and

T = [%(—z'xl,k(H)—xQ,k(H)H —uk(H) = 36k (H)] k-

2k
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Both cases lead to the general solution

X1k = [Xl,k(H)

# { b son(hyeaH) - e + Z LD =0 gy
—sgn(k) B g,  prp| o)
Yo = [xanlH) + K(ixia(H) + son(B)xeu(H) (e — H)
—sgn(k) 2y, - | oo,

and
me = | 2b(—ixau(H) + sgn(k)xe(H))

—i& .k (H) + 3sgn(k)&ok(H) o~ Fl(y2—H)
2%k '
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