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Abstract: Perfectly Matched Layers (PML) are a recent technique for simulating the absorption of
waves in open domains. They have been introduced for electromagnetic waves and extended, since
then, to other models of wave propagation, including waves in elastic anisotropic media. In this last
case, some numerical experiments have shown that the PMLs are not always stable. In this paper,
we investigate this question from a theoretical point of view. In the first part, we derive a necessary
condition for the stability of the PML model for a general hyperbolic system. This condition can
be interpreted in terms of geometrical properties of the slowness diagrams and used for explaining
instabilities observed with elastic waves but also with other propagation models (anisotropic Maxwell’s
equations, linearized Euler equations). In the second part, we specialize our analysis to orthotropic
elastic waves and obtain separately a necessary stability condition and a sufficient stability condition
that can be expressed in terms of inequalities on the elasticity coefficients of the model.
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Stabilité des PML, vitesses de groupe et ondes anisotropes

Résumé : Les couches parfaitement adaptées (PML) sont une technique récente pour simuler 1’ab-
sorption des ondes dans des domaines non bornés. Elles ont été introduites pour les ondes électroma-
gnétiques et depuis étendues & d’autres modéles de propagation d’ondes, notamment la propagation
d’ondes élastiques en milieu anisotrope. Dans ce dernier cas, des simulations numériques ont montré
que les PML ne sont pas toujours stables. Dans ce travail, nous nous intéressons a cette question d’un
point de vue théorique. Dans la premiére partie, nous établissons une condition nécessaire de stabilité
pour un systéme hyperbolique général. Cette condition peut étre interprétée en terme de propriétés
géométriques des surfaces de lenteur et utilisée pour expliquer des instabilités observées avec les ondes
élastiques mais aussi avec d’autres modeéles de propagation (équations de Maxwell anisotropes, équa-
tions d’Euler linéarisées). Dans la deuxiéme partie, nous concentrons notre analyse aux ondes élastiques
orthotropes et obtenons séparément une condition nécessaire de stabilité et une condition suffisante de
stabilité qui peuvent étre exprimées comme des inégalités sur les coeflicients élastiques du modéle.

Mots-clés : couches parfaitement adaptées, couches absorbantes, élastodynamique, stabilité, systémes
hyperboliques, analyse de Fourier, équations d’Euler linéarisées, anisotropie
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1 Introduction

Perfectly Matched Layers (PML) are a recent technique for simulating the absorption of waves in open
domains, which provides a very efficient alternative to the use of absorbing boundary conditions in
many applications. The idea is to surround the computational domain with an absorbing layer (the
PML region) and the coupled system possesses the property of generating no reflection at the interface
between the free medium and the artificial absorbing medium. This technique has been initially
introduced by Bérenger [4] for Maxwell’s equations, and has been widely used for the simulation of
time dependent electromagnetic waves as well as Helmholtz-like equations (e.g., [5, 6, 25, 22, 23]).
The method has been extended to various propagation models (the paraxial wave equations [9], the
linearized Euler equations [21, 15, 14],...), including in particular elastic wave propagation in isotropic
[13] and anisotropic media [11]. Trying to use this PMLs for computing the propagation of seismic
waves, one of the authors observed blow up phenomena in some numerical experiments involving
anisotropic media. Analogous instabilities have also been observed for the simulation of non destructive
testing experiments [12]. This has motivated us to look at the question of the well-posedness and the
stronger notion of stability of PMLs for anisotropic elastic waves from a theoretical point of view.
It is important here to make precise the distinction (see section 3) between these two notions that
are often identified in the literature. As a matter of fact, if the difference is fundamental from the
mathematical point of view, for practical applications, it is not, and the good concept is the one of
stability (in particular for absorbing waves). This type of mathematical questions has already been
widely investigated by several authors [24, 18, 17, 19, 3] in the case of Maxwell’s equations. For
elastodynamics equations, it is easy to show that the PML model is well-posed (cf section 3.2) but we
will show that it can be unstable. The outline of this paper is as follows.
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e In section 2, we recall the propagation equations for elastic waves in a 2D orthotropic medium
(section 2.1) and recall the important notions of slowness diagrams (section 2.2). In section
2.3, we present the construction of the standard PML model for a general first order hyperbolic
system and specialize it to elastic waves in section 2.4. Finally section 2.5 is devoted to various
simulations that point out the instability phenomena that motivate the present works.

e In section 3 we derive a necessary condition for the stability of the PML model for a general
hyperbolic system (theorem 1). This condition can be interpreted in terms of geometrical prop-
erties of the slowness diagrams and used for explaining instabilities observed with elastic waves
but also with other propagation models (anisotropic Maxwell’s equations, linearized Euler equa-
tions). Finally we present numerical simulations showing that this geometrical criterium is not
sufficient for stability in the case of elastic waves.

e In section 4, we specialize our analysis to orthotropic elastic waves and obtain separately a
necessary stability condition (theorem 3) and a sufficient stability condition that can be expressed
in terms of inequalities on the elasticity coefficients of the model (theorem 4).

2 Orthotropic elastic waves and PML model

2.1 The elastodynamics system

In this article we work in two dimensions. All the indices i, j, k, [ take their valuesin {1,2}. z = (z1,z2)
denotes the space variable and d; holds for the derivation with respect to ;. Throughout this section,
we shall use the Einstein convention on repeated indices for summation. Let us introduce the equations
of elastodynamics in a 2D homogeneous medium:

0%u .
(1) PoE div o(u) = 0,

where u = (u;) denotes the displacement field, p > 0 the density, o(u) = 0;;(u) the stress tensor and:

dive — ( 01011 + Oa012 )
1IVo = .
01012 + 02022

The stress tensor is related to the strain tensor e(u) defined by

(2) eij(u) = %(@'Uj + Ojui),

by Hooke’s law:

(3) Ao = e(u) <= o = Ce(u) = A7 e(u).

The fourth-order tensor C of elasticity coefficients satisfies the classical symmetries, [2]:
(4) Cijrt = Criij = Cjigi-

Moreover, it is positive definite:

(5) Cijriijér > @ |I€]° = a &;ij,

for all symmetric tensor £.

INRIA



otaovuity of the FML's for anisotropic waves 9]

Notation. Asitis classical, the symmetries (4) of the tensor C allows us to simplify its representation
into a 3 X 3 matrix ¢y, still denoted by C for simplicity, such that

Cijkt = Cp(ig)p(k,1)

where the function p is defined by:
p(la 1) =1, p(2a2) =2, p(172) = p(2a 1) =3.

Orthotropic media. In an orthotropic medium whose principal axes coincides with the (z,y) axes,
we have c13 = ¢93 = 0 so that [2]:

ci1 c2 0
C = C12 (€99 0
0 0 C33

With this notation, the condition (5) becomes (|.| denotes the Euclidean norm in IR3):
(6) iV + Vi +2c5ViVa +e3Vi > a |V, VYV eR?,

which is equivalent to the inequalities:

(7) c11 >0, co9 >0, c33 >0, cric99 — c%z > 0.

For an isotropic medium, which is of course a particular orthotropic material, the coefficients can be
expressed in terms of Lamé’s coefficients A > 0 and p > 0:

(8) c11 = c2 = A+ 2p, c12 = A, €33 = [

In order to apply the general construction of the PML model, we will need to reformulate the propa-
gation equations as a first-order system, the so-called velocity-stress formulation:

p ov _ dive =0,
ot
(9) .
AE — 5(1)) = 0,

where v = Jyu is the velocity field.

2.2 Harmonic plane waves and slowness diagrams
Plane waves are particular solutions of (1) on the form:
(10) w(z,t) =D k2 D eR? z= (1)

where k£ € IR? is the wave vector, w € IR the circular frequency and D the displacement vector (or
polarization vector). We also introduce

K= m, the unit propagation direction,
w .
(11) V= m, the phase velocity,
S= —, the slowness vector.
w

RR n° 4304



0 L. Décache, o. rauvqueuxr ana . JoLy

Plane waves of the form (10) are solutions of (1) if the circular frequency and the wave vector k
satisfy a relation, called dispersion relation. In order to write this relation, it is useful to introduce the
Chrystoffel’s tensor, [2]:

(12) Ly (k) = Cujmkikm,
which can be rewritten with the new notation:
- c11k? + 2c13k1ky + cazk’ c13k? + (c1a + c33)k1kg + c32k?
"= 13k} + (c12 + c33)krka + c30k3 c33k? + 2ca3ki ks + cook3

So, in an orthotropic medium, we have:

c11k? + casks  (ci2 + cs3)kiks
(13) T(k) =

(c12 + c33)kiks  c3ski + cank)
We notice that I'(k) is homogeneous of degree 2 with respect to k:
(14) T(ak) = o’T'(E).

It is well known that, due to (5), for any k # 0, I'(k) is symmetric positive definite [2]. Substituting
(10) into (1), one sees that, the polarization vector D must be an eigenvector of I'(k) associated to the
eigenvalue p w?:

['(k)D(k) = pw’D(k) <= T(K)D = p V*D.
The frequency w and the wave vector k are thus related by the following dispersion relation:
(15) F(w, k) = det(T(k) — pw’I) =0

where I is the identity matrix. Considering (15) as an equation in the frequency w for a given value of
the wave vector k, we obtain four solutions:

w== pr(k), w== wQs(k), (pr(k) > 0, L«JQs(k) > 0)

where yop(k) = p wép(k) > yopr(k) =p wés(k) are the two positive eigenvalues of I'(k) associated
to the respective eigenvectors Dgp(k) and Dgg(k),

e For w =+ wgp(k) and D // Dgp(k), the wave is called quasi-longitudinal,
e For w =+ wgg(k) and D // Dgs(k), the wave is called quasi-transverse.

The expressions of the eigenfunctions are:

1ap(k) = 5 (Tr1 (k) + Taa(k) + /T () — T (R))? + AT1a(R)? )
(16)

Yas(k) = 5 (T () + Toa(k) — /s (F) — Toa(B))? + AT (07 )

In particular in an isotropic medium, we recover the usual pressure and shear waves:

2
o wop(k) = |k[Vp, Vp= At} B (in this case DRP(k) // k)

o wos(k) =1k|Vs, Vs= \/%, (in this case D9S(k) L k)

INRIA
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Slowness diagram and group velocity. By homogeneity, the dispersion relation (15) can be
rewritten as:

(17) F(1, g) = F(1,5) = 0.

By definition, the slowness diagram is the set of points, in the plane of slowness vectors S=k Jw, that
satisfy (17). It is also the union of two curves whose equations in polar coordinates are

; 1 3} 1
S|=——+— and |S|=——.
wer(K) wgs(K)
06
0.61
04]
0.4
R P I
ah ( |
06 04 -‘Hz o o‘} 04 06 06 04 *P‘-Z 0 0% 04 06
Noof NS
04 04
06 206

Figure 1: Slowness diagrams. Left: isotropic medium. Right: orthotropic medium.

We give in Figure 1 two examples of slowness diagrams. On the left, for an isotropic medium (the two
curves are two circles respectively of radius 1/Vp and 1/Vs > 1/Vp) and on the right for an anisotropic
medium (011 = Cy2 = 20, C33 = 2, C12 = 38)

For each branch of solution £ — w(k) of the dispersion relation, one define the group wvelocity as
follows:

—

(18) Vy(k) = Vyw(k)
Using (15), by implicit function theorem, it is easy to see that the group velocity can also be expressed
as:
n OF ! oF  =\"! -
(19 0 --(Gewn) iren--(5Lad) viras)

which shows that the group welocity is orthogonal to the slowness curves. Finally, the wave fronts
are defined as the curves described by the extremities of the group velocities. These curves permit to
predict the localization of the energy of a solution emitted from a point source (see Fig. 2).

4 ~. 1

/ \ 4
// 2 \ 2 \
Z ; - T »

~
~
s

/
AN

Figure 2: Waves fronts. Left: isotropic medium. Right: orthotropic medium.
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2.3 The PML model for a general first-order evolution problem

The principle of the perfectly matched layers has been first introduced by Bérenger [4], for electro-
magnetic waves and has been, since then, applied in numerous applications. In [11], the authors have
shown that it is possible to write a systematic way of designing a PML model for a general first-order
hyperbolic system. In this section we briefly describe this general construction. Consider a general
first order hyperbolic system, posed initially in IR™, of the form

(20) Btu - Alalu - Agaz’u, =0

where u is a m-vector, A; and Ay are m X m matrices.

Let us briefly recall the definitions of hyperbolicity (see [16]). We set A(k) = k141 + k2 As. The
system (20) is hyperbolic if, for all k£ € IR?, the eigenvalues of A(k) are real. It is strongly hyperbolic
if furthermore, for all ¥ € IR?, A(k) can be diagonalized (if not it is weakly hyperbolic). It is strictly
hyperbolic if, for all k € IR, the eigenvalues of A(k) are real and distinct.

The formal construction of a PML in the z; direction (parallel to the zy axis) consists in: (i)
introducing a splitting of the field u = u' + u?, such that the unknown u! is only “associated” to
the derivatives with respect to x; , and u? to the derivatives with respect to zs, (ii) introducing an
anisotropic damping factor only on the u! component. We then obtain the following PML system:

Btul + C(xl)ul — Alal(ul + ’U,2) =0
(21)
Opu? — Ady(u' +u?) =0

where ((z1) = 0 for z; < 0 and {(z1) > 0 for z; > 0.

In the frequency domain, the system (21) becomes:

iwul + C(wl)ul - Alf)l(ul + U2) = 0,
(22)
iwu? — Ay0y(ul +u?) =0,

which can be obtained by substituting in the equation (20), written in the frequency domain, the
derivatives 0y into d(w,((z1))01, (see [11, 10]), where:
W

(23) d(w,((z1)) = @) +iw

Actually, this corresponds to apply the complex change of variable [10, 20, 7]:

$1—>$1+%/01C(5)d§,

to the solution of the frequency domain version of (20). The very astonishing property of this layer
model is that it is perfectly matched, which means that it generates no reflection at the interface be-
tween the physical domain and the absorbing medium (see [11]). This property can be shown through
a plane wave analysis. Furthermore, this analysis also shows that the transmitted wave decreases
exponentially during its propagation inside the layer.

Of course to construct the PML model in the z2 direction it suffices to permute the role of the space
directions which gives the following system:

ot +ut — A0, (ur +u?) =0
(24)
o’ + C(xz)u2 — A282(u1 + u2) =0

INRIA
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2.4 The PML Model for elastodynamics

It is then straightforward to obtain the PML model for the elastodynamics system (9), that can be
rewritten as:

ov 100 000
0o El@_EZQ

427 _ —
ot oz dy 0

0

where

t t
100 00 1 100 0 0 1/2

1 __ 2 _ 1 2
D‘(001)’ D‘(010>’ E‘(001/2>’ E‘(010 )

The PML system is then obtained by splitting o = o' + 02 and v = v* + v? (see [11]):

(! 1 10,1 2
PW‘FC(CU)U - D %(o +0%)=0
ov? 20 ;4 2

(25)

Aa;‘l—i-C( ) 1—Elg(vl—i-v?)zo
ot oz
do? 0

497 g2 9 1 2y _

| A% ay(v +0v°)=0

In the frequency domain, this system can be written in u as:

p wiu + divpmo(u) =0

(26)
0'(’LL) = Cepml(u)

which is the same model as in the physical domain, substituting the operators div and € with divy,,
and €7, where:

) ( d(w,((z1)) 01011 + 02012 )
divpmio =
d(w,((z1)) 01012 + 02022

d(w, C(21)) drus %(d(w, ¢(21)) Brus + Bous)

Epm ( ) =
pmit %(d(w,((a;l)) B1uz + Dyur) Byt

The PML model in the z9 direction still has the general form (26) but this time:

. ( o011 + d(w, ((z2)) 02012 )
divpmio =
01012 + d(w, ((z2)) G022

o, (Bra + d(w,C(02) D)

5pml(u) = 1
5(81’11,2 + d(w, C(:Cz)) 8211,1) d(w, C(.TQ)) 82’LL2

RR n° 4304



L. Décache, o. rauvqueuxr ana . JoLy

2.5 Some instructive numerical simulations

In this section, we will show some simulations with five different homogeneous media, one is isotropic
and the four others are orthotropic. The computational domain is a square surrounded with PMLs
(see Fig. 3 - left). The numerical method used to solve the elastodynamic equations is based on a
mixed formulation of the equations and is described in [§].

Absorbing = | .
Layers |

&
o
"

0z oa " "ol o8 1

Figure 3: Computational domain (left) - Function h(¢) (center) - Function g(r) (right)

In all the simulations, the initial data are taken equal to zero and the source is introduced as a
right hand side in equation (3):

fz,t) = h(t) 9(|lz — z5]) &

where h is the so-called second order Ricker signal with central frequency equal to fy = 0.9H z, namely
(see also Fig 3):

h(t) = [2m2(fot — 1) —1] ™™ Wot=1)*,

The function g(r) (see Fig 3) is such that the support of g(|]z — zg|) is concentrated in a small disk
centered at the source point zg which is located closed to the absorbing layer (see Fig 3) and €7 denotes
the first vector of the canonical basis of IR2. We choose the density p = 1 in all experiments.

We represent, for each experiment:

(a) the slowness curves and the wave fronts of the material,
(b) the distribution in space of the norm of the displacement field (snapshots) at several times.

Isotropic Medium. The first simulation is done in an isotropic medium, with Lamé’s constants:
A=16, pu=2.

The source creates both P and S waves (of respective velocities 25 ~ 4.47 and V2 ~ 1.414) that
correspond to the two successive wavefronts appearing in the snapshots of the solution. One can see
that these two waves are perfectly absorbed by the absorbing layer and that, even after a long while
(t = 500s), the solution remains equal to zero (see Fig. 5).

INRIA
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0.6
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t=2s t=5s t=20s t=500s

Figure 5: Some snapshots at different times for the isotropic media.

Simulation in an anisotropic medium (I). In this example, the elasticity coefficients are given
by:

C11 = 4, Cyg = 20, C33 = 2 and Cl12 = 3.8.
The slowness curves and wave fronts reprensented in Fig. 6 illustrate the anisotropy of the medium.

Note that the sets enclosed by the slowness curves remain convex as in the isotropic case. The snapshots
of the corresponding numerical experiment are given in Fig. 7.

Figure 6: Slowness curves and Wave fronts for for the orthotropic medium (I).

RR n° 4304
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N

t=2s t=10s t=20s t=500s

Figure 7: Some snapshots at different times for the orthotropic medium (I).

They show that the PML’s work pretty well. In particular, they are stable: the solution does not blow
up, even after a long time.

Simulation in an anisotropic medium (II). This time, the material is characterized by its elas-

ticity coefficients:

c11 =co9 =20, ¢33 =2, c129=3.8

70‘.6 70‘.4 7%)‘.2 o D“i 0‘4 0‘6 }‘\

/
\gat,,,/ -
0.4

~0.6 —4

t=500s

t=2s

Figure 9: Some snapshots at different times for the orthotropic medium (II).

In figure 8, the medium appears to be much more anisotropic than the previous one. In particular, the
set enclosed by the slowness curve of the QS wave is no longer convex, which gives rise to triplications
of the wave front. However, one can see in figure 9 that the PML model still works very well and does

not lead to any instability.

Simulation in an anisotropic medium (III). For this experiment, we choose as elasticity coeffi-

cients:

Cl1 = 4, Co9 = 20, Cc33 = 2, Cl19 = 4.9

INRIA
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06 ‘04 02 O

t=2s t=10s t=20s ~ t=160s

Figure 11: Some snapshots at different times for the orthotropic media (III).

Looking at the slowness curves (see Fig. 10), this medium seems to be less anisotropic than the
previous one. However, the snapshots of the solutions show that an instability is developing in the
PML layer parallel to the zy direction (see Fig. 11 at time ¢ = 160s). On the contrary, the PML in
the z;-direction seems to absorb the waves quite well.

Simulation in an anisotropic medium (IV). Our last medium is characterized by the following
elasticity coefficients:

c11=4, c02=20, c33=2, c19="1.5

Once again, this is a medium which gives rise to triplications of the QS wave front (see Fig. 12).

T

Figure 12: Slowness curves and Wave front for the orthotropic media (IV).

RR n° 4304
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t=2s t= t=12s

Figure 13: Some snapshots at different times for the orthotropic media (IV).

On the snapshots (see Fig. 13), we can see two instabilities appearing very soon in the two PML layers.
These instabilities clearly occur when the lowest wave, namely the QS wave, penetrates the absorbing
layer.

In conclusion, it seems that the stability of the PML model depends on the physical properties of
the media. The aim of this paper is to understand this phenomenon. The explanation of the in-
stabilities observed in the last two simulations, is that these models do not satisfied a very general
necessary condition of stability for the PMLs. This necessary condition has a very simple geometrical
interpretation that we present in the next section.

3 A necessary stability condition for PML models associated to gen-
eral hyperbolic system. Interpretation in terms of slowness curves.

In this section, we analyze the PML model (21) (or (24)) for a general hyperbolic system. We restrict
ourselves to the case where the absorption coefficient ¢ is constant in space, which makes possible the
use of the Fourier analysis. This is necessary step towards the analysis of the non-constant coefficient
case. Moreover, there is a general theory for the link between the analysis of the constant coefficient

equation and the one of variable coeflicient equation. This is the so-called frozen coefficient technique
(see [16]).

3.1 Well-posedness and stability: definition and characterization through plane
wave analysis

We consider the Cauchy problem in the whole space IR? associated to the system:

8tu1 + Cul — Alalul — A161u2 =0,
(27)
8tu2 — A282u1 — A282U2 = 0,

where ( is a strictly positive constant and we set U = (u', u?).

Definition 1 We will say that the Cauchy problem (27) associated to the initial data Uy is weakly
(resp. strongly) well-posed if for any U(.,0) = Uy given in the Sobolev space H®, s > 0 (resp. s =0),
(27) admits a unique solution U(t) that satisfies an estimate on the type

(28) TG0l < Ke® [ Uoll s

We will say that the problem is weakly (resp. strongly) stable if it is weakly (or strongly) well-posed and
if the solution U(t) satisfies an estimate on the type

(29) 1UC D2 < KA +8)° [Uoll s
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with s > 0 (resp. s =0).

In what follows we will say that the system is stable if it is at least weakly stable. Roughly speaking
the difference between a stable system and a well-posed system is that in the first case, exponentially
growing solutions are not permitted.

It is well known that the Fourier analysis permits to relate the notions of well-posedness and
stability in terms of analysis of plane waves, i.e. solutions of the form

(30) Uz, t) = “82)D LeR?, DeR™, weC
To study such solutions it is useful to refer to the initial hyperbolic system (20)
O — A101u — Asdsu = 0,
that admits plane wave solutions of the form
u(z,t) = Wi=kr)lg Lk eR?, deR™, weC,

if and only if ¥ and w are related by the dispersion relation

(31) F(w,k) =0,
where
(32) F(w, k) = det(wI — k1A — kQAQ),

is a homogeneous polynomial in w and k of degree m. If we consider (31) as an equation in w, a
consequence of the hyperbolicity of the system (20) is that the solution of (31) are real:

w=wj;(k), j=1,..,m, the eigenvalues of A(k).

Moreover, the functions w;(k) are homogeneous functions of degree 1 and differentiable with respect
to k as soon as the system (20) is strictly hyperbolic.

As for elastic waves, one can define for each mode w(k) = w;(k), the phase velocity

(33) V() = S = (),
where K = k/|k|, the slowness vector
34 SK)= e = ——,
and the group velocity
OF -
(35) Vo(k) = Vy(K) = Vyw (k) = — %(w,k) ViF(w, k)

which is orthogonal to the slowness curves, defined as in section 2. We shall denote by (V;(k), V}Jz(k))
the two components of V,(k) and by (S1(k), S2(k)) the ones of S(K).

Going back to the Fourier analysis of the PML system (27), we see that (27) has solutions of the
form (30) if and only if w and k are related by the perturbed dispersion relation:

(36) Fomi(w, k,¢) = F(w(w — i¢), k1w, k2(w — 1)) = 0
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This is a polynomial equation in w of degree 2m. Therefore the dispersion relation in the PMLs defines
2m modes, w;(k,(), j = 1,...,2m, solutions of this equation. It is natural that the number of modes
is the double of the one in the original problem, since we have doubled the number of unknowns by
passing from (20) to (21).

We remind how the notions of well-posedness and stability are intimately related to the plane wave
analysis.

Well-posedness. The system (27) is strongly ill-posed if there exists some exponentially growing
modes, that is:

(37) Sm w(k,() - —o0, when |k| — +o0,

otherwise it is at least weakly well-posed (see [16]).

Stability. The system (27) is stable in the sense of definition 1 if and only if
(38) V k€ R™, the solutions w(k, () satisfy Sm w(k, () > 0.
Actually if w = wg + twy, the plane wave solution can be written as:

u(z,t) = e witgi(wrt—kz)

The existence of solutions w with negative imaginary parts would correspond to plane wave solutions
with exponential growth in time. A stable system does not admit such solutions.

3.2 A general well-posedness result

We shall assume here that:

Assumption (A). The system (20) is strongly hyperbolic and the eigenvalues of A(k) are different
from 0 for k # 0.

This is in particular the case of the 4 x 4 elastodynamics system (9) (the four eigenvalues are + ygp(k),
+ vqs(k)).

In this case, we note that system (27) appears as a zero-order approximation of the following
System:

Ot — A101ut — A101u? =0,
(39)
Ou? — AsBgu! — AyBou? = 0,

that can be shown to be strongly hyperbolic thanks to assumption (A). Indeed, if {w;(k),1 < j < m}
are the eigenvalues of A(k) associated to the eigenvectors w;(k) € IR™ that form a basis of IR™, then
one easily checks that the eigenvalues of the 2m X 2m matrix:

oy [ kAL k1A
Alk) = ( koAy kaAy )

are :
e wi(k) #0 (1 <j < m) associated to the eigenvector (ki/w;(k)A1w;(k),ks/w;(k)Asw;(k))! €
R2m7
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e 0, eigenvalue of multiplicity m, whose eigenspace, given by {(w,—w),w € IR™} has dimension
m.

Therefore, thanks to assumption (A), the multiplicity of each eigenvalue is equal to the dimension of
the corresponding eigenspace, which ensures that A(k) is diagonalisable. As a consequence, the general
theory (see [16]) says that the system (27) is well-posed.

Remark 1 If the assumption (A) is not satisfied, i.e. if 0 is an eigenvalue of A(k) at least for some
k # 0, proving the well-posedness of (27) is not obvious and requires further analysis which is more
intimately related to the structure of the unperturbed system and of the perturbation too. Mazwell’s
equations provide an example of such a system (see [1, 3, 18]).

3.3 A high frequency stability analysis

In this section, in addition to assumption (A) we shall assume that system (20) is strictly hyperbolic,
which is in particular the case of the elastodynamics system (9). In order to analyse the stability of
(27), we focus on the sign of Im w(k, () for large |k| (high frequencies). For this, it will be convenient
to introduce the parameter:

(40) e = ﬁ
and to rewrite the dispersion relation (36) as:
(41) Foi(V, K, 6) = F(V(V — ie), K1V, Ko (V — i€)) = 0,

where V is the phase velocity defined in (33) and K = k/|k| the unit wave vector. Note that looking
at small ¢ is equivalent to looking at small { (small absorption) or large |k| (high frequencies). We
then have the:

Lemma 1 For every given K, the equation (41) admits 2m complex solutions that we denote by
(Vi(K,€))j=1,..2m, that can be numbered in such a way that they are continuous functions with respect
to K and . Moreover, (V;(K,¢€)) is differentiable in the neighborhood of any point (Ko,e9) where
(Vj(Ko,€0)) is a simple root of (41).

Proof: Using the expression (32) of F, it is easy to see that the equation is a polynomial equation in the
variable V of degree 2m and that the coeflicient of order 2m in the polynomial function F,,;(V, K, ¢€),
equal to 1, does not vanish. Therefore the solutions V;(K,¢) are continuous functions with respect to
€. The last part of the lemma results from the implicit function theorem. W

The unperturbed equation. Equation (41) is a perturbation of the equation obtained for € = 0,
which can be written as (F' is homogeneous of degree m)

(42) Formu(V,K,0) =V"F(V,K) =0
The solutions V of this equation are

e the m physical modes V;(K,0) = w;(K), j=1,..,m,

e one mode of order m, V;(K,0) =0, j=m+1,..,2m.

For the general PML model, the stability condition (38) requires in particular that the high fre-
quency solutions, i.e. w(k, () for large |k|, have a positive imaginary part. This is what we call a high
frequency necessary condition of stability:
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Definition 2 The system (27) is said to be stable at high frequency if and only if, there exists g > 0
such that:

(43) Ve<ey, VK/|K|l=1 SmV;K,e)<0, j=1,..2m.

We obtain in particular a necessary stability condition by writing that (43) holds for all physical modes
(j =1,...,m). This allows us to prove the:

Theorem 1 Let us suppose that system (20) is strictly hyperbolic and that assumption (A) holds. A
necessary condition of stability (high frequency stability) of the PML model in the x1 direction (27) is
that, for all physical modes of the unperturbed system (20):

(44) VK = (K1,Ks) / |K| =1, Si(K)- (V)1 >0.

Proof: From the strict hyperbolicity of (20) and assumption (A), we know that for small ¢, in the
vicinity of physical modes V(K) = V;(K), j = 1,...,m, the function ¢ — V(K,e) = V;(K,¢) has an
expansion of the form:

(45) V(K,e) = V(K) + a(K) € + O(?).
or equivalently
w(k, ) = w(k) + a(K) ¢+ O(1/|k|).

Expanding the equality

9

_q -1 —
F(V(K7€)7Kl(1 ZV(K,E)) 7K2) 07
in powers of €, using (45), we get
oF . Ky OF 2y _

By definition of V(K) one has F(V(K),K) = 0. Then, writing that the term in ¢ is equal to 0, we
obtain

. (OF ' ( Ky OF
o) =i (G 0E.K))  (pyp VEIE)
where we have used assumption (A) which says that V(K) # 0 and the strict hyperbolicity of (20)

which implies that

OF

Using formulas (35) and (34), we get:
a(K) =i 51(K) V, (K).

It is then easy to conclude since (45) shows that for small €, the sign of Im V(K,¢) is given by the
sign of Sm «a(K). A standard compactness argument is used to prove the existence of ¢g. W

Geometrical interpretation. The condition (44) expresses the fact that, along the slowness curves,
the slowness vector and the group velocity are oriented in the same way with respect to the Ozs axis.
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X Vy(K) X,
2 g Vg(K

Stable Not stable

Figure 14: Two different configurations. Left: the slowness vector S and the group velocity V, are
oriented in the same way with respect to the Oz, axis. Right: S and V, are not oriented in in the
same way with respect to the Ozs axis.

Obviously, when considering a PML model in the z2 direction (i.e. parallel to the z; axis), one has
the

Corollary 1 A necessary condition of stability (high frequency stability) of the PML model in the 9
direction is that, for all physical modes of the unperturbed system (20):

(46) VK = (Ki,K») [ |[K| =1, Sy(K)-V}(K)>0.

3.4 Application of the geometrical stability criterion
3.4.1 Explanation of the observations of section 2.5 via the analysis of slowness diagrams.

The geometrical stability condition (44) is clearly satisfied in an isotropic medium. In this case, the
slowness curves are composed of two circles and obviously the vectors S and Vg are parallel. More
generally, it is easy to see that (44) will be satisfied as soon as the slowness curves are the boundary
of convex sets, which is the case for the orthotropic material (I) considered in section 2.5.

Concerning the three orthotropic materials (IT), (III) and (IV) of section 2.5, we have represented
in Figure 15 their slowness diagrams. The first remark is that for all the slowness curves associated to
the QP waves (i.e. the inside curve), the geometrical condition is satisfied, since these curves are all
convex. This is a general phenomenon that we will prove in the next section (lemma 3). Therefore,
the violation of the high frequency stability condition can only come from the QS waves.

e For material (I), one can see that for all K, one has Vi(K)S1(K) > 0 and V2(K)S2(K) > 0,
therefore the high frequency stability condition is satisfied for a layer in the z; direction as well
as for a layer in the x5 direction. In this case, we did not observe any instability in the numerical
results.

e For material (II): one can see that for all K, one has V;(K)S1(K) > 0 which means that the
geometrical condition is satisfied for a layer in the z; direction, but there are some vectors K
(whose extremities describe the line of medium thickness on the figure) for which V5(K)S2(K) <
0, therefore the geometrical condition is not satisfied for a layer in the x9 direction. This confirms
the numerical results: we observed an instability in the PML in z9 and not in ;.

e For material (III): there are some vectors K (whose extremities describe the thickest line on
the figure) for which V1(K)S1(K) < 0 and there are some other vectors K (whose extremities
describe the line of medium thickness on the figure) for which V4(K)Sy(K) < 0 which means
that the geometrical condition is not satisfied neither in x1 nor in zy. This also confirms the
numerical results, since we observed instabilities in both layers.
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Figure 15: Slowness diagrams. Left: material (II) - Center: material (III) - Right: material (III).

3.4.2 Application to other mathematical models

In this section, we show how our geometrical criterion can be applied to show the instability of the
PML model applied to other wave phenomena.

The PML model for anisotropic electromagnetic waves.

Anisotropic dielectric media are characterized by the fact that the electric permittivity € is a ten-
sor which is not necessarily proportional to the identity. In 2D, the propagation of electromagnetic
waves in such a medium can be describes through the solution u(z,t) of an anisotropic wave equation
of the form:

0%u )
w —div (AV’U/) =0
where A is a 2 x 2 symmetric positive definite matrix:

a b
A= , a>0, ¢>0, ac—b>0.
b ¢

It appears that the PML model associated to this equation is unstable as soon as the eigenvectors
of the matrix A are not parallel to the coordinate axes, i.e. as soon as b # 0. Indeed, the dispersion
relation can be written:

(47) w? = Ak - k,

from which one deduces that the corresponding slowness diagramm is an ellipse whose axes are not
parallel to the z; and z9 axes. Figure 16 illustrates the fact that the geometrical criterion (44) is not
satisfied (this is moreover true for both z; and zo PML layers).

Figure 17 gives an illustration of such an instability : we consider an unbounded anisotropic domain
modeled by a square surrounded by PML. A is given by :

The numerical method is quite the same as in the elastic case : we use a mixed formulation of the
equation [8] and consider an explosive source at the middle of the square :

f(z,t) = h(t) g(|lz — z5])

where g and h have already been defined in section 2.5. The central frequency is equal to 1H z.
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o ; ; ; ; ; ;
08 06 04 02 l 02 04 06 ‘a

Figure 16: The slowness curve for the anisotropic wave equation.

t=9s

t=5s
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The linearized Euler equations.

We consider a fluid in which the sound speed is equal to 1 and look at the particular case of a
uniform subsonic flow in the direction z; with Mach number 0 < M < 1. The linearisation of Euler
equations in the neighborhood of such a flow leads to the following advective wave equation which
governs the acoustic propagation in such a situation (p denotes the pressure and v = (v1,v2) is the
velocity field):

The high frequency geometrical criterium (44) allows us to identify a well known result, namely the
instability of the PMLs in the z; direction (e.g., [14, 21, 15]). Indeed, the dispersion relation of (48)

(49) (w+ Mk — k2 — k3 =0,

defines one slowness curve which is an ellipse with axes parallel to the coordinates axes but not
centered at the origin : the center is (M/(1 — M?),0). As a consequence, one can see in figure 18
that there are some vectors K (corresponding to the part of the curve of medium thickness) for which
Sl(K)Vl(K) <0.

Remark 2 One can however check that the necessary condition for the stability of the PMLs in the
o direction is satisfied. The complete calculations shows that the corresponding system is stable.

ky/oo

-1/(1+M) 1M 1(1-M)

kx/u)

Figure 18: The slowness curve for system (48).

3.4.3 Other instability phenomena via numerical simulations

In this section, we present two numerical simulations that seem to indicate that the necessary sta-
bility condition (44) is not sufficient for the elastodynamics system. We denote by (V)-1 and (V)-2,
these experiments which are done in the same material (V), characterized by the following elasticity
coefficients:

Cl1 = 10, Cyo = 20, C33 = 6, C12 = 2.5
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In figure 19, we represent the slowness diagrams (left) and the wave fronts (right). It is clear that
the high frequency conditions (44) and (46) are satisfied, for both 27 and zs layers since the slowness
curves are Convex.

0aq

044

Figure 19: Slowness curves and Wave fronts in the medium (V).

In the experiment (V)-1, we consider a domain with a PML in the z; direction, with reflecting
boundary at the top and the bottom of the domain (see figure 20). In the beginning the layers seem
to absorb very well the waves. But after a very long while, an instability is developing in the PML
layer, as we can see in figure 21.

f Reflecting Boundary

+Zs

Absorbing
Layers

Figure 20: Computational domain for the simulation (V)-1 with z; absorbing layer.

t=2s t=9s t=6800s t=7500s

Figure 21: Experiment (V)-1. Some snapshots at different times for the orthotropic medium (V) (with
x1 absorbing layer).

In the experiment (V)-2, the domain of computation as well as the source term is the same as in
section 2.5. In figure 22, we represent the snapshots. Again, in the beginning, and during a quite long
time, the layers seem to absorb very well the waves. But, after a while, shorter than in the previous
experiment, there is an instability appearing in the layers in the x5 direction.
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/) [

t=9s t=400s t=800s

Figure 22: Experiment (V)-2. Some snapshots at different times for the orthotropic medium (V).

This suggests additional analysis. We will establish in the next section:
e another necessary stability condition (Lemma 4 and Theorem 3),

e a sufficient stability condition (Theorems 4 and 5).

4 Stability analysis for the orthotropic elastic model

We can now go back to the elastodynamic problem (1) and we consider the PML model in the whole
space with a constant damping coefficient ( > 0. In this case m = 4 and the function Fj,, appearing
in the dispersion relation (42) is defined by:

(50) Fymi(w; k, ¢) = det ( D(wk1, (w — i{)k2) — p w’(w — ()T )

In section 4.1, we will show how the high frequency necessary stability condition (44) (coming from

the high frequency analysis in the vicinity of the four physical modes) can be expressed in terms of
inequalities on the elasticity coefficients. In section 4.2, we establish a second high frequency necessary
stability condition, which comes from the analysis of the solutions in the vicinity of the multiple mode
0 of order m = 4.
The high frequency stability condition means that, for large k, the solutions w(k, () are in the good
side of the complex plane (i.e. with a positive imaginary part), but there is no guaranty that they
stay in the good side for every frequencies. In section 4.3, we obtain a condition which implies that
the solutions never cross the real axis. Using a continuity argument, this allows to conclude that,
under this condition, if the solutions are in the good side of the complex plane at high frequency, they
necessarily stay in the good side for all frequencies. In this case, we get a sufficient stability condition.
As in section 3, we introduce the parameter ¢ = (/|k| and for convenience, we shall adopt a new
notation by introducing the angle 8 € [—m, w[ such that

K = LIS (cos @,sin®).

Therefore, if we set:
(Vo)j(e) =Vi(K,e), j=1,..,8,

the functions (Vy);(e) are the 8 branches of solutions of the dispersion relation, considered as an
equation in the phase velocity V (11):

(51) Fpml(va 058) = Fpml(vaKa 6) = 05

where Fj,;; has been defined in (50). We shall assume that the functions (Vg);(e) are numbered in
such a way that
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 ((V9)j(€)) =1 5, the two branches issued from the physical modes QP:

(Vy)(0) = V;(K,0) = Fwop(K), j=1,2,

® ((Va);(€)) =3 4> the two branches issued from the physical modes QS:

(Va)j(O) = Vj(K, 0) = :i:UJQS(K), j=3,4,

e ((V9)j(€));5,. g, the four branches issued from the multiple root of order 4

(Vg);(0) = V;(K,0) =0, j=5,..,8.

It is easy to see that:
(52) Vo € [—m,7[, Fppu(V,0,€) = Fpru (V,—0,6) = Fppu (V, 7 — 0, ¢) .
As a consequence, if

S(6,6) ={ (Vo)y(e), 5 = 1,8},
denotes the set of solutions of (51), one has:
(53) Vo € [-m, ][, Vj=1,...,8, S(0,e) =S(—0,e) = S(m—0,¢)
which justifies in what follows to restrict ourselves to:

6 €[0,7/2].

The two limit values # = 0 and # = 7/2 do not pose any problem as shown is the following (whose
proof is immediate):

Lemma 2 For 0 =0 , the solutions of (51) are given by :
(Vo(e))12 = (Vo(€))gp = v/max(ci1, c33) + i€, of order 1,
(54) (Vo(€))34 = (V0(5))$5 = i\/m+ i, of order 1,
((Vo(€))j)j=5,..8 =0, of order 4.
For @ = w/2 | the solutions of (51) are given by :
(Vrj2(e))1,2 = (Vw/Q(a))gp = ++/max(cy,c33), of order 1,
(55) (Vrj2(€))34 = (Vﬂ-/2(€))$s = ++/min(cyy, c33), of order 1.
((Vr/2(€))j)j=5,.8 = i, of order 4.
In particular Im(Vy/2(€)); 2 0 and Sm(Vo(e)); >0, j =1,..,8.
It remains to consider # €]0, /2.
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4.1 A first high frequency necessary stability condition

We have established in Theorem 1 the high frequency necessary stability condition (44), which expresses
the fact that, in the vicinity of the physical modes (i.e. for small €), the branches of the solutions
((Vo)j(€))=1. 4 are in the good side of the complex plane (i.e. with a positive imaginary part). We
give here an equivalent form of condition (44) expressed in terms of the elasticity coefficients.

Theorem 2 The necessary condition of stability (44) is equivalent to:

(C1) {(c12 + ¢33)* — c11(can — e33)} X {(c12 + €33)® + c33(can — c33)} < 0.
Proof. In order to prove (44), we have to show that, for all physical modes, the quantity:

K,
V(K)

B V(K) = sk b, (V(K)?),

S1(K) - Vg (K) = W(K)?

is positive for all unit vectors K. As V(K) is characterized by the fact that y(K) = p V(K)? is one of
the eigenvalues of Chrystoffel’s tensor I'(K) (16), we have to study the sign of:

_ oy
Q) = Ki x g (K),

for all K = (cos#,sinf), and for the two positive eigenvalues of I'(K):
1 1
v(K) = vqpr(K) = (T + VA) and y(K) = vqs(K) = ST = VA)
where:
T = (ci1+c33) K + (c33 + c22) K3,
2
A = [(Cll — 633) K12 + (033 — 622) K22] + 4K12K22 (012 =+ 033)2 .

Therefore (44) is satisfied if and only if @*(#) > 0 and Q~(#) > 0 for all #, with

oT | 10A 1)_

1 oL
@0 =55 (5 * 510 75) = 7k QO

7x

where, if t = tanf = K5/K;, one easily computes that:
(56) Q3 () = a(t) £ b(t),
with

a(t) = (e + ca3)V/alt) (> 0),
(57) b(t) = (c11 — e33)” + (a1 + a2)t?,

alt) = ((011 —c33) + (c33 — 022)t2)2 + 4t2(c12 + 033)2,
where the coefficients oy and a9 are given by

a1 = (c12 + c33)” — c11(caz — c33),

(58)
Qg = (012 + 033)2 + 033(622 — 633).
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Note that, as a(t) is positive, one has the equivalence:
a(t) +b(t) >0, Vt>0,
(44) — = at)?—=b1t)? >0, Vt>0.
a(t) —b(t) >0, Vt>0,
One computes that :
a(t)? — b(t)? = 4 (ast + 2a9t® + ag),
with :
a4 = — 01 G2,
(59) az = ciie33 (o1 + az),
ao = ciiess(cnn — cs3)” > 0.
Therefore (44) is equivalent to:
(60) H(X) = asX? 4+ 202X + a9 >0, VX >0.

To conclude, we first observe that condition (Cy) is nothing but a4 > 0.

Obviously, (60) implies a4 > 0. Conversely, assuming a4 > 0,
o If a2 < agas, ®(X) has a constant sign. As ®(0) = ag > 0, one has ®(X) >0, V X > 0.

e If a3 > agay, ®(X) has two real zeros and condition (60) is equivalent to saying that these two
roots are negative. Since agag > 0, the two roots have the same sign. To conclude, it suffishes
to observe by a simple computation that:

a% — agay = ciie33(ci2 + 033)2 l[ag — (c12 + 033)2]7

the two roots is negative and thus that each of them is negative. W

Therefore a% — agaq > 0 implies az > (c12 + ¢33)2 > 0. As ag > 0, this means that the sum of

Theorem 2 means that, if (Cy) is satisfied, then one has for small e:
(61) Sm((Vo); () 20, VBEl0,m/2l Vi=1,... .4

In the following lemma, we make the result more precize: we show that the instability can not come
from the vicinity of the QP waves, which is in some sense a theoretical confirmation of what we have
observed in the numerical experiments of section 2.

Lemma 3 For any orthotropic material, one has the following property, for small € :
(62) Sm((Vg);) (€) 20, VO€]0,m/2[ j=1,2.

Proof. In this proof, we use the same notations as in the proof of theorem 2. Let us assume that
there is an instability in the vicinity of the QP wave, that means that for j =1 or j = 2, one has :

360 c)0,7/2[, Sm((V;);) < 0.
This also means (see proof of theorem 2) that

(63) Jt>0, a(t)+5b(t) <O0.
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From theorem 2, this implies that (C;) is not satisfied which is equivalent to say that a4 < 0. Then :
(64) ar az > 0.
Since a(t) > 0, (63) implies in particular that b(¢) < 0, which is possible only if :
(65) o] +a <0.
The two inequalities (64) and (65) thus implies that @3 < 0 and ay < 0. So, we have :
(c12 + c33)> < —c3z(con —c33)  and  (c12 + c33)” < c1r(caz — c33)-
Since the two right hand sides are of opposite sign, this would imply that (¢ + 033)2 < 0 which is
impossible. W
4.2 A second high frequency necessary stability condition
We assume in this section that 6 € |0, 7/2].

Lemma 4 The four solutions (Vy(e));, j =5, ..,8, satisfy :

(66) Sm((Vg);) >0, VOelo,m/2[ Vj=5,...,8
if and only if the two following inequalities are satisfied;
(c12 + 2¢33)* < cr1co, (i)
(C2)
(c12 + ¢33)* < crrean + . (i1)

Proof. In what follows, Vy(¢) is one of the functions (Vy);(e) for j = 5,...,8. Let us substitute the
expansion (we know that such an expansion exists since we have weak well-posedness):

Vo(e) = €V + o(e)
into the equation :
Fp'ml(ve(s)’ 0, E) =0.
We obtain, by identifying the lower order term in e:
[e11(Vg)? cos® 0 + e33(V5 — i) sin® 0] [e33(Vg)? cos® 0 + ca2(Vy — i)? sin® 0]

(67)
—(c12 + ¢33)*(V3)? (Vs — i) cos® fsin® 0 = 0.

It is easy to see that for 6 €]0,7/2[, the solution Vj} does not vanish, then we can make the change of
unknown :
_Ve—i

Vs

(68) z tan 6,

which leads to a polynomial equation in z whose coefficients are independent of 6:
(69) Agzt + Ay2® + A =0,
with
Ay=caaesz > 0,
(70) As=ci1cp + c33 — (c12 + c33)7,
Ap=ci1c33 > 0.

Let us show the equivalence of the two following conditions:
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(i) The solutions V; of (67) have a positive imaginary part for all values of 6.
(ii) The solutions z of (69) are purely imaginary.

Indeed, if (ii) holds and if {i\;,j = 5,...,8} are the four roots of (69) then the four solutions of (67)
are given by:

1 itan@ —Aj +itan@
Y gang T
(V); tan — i) an tan20+)\§ ’
so that:
tan? 6
Sm(V})i= ————— >0.
Sm(Vy); tan20+)\§ =

Conversely, let us assume that z is a solution of (69) with non zero real part (note that z # 0). We
can assume that Re(z) > 0 since —z is also a solution. Then, except maybe for § = 6, such that, when
z is real, z = tan 6, a solution of (68) is given by:

1 itané —SQm(z) +i(tan @ — Re(z))

Vg = ———— =tan¥
9 tanf — 2 " |tan @ — z|?

with imaginary part:

tanf (tanf — Re(z) )
[tan§ — z|?

Sm Vg =

It suffices to remark that when 6 goes from 0 to 7/2 the sign of tanf — Re(z) changes which means
that, for some values of 6, (69) admits solutions with strictly negative imaginary part.

To conclude, it suffices to remark that (i) is equivalent to saying that the two roots of the polynomial
A4 Z% + Ay Z + Ay are real negative, which is equivalent to:

A3 < 4AgA; and Ay >0,
what we wanted to show since cj1¢99 — 0%2 > 0 and:
A} — 4A0As = (cricas — ) [er1¢22 — (c12 + 2¢33)°] . W
Theorem 2 and Lemma 4 can be summarized as follows :

Theorem 3 The PML model (26) is stable at high frequency in the sense of definition 2 if and only
if conditions (C1) and (C3) are satisfied.

4.3 A sufficient stability condition

From a geometrical point of view, proving the stability of the PML model is equivalent to show that,
6 playing the role of a parameter, the curves in the complex plane described by (Vy);(e) when e goes
from 0 to +o0o is located in the right side of the complex plane, namely the half-space of complex
numbers with positive imaginary part. In the previous sections, we have established conditions (C;)
and (Cy) such that it is the case for the first part of the curves corresponding to small . In what
follows, we are going to establish the conditions for which these curves never meet again the real axis,
which will provide us a sufficient stability condition thanks to a continuity argument.

For our purpose, it will be useful to use a new parameterization of the (6, V), €) space. More precisely,
we consider the transformation (we shall see later that this transformation is one to one):

(6,V,) €10, 5[x R, xRS — (X,7) € R} x (C\R)
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defined by (we set ¢ = tan#) :

X(0,V) = 1 ;tzvi’,
(71) N
(0,6,V) = £ (V V“) .
By construction, we have:
(72) Fpi(V,0,¢) = cos* 0 V* G(X(0,V),7(0,¢,V)),
with :
(73) G(X,7) = (c11 + (c33 — X) 7) (c33 + (caa — X) 7) — (c12 + c33)°T.

We shall use this parametrization to express the property which means that the curves € — V;(¢) never
meet again the real axis, namely

(Pr) Voelo,n/2, Vji=1,.,8, (Wle);eR = e=0.

More precisely, we prove the:
Lemma 5 The property (P1) is equivalent to:

(Py) VX eR", ¢(X,7)=0 = 7€l
Proof. If (P1) does not hold, there exists €g > 0 and 6y €]0, 7/2[ such that, for some j € {1,..,8},

(Vo (€0)); = Vo € R,.
If we set Xg = X(09,V0) € R and 79 = (0o, €0, Vo), by definition of G-
Fomi(0,6,Y) = 0 = G(Xo, 1) = 0.
As Vy € Ry, Xg > 0 and g¢ > 0 implies that Smmy = —2t(2)50/V0 # 0, which shows that (P2) does not
hold too.
Reciprocally, assume that (P») is not satisfied. This means that there exist 7o € C'\ IR and Xy > 0 (it
is obvious that Xy = 0 would imply that 79 € IR) such that
G(Xo, 1) = 0.

Let us introduce the two real numbers:
1
1 (Sm7)? \2 Re 70 . Re 10 \°
to=| 2o0o—"— >0, Ry= —S & 1 .
0 <2 Re 19 + |70] 07 3m To ign (Sm 7o) + Sm 1y

( 0y = atan tp, €0, 7/2],

By setting

t
! Vo=sign (R)—==VXs,  €R,

Vi+ig

t
g0 = VoRy = |R0|70\/X0, >0,

g Vit

we have inverted the transformation (71), in other words:
XO = X(Oo,Vo) and T0O = T(00,€0,V0).
Therefore g(Xo, 7o) implies Fpp,;(Vo, 6o, €0) = 0, which means that (P1) in not true. M

INRIA



otaovuity of the FML's for anisotropic waves

Lemma 6 The property (Py) (or equivalently (P;)) is realized if and only if the the condition (Cy) (4i)
is satisfied as well as one of the two following conditions (C3), or (C3),:

(Cs), (c12 + c33)% < (€11 — c33)(coa — €33),
(Cs), (c11 + ¢33)(c12 + 633)2 > (c11 — e33)(cr1c2 — ng)-
Proof. Let us rewrite G(X,7) as a polyomial of degree two with respect to 7:
G(X,7) = (c33 — X)(ca2 — X)T2 + (c11(caa — X) 4+ c33(c3z3 — X) — (c12 + 033)2)7' + c11633.
Its discriminant is given by:
A(X) = uX? 4 201X + ay
with
as = (c11 —e33)” > 0,
a1 = (e + ez3)(crz + e33)” — (en1 — e33)(cr1ca2 — €33),
ap = (c1122 — cfg)(cr1en — (c12 + 2¢33)°).
Obviously, we have the equivalence
(P) <= AX)>0, VX>0.
This means that the two roots of A(X) are either non real either negative, which is equivalent to:
ap >0 (ie. (C2)) and (i) or (ii),
where
(i) s > af,
() o1 >0 (ie. (C3)2).

To conclude, it suffices to remark that the inequality (i) above is nothing but (C3); since a tedious but
simple computation shows that:

af — agan = 4deriess (ci2 + e33)® [(c12 + e33)® — (c22 — e33)(c11 —c33)] . M
As an immediate consequence, we state the:

Theorem 4 A sufficient condition for the stability of the PML system (26) with absorption in the x;
direction 1is that conditions (C1) and (Cy) be satisfied as well as one of the conditions (C3), or (C3),.
This is equivalent to saying that one of the two following conditions is realized:

(N (c12 + 633)2 < (c11 — c33) (€22 — €33)

(i)  (c11 —c33) (c22 — €33) < (€12 + 633)2 < max {—ec33(c22 — €33), c11(ca2 — c33)}
(Cz1)9 (ii) (c11 — c33) (c11coa — €33) < (c11 + e33) (c12 + c33)’

(m) (012 + 2033)2 < €11€22
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Proof. It simply remains to explain why satisfying (C;), (Cz) and (C3), or (C3), is equivalent to (Cy, ),
or (Cg,),- We first observe that the two real numbers:

—c33(ca —c33)  and  c11(e22 — c33)

have opposite signs. As a consequence, the maximum of these two values is positive and greater than
their sum:

(74) (c11 — €33) (c22 — €33) < max {—c33(ca2 — ¢33),c11(c2 —¢33)} (> 0).

We next observe that condition (C;) means that (ci19 + ¢33)® belongs to the interval delimited by the
same two numbers. Since (c12 + 633)2 > 0, this reduces to:

(75) (c12 + ¢33)* < max {—cs3(caz — c33), c11(can — c33)} -
As —c33(cog —c33) < 0?,,3 and c11(c22 — c33) < 11622, we deduce that:
(75) = (c12 +c33)” < max {cky, crican} < €dy + crican,
in other words:
(76) (C1) = (C9) (41).
The less immediate remark, whose proof is left to the reader, is that:
(77) (c12 +c33)” < (c11 — c33) (c22 — €33) = (c12 + 2c33)” < criep. (i e (Co) (i)
One then concludes as follows:

1. If (Cy1), - which is nothing but (C3), - (C1) is satisfied thanks to (74) and (75). Therefore (Cz) (i%)
holds thanks to (77) and (Cs) (¢) holds thanks to (76).

If (Cz1), is satisfied, (C1) (and thus (Cg) (49)) results from (Cg1), (2), (C1) from (Cz1), (i43) and
(C3)y from (Cyp1), (74).
2. Reciprocally, if (C1), (C2) and (Cs), or (C3), are satisfied, then, according to (74) and (75) either
(c12 + c33)* < (c11 — e33) (c22 — c33)
in which case (Cz1), holds, either
(c11 — c33) (con — c33) < (c12 + e33)” < max {—css(ca2 — c33), c11(co2 — c33)}

that is (Cz1), (%), in which case (Cz1)y (¢) and (Cz1), (¢) result from (C2) (¢) and (C3), (which is
satisfied since (C3), is not). [ |

In order to obtain a sufficient condition for the stability for the PML model with absorption in the z
direction, we simply have to permute c¢11 and c¢o9:

Theorem 5 The PML system (26) with absorption in the xo direction is stable as soon as one of the
two following conditions is realized:

(Czy)y (c12 + ¢33)” < (c11 — c33) (22 — €33),

(1)  (c11 —c33) (c22 — e33) < (€12 + 633)2 < max {—c33(c22 — €33), c11(co2 — ¢33)},
(Cy)y (i) (c22 — ca3) (cr1ca2 — 33) < (a2 + c33) (c12 + €33)°,

(iii) (c12 + 2033)2 < c11699.
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Remark 3 In the isotropic case, the coefficients are expressed in terms of Lamé’s coefficients A, p
through relation (8) one easily checks that condition (C1),, = (C1),, is obviously satisfied, therefore the
PML model with absorption in x1 or in x9 is stable for any isotropic material.

Remark 4 The conditions (7) on the coefficients do not imply the positivity of coefficient c19. However,
in the applications this coefficient is often positive. It is easy to see that in this case, if c33 > coa, the
condition (C1) can not be satisfied, therefore the PML model with absorption in the x1 direction is not
stable. In the same way, if c33 > c11, the PML model with absorption in the xo direction is not stable.
Therefore, if c19 > 0, a necessary condition for the general PML model to be stable is that c33 < ca9
and C33 S C11-

4.4 Back to the numerical experiments of section 3.4.3

We come back to the numerical experiments done at section 3.4.3. We have seen that the material
(V) satisfies the geometrical stability condition. We can check that it does not satisfy the necessary
condition (Cs) which is the high frequency condition in the vicinity of the mode 0 of order 4. On the
other hand the condition (C3) is satisfied, which means that the branches issued from the physical
modes always stay in the good side of the complex plane. Therefore, the instability appearing in the
experiment (V)-1, observed in figure 21, can be explained by the fact that (Cs) is not satisfied. One
can notice that this instability appears after a very long time, so that in practice, it does not seem to
be a significant problem.

In the experiment (V)-2, we added a layer in the z9 direction, and this time one can check that the
condition (C3) written for the zy layer is not satisfied, which means that there exists some branches
that cross the real axis. Since the instability observed in figure 22 appears much sooner than in the
experiment (V)-1, we think that it is due to the fact that the branches issued from the physical modes
are in the bad side of the complex plane for some frequencies.

Conjecture. We conjecture that the sufficient conditions of theorems 4 and 5 are also necessary
stability conditions. The idea is that, as soon as (C3); or (C3), is not satisfied, there exists 6y € ]0,7/2|
such that one curve € — (Vy,);(€) meets the real axis for some € = g9 > 0. The proof would be

complete if one would be able to show that this curve really crosses the real axis at € = gy (case 2 of
Figure 23). This would essentially correspond to proving that:

0
am{ 5 O)yten) } 20,
that we have not been able to do... Another element for this conjecture is related to the fact that the

Vg (e) Vg (€)

£=0 € e=0 8\

Figure 23: The two possibilities for each curve Vy(e).

instability observed in the experiment (V)-2, in figure 22, is due to the fact that the condition (C3) is
not satisfied.
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