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Abstract: The reduced-order extended Kalman (ROEK) filter has been introduced
by Cane et al. [3] as a means to reduce the cost of the extended Kalman (EK) filter.
It essentially consists in projecting the dynamic of the model onto a low dimensional
subspace obtained via an empirical orthogonal functions (EOF) analysis. However,
the choice of the dimension of the reduced state space (or the number of EOFs
to be retained) remains a delicate question. Indeed, Cane et al. [3] have been
surprised by the fact that increasing the number of EOFs does not improve, and
even sometimes worsen, the performance of the ROEK filter. We suspect that it
is due to the optimal character of the EOF analysis which is optimal in a time-
mean sense only. In this respect, we develop a simple efficient adaptive scheme to
tune, according to the model mode, the dimension of the reduced state space, which
would be variable in time. In a first application, twin experiments are conducted
in a realistic setting of the OPA model in the tropical pacific. The observations are
assumed to be synthetic altimeter data sampled according to the Topex/Poseidon
mission features. Our adaptive scheme is shown to improve the performance of the
ROEK filter especially during the model unstable periods.

Key-words: Data assimilation. OPA model. Kalman filter. ROEK Filter. EOF
analysis. Forgetting factor.
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Un filtre de Kalman d’ordre réduit adaptatif pour
I’assimilation de données dans le tropical pacifique

Résumé : Le filtre de Kalman étendu d’ordre réduit (ROEK) a été introduit par
Cane et al. [3] comme une solution pour réduire le coiit du filtre de Kalman étendu
(EK). Il consiste essentiellement a projeter la dynamique du modéle sur un sous-
espace de dimension faible obtenu & partir d’une analyse empirique orthogonale
(EOF). Cependant, le choix de la dimension de I’espace d’état réduit (ou le nombre
de EOFs a retenir) reste toujours une question delicate. En effet, Cane et al. [3]
ont été surpris de remarquer que le fait d’augmenter le nombre de EOFs n’améliore
pas, voir méme détériore parfois, la performance du filtre ROEK. Nous soupgonnons
qu’elle est due au critére d’optimalité de I’analyse EOF qui est optimale unique-
ment au sens d’une moyenne temporelle. A cet égard, nous développons un schéma
adaptatif simple et efficace pour régler, selon le régime du modéle, la dimension de
I’espace d’état réduit, qui peut étre variable dans le temps. En premiére applica-
tion, des expériences jumelles ont été conduites dans une configuration réalise du
modéle OPA dans I'océan tropical pacifique. Les observations ont été supposées alti-
métriques selon les traces du satellite Topex/Poseidon. Notre shéma adaptatif s’est
montré capable d’améliorer la perfromance du filtre ROEK, particuliérement durant
les périodes instables du modéle.

Mots-clé : Assimilation de données. Modéle OPA. Filtre de Kalman. Filtre
ROEK. Analyse EOF. Facteur d’oubli.
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1 Introduction

The goal of data assimilation is to construct estimate of the state of a dynamical
system by combining both the information from a numerical model and from the
observations. This problem has been first study in the context of meteorology but
have recently attracted much attention in oceanography, thanks to several satellite
observation missions which provided a large number of measurements, and also to the
continuous progress in computing power. The assimilation methods can be classified
in two principal categories: sequential methods based on the statistical estimation
theory and wvariational methods based on the optimal control theory (see Ghil and
Manalotte-Rizzoli [10] for a review). The present work concerns the domain of sta-
tistical methods, in particular the well known Kalman filter.

The Kalman filter provides the best linear unbiased estimate, in the sense of
least-squares, of the ocean state using all observations available up to the analysis
time [15]. It is easy to implement but its application into realistic ocean models en-
counters two major difficulties: non-linearity and computational cost. The first can
be partially resolved by linearizing the model around the state estimate, which leads
to the so called extended Kalman (EK) filter [14]. The second is due to the huge
dimension of the model state. Several variants of the EK filter, which essentially
consist in projecting the system state via an order-reduction operator onto a low
dimensional sub-space, have been proposed to reduce the dimension of the system
[5, 7, 8, 9, 18]. A promising approach has been proposed by Cane et al. [3] who
reduced the state space to a small set of basis function, using an empirical orthogonal
function (EOF) analysis. We shall refer to this filter as the reduced-order extended
Kalman (ROEK) filter.

In the ROEK filter, the dimension of the reduced state space (or the number of
EOFs to be retained) was chosen according to the variability explained by the first
EOFs (or inertia) and also to keep the cost of the filter reasonable. Cane et al. [3]
expected that the higher the number of retained EOF the more performance the fil-
ter would be, since the reduced state space generated by the EOFs better represents,
in some sense, the variability of the model. However, their numerical experiments
reveals a surprising feature: increasing the number of EOFs does not improve, and
even sometimes worsen, the performance of the filter.

The same phenomena has also been observed in our numerical experiments. A
plausible explanation is that the optimality characteristic of the EOF analysis is

RR n" 4298



4 1. Hoteit and D.T. Pham

true in a time-mean sense only as such an analysis is based on a long historical run.
The last observation motivate us to develop a simple adaptive scheme to tune the
dimension of the reduced state space. Our idea consists simply in fixing a number
of EOFs sufficient to represent the variability of the system in the stable period and
then add some new EOFs when model instabilities appear in order to represent more
completely the local structures of the model. Note that a similar approach has been
already successfully implemented by Hoteit et al. [12] to tune the forgetting factor
and the evolution of the correction basis, for the singular evolutive extended Kalman
(SEEK) filter and its variants.

The outline of this paper is as follows. In the next section we briefly review
the ROEK filter. Section 3 recalls the EOF analysis and discuss its characteristics.
Section 4 describes our adaptive approach to tune the dimension of the reduced state
space. Finally, section 5 explains our implementation strategy of the adaptive ROEK
filter to assimilate altimetric data in the OPA model and presents the simulation
results of some twin experiments conducted in the tropical pacific ocean.

2 The ROEK filter

We shall adopt the notation proposed by Ide et al. [13]. Consider a physical system
described by

X' (tk) = M (te—r, tr) X (tro1) + n(t), (1)

where X'(t) is a vector representing the true state at time ¢, M(s,t) is an operator
describing the system transition from time s to time ¢ and 7(t) is the system noise
vector. At each time ¢z, the state vector is observed by the system

VY = He X' (tg) + e, (2)

where H}, is the observational operator and ey is the observational noise. T'he noises
n(ty) and g are assumed to be independent random vectors with mean zero and
covariance matrices (J; and Ry, respectively.

The sequential data assimilation consists in the estimation of the state system
X' at each observation time, using observations up to this time. In the linear case,
this problem has been entirely solved by the well known Kalman filter. This filter
possesses an attractive feature of being recursive. Computation is done “on line” as

INRIA



An adaptively reduced order extended Kalman filter 5

soon as new observations are available. In the nonlinear case, one often linearizes
the model around the current estimated state vector, which yields to the so called
extended Kalman EK filter (see for example Ghil and Manalotte-Rizzoli [10] for a
review). Apart from initialization, this filter proceeds as a succession of forecasting
and correction steps. Assuming that at a time f;_;, one already has an estimate of
the system state, often referred to as the analysis state vector X *(¢x—1), with some
analysis error covariance matrix P*(tx—1). The EK filter allows the construction of
the next X?(tz) by correcting the forecast X /(tx), which is the output of the model
starting from X®(¢tx_1), using the new observation. It also provides the calculation
of the new analysis error covariance matrix P*(t), to reflect both the propagation of
error from the analysis to the forecasting step, resulting in an error covariance matrix
Pf(ty), and the reduction of error achieved by the correction step. The reader can
consult Jazwinski [14] for more details.

In the oceanic models, the dimension of the state vector is of the order 107. The
use of the EK filter to assimilate data in these models can not thus be done without
massive order reduction, since otherwise the size of P* would be about 107 x 107.
As proposed by Fukumori et al. [9], the use of a (linear) reduction operator, which
relates the state vector of the system to a small dimension reduced-order state vec-
tor, provides us several alternatives to reduce the cost of the EK filter. Indeed, this
enables us to avoid the evolution of P* and P/ by letting the forecast error to evolve
in the reduced-order state space, after it has been “transported” in this space, and
then to reconstruct this error in its origin (or full) space via the pseudo-inverse of the
reduction operator. One obtains in this manner the equations of the reduced order
extended Kalman (ROEK) filter which is the most used variant of the EK filter in
practice (De Mey [6]).

Without lost of generality, one can assume that the reduction operator S is
orthogonal so that its pseudo-inverse is equal to ST. The full state vector X* is then
related to the reduced state vector X! by

X'=SX! (3)

If this assumption is used in the EK filter, one obtains the equations of the ROEK
filter which operates in two stages apart from an initialization stage as the EK filter
(see [9] for more details).

RR n- 4298



1. Hoteit and D.T. Pham

0-

Initialization stage: We resort here to an objective analysis, based on the
first observation Yy’: we take as the initial analysis state vector

X(to) = X + SP(to)STHS Ry [Yy — HoX] (4)
where
P (to) = [STH] Ry " HoS] ™, (5)

X is the average of a sequence of state vectors and Hy is the gradient of Hy
evaluated at X. The initial analysis error covariance matrix may be taken as

P*(to) = SP(to)S™.

Note that we have used the first observation for initialization, the algorithm
actually starts with the next observation.

Forecast stage: One applies the model (1) to compute the forecast state
X7 (tr) = M (try tio1) X" (ti-1) (6)

and let the covariance matrix of the forecast error in the reduced space P/ (tr)
(of dimension r x r) to evolve according to

PI(ty) = [STM(tg, tre1) S]P(tre1) [STM (t1, tr—1)S]* + ST QLS. (7)
The forecast error covariance matrix is then equal to

Pi(ty) = SP/(t)ST. (8)

Correction stage: The correction of the forecast state is done according to
the formula

X% (te) = X7 (tr) + G[Y = HiXY (1)) (9)
where G, is given by
Gy = SP/(t)STHT R . (10)

The covariance matrix of the analysis error covariance matrix P*(f) is then
updated from the equation

(P2 (0] = [P/ (0)] ™+ STHE R H,S. (11)
The analysis error covariance matrix is then given by

P(ty) = SP(t)ST. (12)

INRIA



An adaptively reduced order extended Kalman filter 7

It is important to notice here that we have neglected in formula (3) the represen-
tativeness error which should represent the information that has not been explained
by the reduced space defined by S (this error can be conveniently “inserted” into the
model error (see [3])). However, following Pham et al. [19], we introduce instead
the use of a forgetting factor to limit the propagation of this error with time. This
approach has been adopted as a way to sidestep the difficulty of correctly specifying
the representativeness error. The equations of the ROEK filter algorithm with the
forgetting factor remains unchanged. Only the update equation of the analysis error
covariance matrix in the reduced space is replaced by

P21 = [P (1)) + STHE R LS. (13)

Concerning the cost of this filter, it mostly comes from the calculation of the
evolution equation (7) of the forecast error in the reduced state space. It thus de-
pends on the dimension of the reduced space r because the numerical calculation of
M(t,tk—1)S requires (r + 1) integrations of the tangent linear model. A reasonably
low choice of r is then imperative for realistic applications.

The performance of the ROEK filter highly depends on the representativeness of
the reduction operator S. A good choice of S should lead to a large reduction of
the dimension of the system and to a reduced state space which well represents the
variability of the model. Different forms of the operator S have been proposed in
the literature such as the use of a coarse resolution [8], the most dominant singular
modes of the tangent linear model and the most dominant eigenmodes of the analy-
sis error covariance matrix [4], etc, which are supported by more or less simplifying
assumptions on the dynamic and the characteristics of the model (see De Mey [6] for
a review).

With the same aim in view, Cane et al. [3] have adopted a different approach:
using the empirical orthogonal functions (EOF') analysis, they reduced the state space
for the forecast covariance updated to a small set of basis functions, called EOFs,
which nonetheless represented all the significant structures that were predicted by
the model. More than the implementation cost reasons, the philosophy of order
reduction of Cane et al. [3] relies on the fact that since we can not precisely compute
the “true” error covariance matrix, it is useless to try to specify its full description.
In numerical applications, this procedure was shown to lead to a substantial saving
without any loss of accuracy compared to the full EK filter [3].

RR n- 4298



8 1. Hoteit and D.T. Pham

3 EOF analysis

This analysis aims at providing a representation as accurately as possible of a sample
of state vectors Xy,..., Xy in IR” in a low-dimension (denoted r) subspace. For a
vector X, let X denotes its orthogonal projection onto a subspace of dimension r
spanned by an M—orthogonal basis S = {¢x}i=1,...r, M being some metric (to be
chosen) in the state space, and the constant function

X=X+ erpp=X+S55"M(X - X) (14)
k=1
where X = ]szil X; is the average of Xy,..., Xy and
cr = (X = X, de)m = Sf M(X - X). (15)

The EOF analysis then consists of minimizing the mean squares projection error

N
1 -
= 5 LI il (16)

with respect to all choices of the basis. Here the introduction of a metric M is
needed in the case where the state variables are not homogeneous (as they represent
different physical variable such as velocity, salinity, temperature ...) to define a dis-
tance between state vectors independent from unit of measure.

The solution to the above minimization problem is given by the first » normalized
eigenvectors ¢, ..., ¢, of the sample covariance matrix P of Xq,..., X, namely

P:%QQT with  Q=[X; - X Xy — X], (17)

relative to the metric M, the eigenvectors being ranked in decreasing order of their
eigenvalues A, ..., A.. With regard to the choice of r, it has been shown that the
fraction of variance (or inertia) explained by the first » EOFs is given by

D)
I(¢1a"'a¢r):%a (18)

and thus can be used as a guide for choosing r (this fraction should be close to 1).
The reader is referred to Preisendorfer [21] for more details.

INRIA



An adaptively reduced order extended Kalman filter 9

In our case, we are interested in representing the variability of the state mo-
del around its mean and thus we use a long historical sequence of model states
X1,..., Xy which can be extracted from a model run. Therefore, the matrix P
contains a bulk of information on the system variability when N is sufficiently large.

4 Adaptive tuning of the dimension of the reduced space

As explained in the above section, the dimension r of the reduced state space (or the
number of EOFs to be retained) was chosen according to the value of Z, providing
that the cost of this filter remains reasonable since this cost highly depends on this
number. Cane et al. [3] have noticed in their numerical experiments that increasing
the number of EOFs does not improve, and even sometimes worsen, the performance
of the filter. The same phenomena has been also observed in our numerical expe-
riments. For a plausible explanation, we observe that the optimality property of
the EOF analysis is only optimal (at best) in a time-mean sense. Indeed, the EOF
analysis is done over a long time period composed of periods in which the system
evolves stably and periods in which it evolves unstably. Local perturbations often
arise in the latter period and not in the former, and they are represented by the
last EOFs corresponding to the last eigenvalues [3, 11]. Using more EOFs when the
system is in a stable period would introduce spurious information which can degrade
the performance of the filter. On the other hand, using only a few EOFs would not
be enough to represent all the local structures of the system in the unstable periods.
The filter will then discard corrections in these structures and the error may grow.
Therefore to achieve better performance of the ROEK filter, our idea is quite simply
and consists in fixing a number of EOFs suitable to the stable period and then add
some EOFs in the unstable periods in order to represent more completely the model
local structures. In other words, we will give the dimension r of the reduced state
space one of two values ry and ry (rq < r3) according to the model state.

Such an adaptive scheme can be easily implemented in the ROEK filter. Indeed,
if one denotes by S; and S; the basis containing the first r; and ro EOFs respectively,
the algorithm of the ROEK filter is taken to be the same as described in section 2,
using S1 (instead of S) when the model is stable and S; when model instabilities
appear. However, in the transition phase “stable to unstable” and vice-versa, one has
to change the equation (7). Specifically, it is replaced by

PI(tr) = [STM(tr, tr—1)S1]PF (te=1)[S7 M(tk, tr-1)S1]" + 52Q57 (19)

RR n- 4298



10 1. Hoteit and D.T. Pham

each time the model goes from a stable to an unstable period (i.e. S5 is used instead of
1), meaning that the reduced forecast error ef (t;) = M (tg, ty_1)S1€% (ts—1) (Where
e?(t) is the reduced analysis error) is projected onto the subspace generated by Ss,
and by

PL(tk) = [STM(te, tio1) So) B (te—1) [ST Mty 1) Se] T + $1QST - (20)

when model instabilities vanish (S is used instead of S).

A similar approach has been already adopted by Hoteit et al. [11, 12] to adapt
the forgetting factor and the evolution of the correction basis for the SEEK filter
and its variants. To detect the model unstable periods, Hoteit et al. [11, 12] pro-
posed to track the filter’s behavior by computing an instantaneous average and a
long term average of the prediction error variance, denoted by s; and [; respectively.
Therefore, if cs; < I; (¢ is a tuning constant), they assumed steady conditions have
been achieved and considered that the model is in a stable period. In this case we
use r = r; EOFs. Otherwise, if ¢s; > i, this is an indication that the model may
be in an unstable period since this would degrade the filter short term performance
(the long term performance is weakly affected because it is averaged over a long
duration). We must then increase the number of EOFs and thus take r = ry EOFs.

Estimates of s, and [ are computed recursively as in Hoteit et al. [12]:

S = aSp_1+ (1 — OA)HYkO — Hk)(f(tk)”?, (21)
e = Bloi+ (1= B)|[YY — Hi X ()| (22)

where o and 3 are constants chosen such as 8 <1 and a < §3.

Note that Hoteit et al. [12] have used the same approach to tune the value of
the forgetting factor by giving it one of two values p; < 1 and p; < p;. One can
therefore use this adaptive scheme together with the one on the number of retained

EOFs.

5 Application to altimetric data assimilation in the OPA
model of the tropical Pacific

To evaluate the performance of our adaptive tuning scheme described in the above
section, we have implemented the ROEK filter in a realistic setting of the OPA model

INRIA



An adaptively reduced order extended Kalman filter 11

in the tropical Pacific ocean, under the assumption of a perfect model (Qr = 0).
The assimilation is based on the pseudo-observations which are extracted from twin
experiments.

5.1 Model description
5.1.1 The OPA model

The OPA model (OPA for Océan PArallélisé) is a primitive equation ocean general
circulation model which has been developed at the LODYC laboratory (Laboratoire
d’Océanographie DYnamique et de Climatologie) to study large scale ocean circula-
tion. It solves the Navier-Stokes equations plus the rigid lid assumption and some
hypothesis made from scale considerations. The system equations is written in curvi-
linear z-coordinates and discretized using the centered second order finite difference
approximation on a three dimension generalized “C-grid Arakawa” (see Arakawa [1]
for details). Time stepping is achieved by two time differencing schemes: a basic
leap-frog scheme associated to an Asselin filter for the non-diffusive processes and a
forward scheme for diffusive terms. The sub-grid scale physics are a tracer diffusive
operators of second order on the vertical, the eddy coefficients being computed from
a turbulent closure model (see Blanke and Delecluse [2]). On the lateral, diffusive and
viscous operators can be either of second or of fourth order. The reader is referred
to the OPA reference manual Madec et al. [17] for more details.

5.1.2 Configuration of the tropical Pacific

The model domain covers the entire tropical Pacific basin extending from 120°FK to
70°W and from 33°S to 33°N and the level depth varies from 0 at the sea surface
to 4000m. Two buffer zones are included between 20° and 33° in the north and
south of the domain, for the connection with the sub-tropical gyres. The number
of horizontal grid points is 171 x 59 on 25 vertical levels. The model equations are
solved on an horizontal grid with a zonal resolution 1° and a meridional resolution
maximum at the equator of 0.5° and goes down to 2° to north and south boundaries.
The vertical resolution is approximatively 10m from the sea surface to 120m depth
then decreases to 1000m at the sea bottom. The time step is one hour.

The bathymetry is relatively coarse. It was obtained from Levitus data’s mask
[16]. The forcing fields are interpolated from the ECMWF reanalysis with monthly
variability. It is composed of wind stress and heat, temperature and fresh water
fluxes. Zero fluxes of heat and salt and non-slip conditions are applied at solid

RR n- 4298



12 1. Hoteit and D.T. Pham

boundaries. A second order horizontal friction and diffusion scheme for momentum
and tracers is chosen with a coefficient of 2000m?/s in the strip 10°N — 10°S and
increase up to 10000m?/s at the north and south basins boundaries. The static
instabilities are resolved in the turbulent closure scheme. The model starts from
rest (i.e. with zero velocity field). The salinity and the temperature are stem from
seasonal climatologic Levitus data [16].

5.1.3 The state vector

The state vector X7 is the set of prognostic variables, which, in the OPA model,
consists of the zonal and meridional velocity U and V, the salinity S and temperature
T, thus

X'=(Uv,v,s, )" (23)

However, the observation, which is the sea surface height (SSH), is directly
related to the surface pressure Ps but the later only indirectly related to the state
variables through a set of partial differential equations. More precisely, P; is a
diagnostic variable which can be computed through the system of equations ( Pinardi

et al. [20])

0
V(HVP;) = -V(fHk A u) —V/ (z+ H)Vpdz+cVB (24)
-H
where V denotes the horizontal gradient, H is the ocean depth, f is the Coriolis
factor, k is the vertical unit vector, u is the horizontal vector velocity field, p is the
density, ¢ is the Rossby number and B is a term describing the nonlinear advection
and dissipation effects. The term B is rather complex but is also needed for solving
the system equations concerning X*. In fact the numerical code for integrating the
OPA model also computes, as a by product, the diagnostic variable Ps. Therefore, for
purely technical reasons, it is advantageous to augment the state vector by including
the variable Py, that is we now take

Xt=(Uu,v,S,1,pP)T. (25)

Of course, the model equations must now include the extra equation (24) and the
derivation of our filter algorithm must be based on this extended model, not on
the original model (the EOF analysis are also carried out on the augmented state
vectors). The overhead is insignificant anyway since Ps is only defined on the surface
of the ocean. The number of state variables increases from 4x171x59x25 = 1008900

INRIA



An adaptively reduced order extended Kalman filter 13

to 4 x 171 x 59 x 25 + 171 x 59 = 1018989. The numerical cost of the algorithm
would increase by the same proportion since this cost is roughly proportional to
the dimension of the state vector. This increase would be offset by the fact that
the calculation of the observation operator is now straightforward. If we work with
the original state vector, we would have to pull out the portions of the OPA code
for computing directly P, from (U,V,S,T)7, with some unavoidable redundancy
with the integration of the model equations. But the main point is that this would
increase considerably the complexity of the programming work without incurring
real differences, both in term of cost and in term of methodology.

5.2 Data and filters validation

Twin experiments are used to assess the performances and the capabilities of our
adaptive scheme. Therefore, a reference experiment is performed and the reference
state X' retained to be later compared with the fields produced by the filter. More
precisely, a sequence of 250 state vectors was retained every 3 days (which corres-
ponds to the Topex/Poseidon (T/P) measurements frequency) during the period of
march 1% 1991 to november 105 1991.

The assimilation experiments are performed using the pseudo-measurements which
are extracted from the reference states. The SSH is assumed to be observed accor-
ding to the real tracks of T /P with a nominal accuracy of 3cm. The orbital period
of this satellite is 9.8 days with an observation every three days. For our numeri-
cal experiments, we produced 3 masks (see Figure 1) with a temporal interval of
3 days which we used successively. Therefore, the period of simulated observations
is 3% 3 = 9 days which is different form the true period (9.8 days). However, this
doesn’t matter since twin experiments are performed. The observation error is simu-
lated by adding randomly generated Gaussian noise to the synthetic observations of
SSH. Note that in the assimilation interval, a period of very strong model instability
occurs between July and September (see Figure 2)

The performance of all our filters is evaluated by comparing the relative root
mean square (RRMS) error for each state variable, in each layer or in the whole
domain of the ocean model. The RRM S is defined as

RRMS(ty) = H)T‘f)((tf()tk_) )_(f;((jT)H’

(26)
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14 1. Hoteit and D.T. Pham
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Figure 1: Topex/Poseidon satellite tracks with an orbital period of 9 days and an
observation every 3 days.
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Figure 2: Relative variation of the state vector in the assimilation period.

where X is the mean state of the sample Hg and || - || denotes the Euclidien norm.
Thus the error is relative to the free-run error since the denominator represents the
error when there is no observation and the analysis vector is simply taken as the
mean state vector.

5.3 Design and result of the EOF analysis

For the present study, the data for the assimilation experiments is again simulated
but in an unrelated way with the above simulation. In a first experiment, the model
has been spun up for 7 years from 1980 to 1986 with the aim to reach a statistically
steady state of mesoscale turbulence. Next, another integration of 4 years is carried
out from 1987 to 1990 to generate a historical sequence Hg of model realization. A
sequence of 480 state vectors was retained by storing 1 state vector every 3 days to
reduce the calculation since successive states are quite similar. Because the state
variables in (25) are not of the same nature, we shall in fact apply a multivariate
EOF analysis. Each state variable, namely U, V, S, T and Pg, will be normalized
by dividing it with the spatial average (over the grid points) of its variance.

Figure 3 plots the number of (global) EOFs and the percentage of inertia contai-

ned in the sample Hg they explain. From this result, we have chosen to retain
r1 = 35 global EOFs in our assimilation experiments, as this achieve 87% of the
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Days

Figure 3: Percentage of inertia versus the number of retained EOFs.

inertia of the sample and this percentage is not much increased for higher value of
r1. The value of ro was chosen empirically to be 40.

5.4 Assimilation results

In order to show the feasibility of our adaptive tuning scheme we will present the
assimilation results of three experiments obtained from the ROEK filter with: (i)
fixed correction basis dimension r = 35 and fixed forgetting factor p = 0.8, (ii) fixed
r = 40 and fixed p = 0.8, (iii) adaptive r = 35 or 40 and adaptive p = 0.5 or 1.
The initial values of the instantaneous average sy and the long term average [y were
taken as ||YY — Hp X (to)||* to make sure that p takes the value 0.5 during early
assimilation period. The values of the constants ¢, @ and 8 were chosen as 1.002,
0.95 and 0.9, respectively.

o The ROFK filter

We firstly discuss the assimilation results of the ROEK filter with a fixed number
r = 35 of retained EOFs and a fixed forgetting factor set to p = 0.8. It can be seen
from Figure 4 that the ROEK filter performs well both in the upper and the lower
layers. Although the performances of the ROEK appears to degrade somewhat in
the presence of instabilities, it still behave satisfactory during this period. One may
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Figure 4: Evolution in time of the RRM.S for the ROEK filter on the whole model
domain, on the (mean of the 5) upper and the (mean of the 5) lower layers.
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think that the meridional velocity V is not sufficiently well-assimilated because the
assimilation error is only reduced by less than a half. But it is worthwhile to point
out that, since the velocity field of the tropical Pacific ocean is particularly zonal,
the meridional velocity fields are generally, and especially the referenced field in our
experiment on march 1% 1991, well-approached by the average of the meridional
velocity. Since this average serves as our initial analysis, the initial error is already
low and therefore it would be hard to reduce it much further.

We have presented the results of our experiments for the ROEK filter in both
the upper and lower layers for completeness. But we have noticed that, for the
adaptive ROEK filter, the difference between their RRMS and that of the ROEK
filter computed in all the layers are quite similar to that computed on each layer.
Therefore, in the sequel we will only present results in all layers, to save space.

o The adaptive ROFK filter

The assimilation results of the experiments (i), (ii) and (iii) plotted in Figure 5
and Figure 7-8, seem to confirm our theory on the number of EOFs to be retained.
Indeed, in the one hand, one can see that the performance of the ROEK with r = 35 is
seriously degraded during the unstable period of the model, despite a good behavior
during the stable period and, in the other hand, the performance of this filter has
been improved during the model instability when more EOFs (r = 40) were retained
but we observe the opposite phenomena in the stable period. It can also be seen that
our adaptive tuning schemes based on the number of EOFs and the forgetting factor
greatly enhance the performance of the ROEK filter in all the assimilation period.
In particular, the feasibility of our adaptive tuning schemes of the dimension of the
reduced state space and of the forgetting factor was made clear since the ROEK filter
has been completely stabilized during the unstable period thanks to the increase of
the value of r and the decreasing value of p.

6 Discussion

The extended Kalman (EK) filter is one of the major tool to assimilate data into
ocean models. However, its implementation in realistic ocean models is not possible
because of its prohibitive cost. As proposed by Fukumori et al. [9], the use of a
(linear) reduction operator, which relates the state vector of the system to a small
dimension reduced-order state vector, offers us several alternatives to reduce the cost
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Figure 6: Evolution in time of the forgetting factor (diamond line) to show its relation
with the relative variation of the state vector (the curve in Figure 2 is reproduced in
solid line, rescaled by a factor of 10%).

of the EK filter. The resulting simplified Kalman filters have seen to be effective in
assimilating data into oceanic models [3, 5, 8, 9, 18§].

In the case of the ROEK filter of Cane et al. [3], where the reduced state space is
obtained through and EOF analysis, it has been noticed that increasing the number
of retained EOFs does not always improve the filter performance. We speculate that
this comes from the fact that the EOF basis is only (at best) optimal in time average
sense. We also introduce a new adaptive scheme to tune the number r of retained
EOFs according to the model state. Following Hoteit et al. [11, 12], our low cost
scheme simply in giving r one of two values according to the relative magnitudes
of the instantaneous and long-term prediction errors. Note that the value of the
forgetting factor has been also adapted in our adaptive ROEK filter as proposed in
Hoteit et al. [11, 12].

The series of twin experiments which we have conducted to assess the feasibilities
of our new adaptive ROEK filter and to evaluate its performance confirm our theory
on the value of r to be considered. Moreover, it clearly shows the feasibility of our
adaptive tuning schemes in stabilizing the performance of the ROEK filter during
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Figure 7: Maps of ocean velocity on Oct 21%* 90 in the uppermost (left) and the 17
(right) layers: from the ROEK filter (top); from the reference (middle); and from
the adaptive ROEK filter (bottom).
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Figure 8: Maps of sea temperature on Oct 21" 90 in the uppermost (left) and the
17" (right) layers: from the ROEK filter (top); from the reference (middle); and
from the adaptive ROEK filter (bottom).
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the unstable period of the model and also in detecting such periods.

The results obtained so far are quite encouraging and suggest to examine other
aspects of the EOF analysis. Indeed, since the local variability is represented by
the last KOFs, it would be wiser to limit the spatial range of these EOFs since local
phenomena only occur “locally”. An alternative has been already proposed by Hoteit
et al. [11] which have introduced the global-local EOFs (or mixed) analysis. Such
analysis consists in applying a series of independent EOF analysis in the different
subdomains of the model on the residue of the states in the space generated by the
(classical) EOFs. A promising idea would be to use our adaptive scheme on the
number of EOFs to be retained in order to tune the number of local EOFs to be
considered. A work based in this idea is in progress and will be reported in the near
future.
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