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Caractérisation des propriétés indépendantes du retard des
systémes a retard par des critéres LMI non conservatifs.
Application a I’étude de la stabilité et des propriétés entrée-sortie
des systémes & paramétre complexe

Résumé : Ce rapport est consacré & I’étude de la stabilité indépendante du retard et de propriétés entrée-
sortie indépendantes du retard (passivité, performance H,, critére du cercle, critére de Popov) des systémes
4 retard. Les résultats principaux montrent que, comme c’est le cas pour les systémes rationnels usuels, les
propriétés étudiées ici peuvent étre caractérisées par la solvabilité d’inégalités linéaires matricielles (linear
matric inequalities, LMI en anglais). Ces derniéres sont construites a partir de fonctionnelles quadratiques
de Lyapunov-Krasovskii généralisant une classe bien connue. La méthode employée s’applique également 3
I’analyse des systémes & paramétre complexe incertain, pour lesquels les résultats sont liés & la recherche de
fonctions de Lyapunov dépendant de maniére analytique du paramétre. Des examples numeriques illustrent
les résultats.

Mots-clés :  Systémes linéaires & retard, systémes dépendant d’un paramétre, stabilité indépendante
du retard, fonctionnelles de Lyapunov-Krasovskii quadratiques, inégalités linéaires matricielles, propriétés
entrée-sortie, passivité, performance H,, critére du cercle, critére de Popov.



1 Introduction

1.1 Presentation of the problem and background

Our primary concern in the present paper is the study of delay-independent stability and input-output prop-
erties for the following class of linear delay systems

z = Aoz (t) + A1z(t — h) + Bou(t) + Biu(t — h), y(t) = Cox(t) + Crz(t — h) + Dou(t) + Dru(t — h) (Sp)

with input u and output y, where, for n,p,q € N, (Ag, A1, Bo, B1,Co,C1,Dg, D1) € R?*™ x R**" x R"*P x
R™*P x RI*™ x RI*™ x R7*P x RI*P. We mean by this, properties which are verified for any nonnegative value
of the delay h > 0. As a matter of fact, the delays are usually imperfectly known: a way to ensure robustness
with respect to this uncertainty is un fact to employ delay-independent properties. More precisely, we shall
study here internal stability, passivity, Ho, performance analysis, circle criterion and Popov criterion.

Classical argument [20, 21, 15] permits to relate the analysis of delay-independent properties of Sy, to
the study of properties of a class of systems with a complex parameter z, |z| < 1. This new variable replaces
in the transfer the occurrences of e %% h > 0 (s is the Laplace variable). The progress made in the domain
of delay systems thus give the possibility to apply the same methods and results to the study of the following
class of finite-dimensional systems, parametrized by the complex parameter |z| < 1,

= (Ao +2zA1)x + (Bo +2B1)u, y=(Co+ 2C1)x+ (Do + 2D1)u . (S:)

As it is usually the case in robust control, the complex parameter z may play the role of some unbounded
unmodeled dynamics. When studying system S, one allows the matrices of the system to be complex.
The properties we are about to study are defined in terms of the transfer H of size ¢ X p with two
frequency domain variables, defined by

H(S,Z) d:ef (C() + 201)(8.[" — Ao — ZAl)_l(B() + ZBl) + Dg + 2D, .

For the usual subclass of rational systems obtained for (A4;, B;,C1,D1) = (0,0,0,0), characterization of
stability and input-output properties by linear matriz inequalities (further abbreviated LMIs) is a classical
result, see e.g. [5]. Recall the practical benefit of the use of LMIs: their resolution is a standard convex
optimization problem [5], achievable in polynomial-time, and for which very efficient interior-point methods
have been developed and are available as toolboxes in widely-spread control-oriented scientific softwares,
such as MATLAB or SCILAB. From a methodological point of view, in order to determine the exact form of
the LMI adapted to the property under study, a crucial role is played by the quadratic function z(t)* Pxz(t),
where the positive definite matrix P is the unknown of the LMI.

In the study of delay-independent properties of linear delay systems such as Sp, it has been observed
that the class of quadratic Lyapunov-Krasovskii functionals

t

z(t)T Px(t) +/ (1)L Qu(r) dr | (1)

t—h

parametrized by the two matrices P = PT > 0,Q = QT > 0, instead of z(¢)? Pz(t) for the finite-dimensional
systems, permits to derive various sufficient LMI conditions. Delay-independent stability criteria have been
obtained lately [25, 14, 39], conditions for delay-independent guaranteed L? cost have been found [30, 10,
41, 11], as well as estimates of delay-independent H, performance [27, 8, 24, 18] or delay-independent
passivity conditions [31]. All these analysis results are conservative, as they provide sufficient, not necessary,
conditions (performance upper bounds). Other references may be found in [32].

On the other hand, parameter-dependent Lyapunov functions [16, 17| have been proposed for the study
of systems with parameters, especially affine parameter-dependent Lyapunov functions [13, 12]. These
approaches too, provide numerically checkable, conservative, conditions.

The properties under study here may be easily proved to be equivalent to the existence, for any complex
z with |z| < 1, of a hermitian positive definite solution P(z) to a certain parameter-dependent LMI. Fol-
lowing the result by Delchamps [9] on regularity of the solutions of Riccati equation wrt coefficients, result
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generalized by Kamen in [22], one deduces that P(z) may be supposed analytic in z and z*. In other words,
there exists a family of hermitian matrices P, € R¥?Xkn gych that

In

P(z)= lim (I, =L, ... %Dp)p | “ |, (2)
k—+oo
zkflln

where the limit is uniform in the complex unitary disk. So the assumption of affine dependency of the
Lyapunov function wrt the parameter is generally speaking quite restrictive.

1.2 Presentation of the results

The central idea for obtention of the criteria provided in the present paper, corresponds to an extension of
the class of functionals (1). For any positive integer k, define

m(t)h U(t)h y(t)h
- t— t—
X (t) def ot : ) , Up(t) def ul : ) , Yi(t) def l : ) for system Sp,
ot — (k= 1)h) ult = (k= 1)h) y(t — (k — 1)h)
(3a)
In Ip I
k() = . z(t), Up(t) = : u(t), Ve(t) = : y(t) for system S, . (3b)
zk—.IIn Zk—.ljp Zk—-IIq

The LMIs obtained in the present contribution corresponds to the search, in appropriate context, for
quadratic functionals of the type

def ¢

Vie(@()(t) = X ()" PeXi(t) + - X (1) QX (1) dr | (4a)
Py, Qy € RF?XEn for the stability, or
t T
GO0 C a0 rao+ [ (GH0) e (H0) ar. (4b)

P, € Rknxkn (0, ¢ RE(n+p)xk(ntp) for the input-output properties. For the parametrized system S, this
corresponds to the use of quadratic functionals of the type

Ve(@()(®) L 20 Poi(t) + (1 — |27) / X (r)* QuXe(r) dr |

e u()0) 0P + @ = 1) [ (D) @ (G0 ar

for hermitian matrices Py, Q. To each property under study will be associated a family of LMIs indexed
by the positive integer k, and whose unknows are the matrices P, and Q. As usual, these LMIs are
constructed in order that their solvability ensures decreasingness of adequate quantity, along the trajectories
of the system.

The core of our contribution may be summarized as follows. For each family of LMIs, we show that
solvability for positive rank k implies that the associated stability or input-output property holds. Also,
solvability for rank k implies solvability for &' > k, so these sufficient conditions are more and more precise
(less and less conservative). A key feature is that they are also necessary, in the sense that: if a certain
property holds, then the corresponding LMIs are fulfilled from a certain rank k and beyond. Thus, the
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conservatism vanishes asymptotically. The stability and input-output properties under study are hence
characterized by solvability of some LMI problems. To our knowledge, no contribution of this nature has
been previously published in the literature, for the kind of properties studied here.

The result presented above is not surprising, when interpreted in terms of parameter-dependent Lyapunov
functions. To any family of matrices P; defining the expansion (2) of a solution P(z) for the underlying
parameter-dependent LMI, one may biunivocally associate a family of square matrices Py of size kn such
that

I,
P(z) = lim 1 (In 2L, ... 2V P #ln (5)
k_>+001+|z|2+...+|z|2(k—1)
2k,

n

Moreover, in the situations we shall study, it may be proved that the existence of expansion (2) for P(z)
definite positive for any |z| < 1, is equivalent to the existence of an expansion of type (5) with P, > 0.

It turns out that the P are the same than in the LMIs based on functionals (4). More precisely, for any
k € N and any positive definite Py, of size kn, the formula

I,
1 zI,

14|22+ - 4 |2[2G-D) (

I, z°I, ... 2V )P
zk:l‘In

defines, for any z,|z| < 1, a solution of the underlying parameter-dependent LMI, if and only if there exists
Q. such that (P, Q) fulfills the corresponding LMI at rank k. In conclusion, solvability of the LMIs at
rank k is equivalent to existence of a parameter-dependent quadratic Lyapunov functions z*(t) P(z)z(t) for
system S, polynomial in z, z* of degree k — 1.

The organisation of the paper is as follows. Notations are given in Section 2, and some preparatory work
is done. The studied properties are rapidly presented, and the associated LMIs and parameter-dependent
LMIs are given in Section 3. The main results are enunciated in Section 4 (Theorems 1 and 2, related to
systems S, and S} respectively). Three numerical examples illustrating the method are given in Section 5.
The proofs of the results are provided in Section 6. Concluding remarks are given in Section 7. Discrete-
time and continuous-time versions of Kalman-Yakubovich-Popov lemma being used as a central tool in the
demonstrations, a well-suited version is reproduced in Appendix.

2 Notations and preparatory results

o The matrices I, 0y, 0, xp are resp. the nxn identity matrix and the n xn and n xp zero matrices, sometimes
simply abbreviated I,0. The symbol ® denotes Kronecker product. The conjugate and transconjugate of
M, are denoted MT and M*. N is the set of positive integers, and by definition R dzefR U {oo}. By D is
denoted the closed unit ball in C. The unit circle is denoted as the boundary D. By Ct is meant the closed
set of complex numbers with nonnegative real part. Last, for sake of space, we shall use the abbreviations
Ry, (12b) and R(124)(2), to designate the matrix Ry, defined in (12b) and the function R(z) defined in (12a),
andsoon ...

o Define, for any k € N, the matrices J¢,, J}, , € REnx(k+n (4 [ as upper, lower), J, j € R2knx(k+1)n by

n,k?“n

o def def def [(J}} Iin  Opnxn
n,k :e (Ikn Oknxn): Ji,k; :e (Oknxn Ikn): Jn,k :e (Jl’k) = (0 k I} * ) ’
n,k knxn kn

and similarly J%, J! ., Jpk- Define also J¢, Ji € REHP)x(k1)(ntp) | 7 € R2k(n+p)x(k+1)(n+p) by

Ju d§f< Ink 0kn><(k+1)p> gl dzef( Jﬁ,k Oknxgk+1)p) T d:ef< Ink 02kn><(k+1)p>‘
k Okpx (k+1)n ok » Uk Okpx (k+1)n Ik ’ O2kpx (k+1)n JIp,k
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Define at last jn L € R3kn><(k+2)"’ jk e R3k(n+P)><(k+2)(n+P), as

Ikn 0kn><2n =
j def < def J 0
Jn,k = Oknxn  Ikn  Oknxn , Iy, 1e (0 n,k 3kn}5(k+2)p> )
Oknx2n Iin 3kpx (k+2)n ook
e For z € C, let vi,(2) € CF,
1
vE(2) def :

k—1

This quantity, already used in Section 1, will intervene naturally in the forthcoming calculations. Indeed,
Xy, = v (V) ® z for system Sy, X = v (2) ® x for system S, ,

where the operator V is defined by: (Vz)(t) = z(t — h), and (V¥z)(¢) def (Vo VE=12)(t) = z(t — kh).

One shows easily that

) vp(2) ® I,
) s Ink(Vry2(2) @ In) = | 20p(2) ® I,
22 (2) ® I,

v (2) ® I,

Jn,k(vk+1 (z) ® I”) = (zvk(Z) ® I,

For system Sy, this corresponds in time-domain to the identities

X (t)
_ Xy (t) z _ o
Taas(® = (700 ) Tosdisa( = xit-n | ©
Similarly,
X (t)
K@\ _ [ t=n) | (@) () X0 _ (Ault =)
7 (7)) = kz’(’w)) (i) = () A () = Geen) - @
U (t —h

e Last are given some functional sets. Define the following sets of functions on D, with values in C**":

o, ¥ pe 0P . VkeNIP, e C"F P() = lim (vp() ® L) Pe(vn() ® I))},

k—+oco

o ¥ yPea, : vkeN P =P >0},

;”2(%(_) ® L) Py(vk () ® 1)} -

def .
lim
k—+oo ||vg(.)

¥, L(Pe[CP : Vke N, 3P, € Ct»kn po= P >0, P() =

The limits in the previous expressions are to be understood in the sense of the uniform convergence in D.
The set ®,, is hence the closure of the set of complex matrices of size n X n, whose coefficients are polynomial
in z,2*. The elements of ®, are analytic in the two variables z,z* in every point of D. The coefficients
themselves converge when k goes to infinity: for any element of ®,,, one may assume without loss of generality
that, for any integer k > 2,

I
Pi—1 = (Itk—1yn  O(k—1)nxn) Pr (0 (k=1)n ) . (8)

nx(k—1)n

The fact that ®; is stable by addition will be used.
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3 Delay-independent properties of delay systems and related LMIs

In the present section, we present shortly the properties that will be studied and introduce the associated
LMIs and parameter-dependent LMIs. The LMIs have the general form

Py =P; >0,Qr = Qp, Re(Pr,Qr) <0,

for different expressions of Ry.

3.1 Delay-independent stability

One considers here the asymptotic stability of system S, with « = 0. This property is equivalent to
Vs € Ct,det(sI, — Ag —e™*"A;) #0 .

In order that this property is fulfilled for any h > 0, it is sufficient that Ay + 24, is Hurwitz for any z € D,
i.e. that S, is stable for any z € D. This may be characterized by the existence, for any z in D, of a hermitian
definite positive solution P(z) to the following parameter-dependent LMI:

(Ao + zAl)*P(z) + P(z)(Ao + zAl) <0. (9a)

One the other hand, it may be easily verified that, along the trajectories of S,

dgt Ve o (2()(8)] = (X:(ff(_t)h)y ((pk(fk ®(}i°3@ g g,% %kAo)TPk Pk(ISS A1)> N (gj _05k>) (X:(C;(_t)h))

= X1 ()T R Xpa (8)

where, due to (6),

Re(Pe, Q) def Jr, [(Pk(lk ®(202§25$2A0)*Pk Pk(I(];k(i) A1)> + (%2: _oék)] Jok.  (9b)

Hence, it is likely that existence of positive Py, Q ensuring negativeness of Ry, (g1 is sufficient to ensure that

Ag + zA; is Hurwitz for any z € D. The same considerations apply to the study of the trajectories of S, .

3.2 Delay-independent passivity

A notion useful for stability and stabilization purpose is the passivity of system Sp,, that is internal stability
and strict positive realness of —H (s, e~*"). Same argument than before shows that this property is fulfilled
for any h > 0, provided that, Vz € D,

(P(z)(AO + 24A1) + (Ao + zA1)*P(z) P(2)(Bo + 2B1) + (Co + zCﬂ*) 0. (10a)

(Bo + ZBl)*P(Z) + (C() + 2’01) (D() + Z.Dl) + (DO + ZDl)*

The correct LMI characterization of delay-independent passivity will be deduced from the fact that

T
FUATICERTOOR Crast) IEY et} ERVGIIOR
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where

Pe(It ® Ao) + (I ® A0)* Py | Pe(lx ® A1) Pu(Iy ® Bo) Pi(Ix ® By)

def T (Ik) ®A1)*Pk
Ry (P, = J .
% (P, Qr) k (It ® By)* Py O (mt2p)
(I @ B1)* Py
02k:n><kp
+| Iy |(Ik®C) Ik®Ci) (Ix®Do) (Ix® Dy)) (10b)
Oxp
(I ® Co)*
I, ® Ch)* . .,
+ EI: ®D3* (Okpxzkn Ikp Okp) Jr + JkTQka — J,lcTQlelc .
(Ir ® D1)*

As a matter of fact, it ensues from the previous identity and the formulas in (7), that, whenever Ry, (10p) < 0
and the integral converges,

1 [t

“+oo
/0 u(t)Ty(t) dt = - ; Uk (t)T Vi(t) dt > Vi ap) (2(.), u()(0) -

3.3 Delay-independent ., performance

When S}, is internally stable and the input u is seen as a perturbation, a possible way of evaluating its
influence on the output y is to compute the norm of the corresponding input-output operator. Considering
the latter as a L? — L? map, yields the Ho.-norm

_ def . i
|H(s,e*"loo = sup ||H(jw,e "M,
wER

where the matrix norm is the largest singular value. The appropriate parameter-dependent LMI and LMI
are here as follows.

(P(z)(Ao + 2A1) + (Ao + zA1)*P(2) P(2)(Bo + zBl)> N ((C’o + zCl)*) ((Co+2C1) (Do+2Dy)) <0.

(B() + ZBl)*P(Z) —Ip (DO + le)*
(11a)
Pe(Iiy ® Ao) + (I ® A))* Py | Pu(ly ® A1) Py(Iy ® By) Py(Ix ® By)
def 1 Iy ® A1)* Py
Ry (P, = J .
(e Q) ¢ (Ik ® Bo)* P Ok(n+2p)
(I ® B1)* Py,
I Co)* -
EI: gc(l)g* O2kn | 02knx2kp
* | (k@ Co) (Iy®Ch) (I ®Do) (Ix @ D1)) — Ity Op Jr
(Ik ® DO) Okpx2kn 0 0
(I, ® Dy)* kp Ukp ]
+ QY = T Qu -
(11b)

One has here

T
Wi @001 = (31 0) Ry (10)) + 0720 - 0210

in such a way that, when Ry (11p) < 0 and u is square summable,

+o0 too
| T 0Ty at = ¢ [ @0 = I I(0) dt 2 Vi @), u()O)
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3.4 Delay-independent circle criterion
When system S}, is closed by a nonlinear element u = f(¢,y) fulfilling the following sector condition, defined
by the matrix K € RP*7:

vt >0,y € RY, f(t,y)" (Ky — f(t,) 20,

a way to ensure asymptotic stability of the closed-loop is to verify circle criterion [35, 42], that is internal
stability plus strict positive realness of I, — KH(s,e *"). This case will be treated with the following
notations.

def [(Ag +241)*P(2) + P(2)(A¢ + 241) (Co + 2C1)*KT + P(2)(By + 2By)
R(z) = ( KO'(C0 +2C1) + (B +zBlo)*P(z) —2[1,(-)kl((D0 +2Dy) + (Doile)*KT) <0. (12a)

Pp(Ir ® Ao) + (I ® A0)*Pr, | Pr(Ix ® A1) Pu(I ® Bo) Pi(I; ® B1)

def -1 (Ir ® A1) Py
Ry (Py, = J *
i (Pry Q) k (Ix ® By)* Py Ok (n+2p)
(I, ® B1)* Py
O2knxkp
+| Iy | (k®KC) (ILi®KC) (Ih®KDy) (Ir ® KD:)) (12b)
Okp
+(Ix®KCy) (I ® KC1) (Iz®@KDo) (I ® KD1))" (Okpxekn  Iip Okp)
O2knxkp
-2 Ikp (Okpxzkn Ikp Okp) T + J;;TQ’“J’? - J’l“TQkJ]lc '
Okp

When Ry, (121) < 0, one has

T
@O a0] = (5 ) Regan (1) ~ )70 0 K90 -t (0)

which is nonpositive, provided that f fulfills the sector condition.

3.5 Uniform delay-independent Popov criterion

When system Sy, is square (p = ¢) and closed by a nonlinear time-invariant, decentralized [23] element
u = f(y) fulfilling sector condition

Vy e R, f(y)" (Ky— f(y)) >0,

when moreover Dy = D; = 0, the results from Section 3.4 may be improved: a way to ensure asymptotic
stability of the closed-loop is to verify Popov criterion [33, 29], i.e. internal stability and strict positive realness
of I, — (I, + ns) K H(s,e~*"), for a certain (non necessarily nonnegative [1]) diagonal matrix n € RPXP. We
provide here necessary and sufficient condition for a delay-independent version of Popov criterion where the
slope i does not depend upon h. We call this uniform delay-independent Popov criterion.
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Using the quantities already defined in Section 3.4, we fix here:

R (2) + Bt U (nK(Co + 2C1)(Ao + zA1))" <0
(122) - \nK(Co + 2C1)(Ao + 2A1)  nK(Co + 201)(Bo + 2B1) + (nK(Co + 2C1)(Bo + 2B1))* :
(13a)
(Ix—1 ® nKCoAp)*
(Ir—1 ® nKCoA1)"

def = O(k—1)nx (ke
Ri(Pe, Q,m) = Ry 1wy + Ji 1 (Ik_(’i é))n;ékc'olgi])* (Ok—1)px3te-1n  Te=1)p  Ok—1)px2(k—1)p)
(Ix—1 ® nKCoB1)"

Ok—1)p

03(k—1)nx(k=1)p
+ ( Tk—1)p ((Tx—1 ® nKCoAo) (Ix—1 ®nKCoA1) O—1)pxk—1)n  (Ip—1 @K CoBo) (Ix—1 ® nKCoB1) 0(k—1p)
02(k—1)px (k—1)p

03(k—1)nx(k=1)p
+ ( Ti—1yp ) (0k—1)pxk—1)n  (Tx—1 ® K C1A0) (Ix-1 ®nKC1A1) Op-1)p (Ix-1 ®nKC1Bo) (Ix-1 ® nKC1By1))
02(k—1)p><(k—1)p
Ok—1)nx(k=1)p
(Ix—1 @ nKC1Ap)*
(Ix—1 @ NKC1A1)"
0ck—1)p
(Ix—1 ® nKC1Bo)*
(Ix—1 @ nKC1B1)*

+ (0k—1ypx3k—1yn  Tk—13p  Ok—1ypx2(k—1)p) | Jo—1 -

(13b)

From the computations in Section 3.4 and (7), one gets
T
@O0 = () R (501 ) - 07 (@ K0 - )

d [ 22 & yi(t—k'h)
_2£ anKZ/O fz(’l}) dv 5

k'=0i=1

which is nonpositive, provided that Ry (131,) < 0 and f fulfills the sector condition. In the last term may be
recognized the derivative of a Lur’e term, equal to —2(Ir_1 ® nK)Vs_1(t)TUy_1(t).

4 Main results

The results are first expressed in terms of properties of the class of systems S, z € .

Theorem 1. (LMI characterization of properties of the parametrized system S,) Consider the
system S, with complex coefficients.

e System S, is asymptotically stable for any z € D, if and only if there ewist k € N and hermitian
matrices P, € Ch*kn Q€ Ch**n such that Py and — Ry (op)(Pr, Q) € Clkt)nx(k+1)n gre hermitian
definite positive.

e System S, is passive for any z € ), if and only if there exist k € N and hermitian matrices P, € Cknxkn
Qi € CHHPIXk(4P) gych that Py and — Ry, (100)(Pr, Q) € CHHVM+)XA+D(4P) gre hermitian definite
positive.

o System S, is internally stable with Hoo-norm ||H(s,2)||so less than 1 for any z € D, if and only if there
exist k € N and hermitian matrices P, € CF"¥k? Q. € CHn+p)xk(n+p) sych that Py and —Ry, (110) (Pr, Qk) €
Ck+)(n+p)x(k+1)(n+D) gre hermitian definite positive.

e System S, is internally stable with I, — K H (s, z) strictly positive real for any z € D, if and only if there
erist k € N and hermitian matrices Py, € Cknxkn Q. € CE+P)xk(n+p) gych that Py and — Ry, (12v) (P, Qk) €
Ck+1)(n+p)x(k+1)(n+P) gre hermitian definite positive.
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o Let n € RP*P be a diagonal matriz. If p = q and Dy = Dy = 0, then system S, is internally
stable with I, — (I, + ns)KH(s,z) strictly positive real for any z € D, if and only if there evist k € N
and hermitian matrices P, € Cikn Q€ Ch(n+p)xk(n+p) gych that P, and — Ry (130)(Pr, Qr, 7251) €
Ck+1)(n+p)x(k+1)(n+P) gre hermitian definite positive.

e In every case, if the LMI associated to the problem is feasible for k € N, then the LMIs corresponding
to k' > k are also solvable. [ |

Proof of Theorem 1 is given in Section 6.
The previous results may be recast in terms of scaled small-gain conditions, involving structured singular
values [43]. As an example, when p = g, Ag + zA; is Hurwitz and ||H(s, 2)||cc < 1 for all z € D, if and only

if

(SIn — Ao)_lAl (SIn — Ao)_l Onxq (SIn — Ao)_lBo
On On Onxq Bl
su <1, 14
sej%'uA Ogxn Ogxn 04 D, (14

C()(SIn — A0)71A1 + C1 C()(SIn — Ao)il Iq Co(SIn — Ao)ilBo + Dy

where the uncertainty set A is equal to {diag{zIsn1q; Z} : 2 € C,Z € C1*7}. To prove this, express H (s, 2)
as the linear fractional transformation

Co(SIn — Ao)_lBo + Dy

(sI, — Ao)™"Ar (s, — Ao)™" Onxa\\ ' /(sI, — Ao)"'Bo
+z (CO(SIn - AO)_IAI + C1 CO(SIn - x40)_1 Iq) I2n+q - On On Onxq B
qun 0q><n 0q Dl

and use the Main loop theorem [43, Theorem 11.7]. The usual method for numerical verification of condition
(14) involves time-consuming frequency sweeping and use of upper bound of pa, which is here equal to pa

[43].
Sweeping may be avoided, using the fact that (14) is equivalent to
(In - AO)_I(In + AO) \/i(In - AO)_IAI \/i(In - 140)_1 Oan \/E(In - AO)_IBO
\/i(-[n - AO)_I (In - AO)_lAl (In - 140)_1 Onxq (In - AO)_IBO
a On On On Onxq B <1,
Oq qun qun Oq Dl
V2Co (I, — Ag)t A1 + G4 Co(I, — Ag)~! I, Co(In, — A¢)™' By + Dy

(15)

with here A = {diag{zs[,; 2lon+q; Z} : 25,2 € C,Z € C?*7}. However, up to our knowledge, there does
not exist method of exact evaluation for this structured singular value.

The results of Theorem 1 offer an attractive numerical alternative, as resolution of LMIs is a convex prob-
lem, solvable in polynomial time. Computation of the structured singular values is known to be a NP-hard
problem (see [6, 38|, and specifically [37] for problems related to delay systems). The results in Theorem 1
hence furnishe approximation of some NP problems, of arbitrary precision, by families of P problems. Their
main weakness, in the present state, is non-decidibility: no information is known on the size of the least k&, if
any, for which the LMIs are solvable (in other words, of the largest £ which is necessary to test numerically
to get an exact conclusion on the veracity of the property under study). This is an important complexity
issue, both from theoretical and practical point of view. On the other hand, some numerical experiments
(see below Section 5) indicate that small values of k (typically smaller than the dimension n of the state
variable of the system) often yield correct answers.

We now express the results adapted to the issue of characterization of delay-independent properties of sys-
tem Sj. It turns out that almost no generality is lost when replacing in the transfer the terms e =", h > 0, by
2z, |z| < 1. Indeed, the set of the systems fulfilling a property of the parametrized systems S, , constitutes the
interior of the set of the systems fulfilling the corresponding delay-independent property of Sy. The topol-
ogy which is meant, is the topology induced by the norm of the largest singular value on the product space
RX7 x RX™ x RYXP x RPXP x RI*™ x RI*™ x RI*P x R?*P of the coefficients (A, A1, By, B1,Co, C1, Do, D1).
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In particular, the LMI conditions we obtain characterize “robustified versions” (with respect to infinitesimal
uncertainties on the matrices defining Si,) of the delay-independent properties.

Theorem 2. (LMI characterization of delay-independent properties of the delay system S})
Consider the system Sy with real coefficients.

o All the systems in a neighborhood of Sy are asymptotically stable for any h > 0, if and only if there
exist k € N and symmetric matrices P, € RF"¥kn 0 ¢ Rk sych that P, and — Ry (o0) (Pr, Qr) €
REFDnX(A1)1 e symmetric definite positive.

e All the systems in a mneighborhood of Sy are passive for any h > 0, if and only if there exist k €
N and symmetric matrices P, € REnxkn Q. ¢ R¥+P)Xk(n+P) gych that P, and —Ry (10m)(Pe, Qr) €
READ(+p) X (k+1)(n40) gre symmetric definite positive.

o All the systems in a neighborhood of Sy are internally stable with Hoo-norm ||H(s,e *")||c less than 1
for any h > 0, if and only if there exist k € N and symmetric matrices P, € RF"*kn Q. € RE(+p)xk(ntp)
such that P, and — Ry, (110)(Pr, Qr) € READ(+p)x(k+H)(n40) gre symmetric definite positive.

o All the systems in a neighborhood of Sy, verify circle criterion for any h > 0, if and only if there exist
k € N and symmetric matrices P, € RF"*kn Q€ RE(H+P)Xk(n4p) gych that Py, and — Ry (19n)(Pr, Q1) €
READ(4p)x(k+H)(n40) gre symmetric definite positive.

o Letn € RP*P be a diagonal matrix. If p = q and Dy = D1 = 0, then all the systems in a neighborhood of
Sy, fulfill Popov criterion with slope n for any h > 0, if and only if there exist k € N and symmetric matrices
Py € REnxkn Q€ RE(+P)Xk(n+p) gych that Py and — Ry (130)(Pr, Qr, z25m) € REFD(+P)x(k+D)(n4p) gpe
symmetric definite positive.

o In every case, if the LMI associated to the problem is feasible for k € N, then the LMIs corresponding
to k' > k are also solvable. [ |

sh)

Proof of Theorem 2 is given in Section 6. The result on Popov theorem may be adapted to treat the case
of systems with time-varying nonlinearities with time derivative fulfilling a sector condition [2].

Remark 3. It may be proved that if the LMI condition (9b) admits a solution (P, Q) with Py positive,
there is no loss in assuming that @)y is positive definite too. Whether this is the case for the other criteria
is an open question. It may conjectured that there is no loss of generality in assuming that @ > 0 too.
Indeed, both options have been tested in the numerical examples presented in Section 5 below (with and
without the assumption @ > 0), showing no difference. See as an example Table 1, where the computation
times are compared (generally speaking, it seems that the latter are increased when the constraint Qi > 0
is added).

However, it must be emphasized that the functionals (4) play a central role in the derivation of the LMI
criteria, as demonstrated in Section 3, although they are positive definite only if P, and @y are themselves
positive definite in the various LMIs. O

5 Numerical examples

We present here three academical examples, in order to test the algorithms, to check the coherency of their
results and to provide an indication on the computation times necessitated by the resolution of the LMIs.

The computations presented here have been achieved using the SCILAB package Imitool!. The indication
of the CPU time necessary for the resolution of the LMIs has been measured on a computer equipped with
a Pentium IIT 800MHz.

1Scilab is a free software developed by INRIA, which is distributed with all its source code. For the distribution and details,
see Scilab’s homepage on the web at the address http://www-rocq.inria.fr/scilab/
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5.1 Example 1 — Delay-independent ., performance

System S}, is considered, withn =2,p=1,¢ =2 and
-8 19 -1 0 1 8
AO - (_4 3) Y Al - (_2 3) ) BO - (4) Y Bl - (0) Y
3 4 -2 5 5 -3
=1 5) a= (0 4) p=(5). 2= ()

One wishes to estimate the supremum over h > 0 of the norms ||H (s,e™*")|| -

The properties of the system are numerically evaluated as follows. One maximizes, for different values
of the integer index k, the value of the parameter A > 0 such that there exist Py, Q, P positive, such
that R(11p)(Pr, Qr) is negative, with Co, resp. C1, Do, D1, replaced by ACq, resp. ACy, ADo, AD;. The

corresponding maximal value is denoted Ag. Then, from Theorem 2,

)\,;1/2 N lim  sup  sup ||Ho(s,e)||oo -
eNO H, e B(H;e) h>0

Here, B(H;e¢) represents the ball of center H and radius € > 0 in the product metric space given before
Theorem 2.

Independently, the value of ||H(s,e [lco is also computed directly for different values of A > 0. The
effective value, evaluated by gridding, is found to be

—sh)

sup ||H (s, e *")||co = 64.3 .
h>0

The results are given in Table 1. Addition of the constraint () > 0 when solving the LMI (see Remark
3) does not change the results, but increases the computation times.

The value of |H(s,e™%")|| as functions of h are plotted in Figure 1. The successive estimates of the
norms are also indicated. The curve w + ||H (jw, e 7“")|| is provided in Figure 2 for h = 3 as an example,
showing already brutal variations.

As an example, one may conclude from what precedes that the feedback interconnection of H(s,e™
with any stable proper transfer G(s) of norm ||G||oc < p, p > 0 fixed, is well-posed and internally stable [43]
for any h > 0, if and only if

sh)

p<1/64.3.

5.2 Example 2 — Delay-independent absolute stability

One now consider the system Sy, with n =2,p=1,¢ =1, given by

T R & R R

Co=B -1),Ci=(-2 5), Do=0, D, =0.

One wishes to determine the largest sector [0, K] for which absolute stability is ensured, for every nonnegative
value of h.

Let us first use circle criterion. One evaluates, for different values of k, the largest K} for which there
exist P = PkT >0, Qr = Q{ such that the corresponding value Ry (121) is negative. The corresponding
problem is a LMI in the three unknowns Py, Q, K. The results are summarized in Table 2.

When the nonlinearity does not depend upon time, the uniform delay-independent Popov criterion applies.
It leads to the resolution of a problem affine in the unknowns Py, Q, K plus a new scalar variable replacing
nK. Dividing the value found for this variable by the value of kK /(k — 1) gives value for the Popov slope 7.
The successive estimates Ky, n are given in Table 3.

Figure 3 shows the Popov curves obtained for different values of h. The three Popov locii do not intersect
neither the vertical line corresponding to the largest gain K found by delay-independent circle criterion, nor
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the Popov line found by uniform delay-independent Popov criterion. The tangency to these lines show the
optimality of the estimate of K for k > 2.
One concludes from this analysis that:

e the system S, defined by (16) and closed by a nonlinearity u = f(¢,y) in the sector [0, K] fulfills circle
criterion for any h > 0, if and only if K < 0.03147. This ensures asymptotic stability for any h > 0.

e the system S, defined by (16) and closed by a time-invariant nonlinearity v = f(y) in the sector [0, K]
fulfills Popov criterion for any h > 0, with a Popov line independent of h, if and only if K < 0.05233.
This ensures asymptotic stability for any h > 0.

5.3 Example 3 — Asymptotic stability of some real systems with two real pa-
rameters.

Let us consider the following real system, affine in the two real parameters z,, 2;.
Er\ _ (Aor + 2rA1r — 2 —Aoi — 2 Avi — 2iArr\ (2 (17)
Z; Agi + 2pAri + 2:A1r  Aor + 2rArr — 2: A1 zi)

One wishes to determine the largest p > 0 such that system (17) is asymptotically stable, for any z., 2;
such that 22 + 22 < p?.

Putting z def Ty + 1T, 2 def zr + 25, Ao def Agr + i Ag;, Aq def Ay + 1Ay, system (17) writes as the
complex system

T = (AO + ZAl);C .

Take here n =4,

-1 -1 1 1 0100
def | =1 -1 -1 0 def [1 0 1 0
Ao = 0 1 -1 1 , AL = 0101
0 1 -1 -1 0010

The successive estimates pr of the largest p ensuring robust asymptotic stability of (17) are given in
Table 4. They are compared in Figure 4 to the exact value of p, equal to [7]

(supp«jwfn - Ao)lAn) -

w€R

The CPU time given is the duration of the test for the value of pj, indicated.
From the achieved analysis, it turns out that system (17) is asymptotically stable for any z,, z; such that
22+ 22 < p?, if and only if

p < 0.6504 .

6 Proofs

The general organisation of the proofs is as follows. On the one hand, the stability and input-output
properties, expressed in frequency domain with the two variables s, z, are shown to be equivalent to solvability
of some LMIs parametrized by the variable z (see inequalities (9a), (10a), (11a), (12a), (13a) above). This
comes from an usual application of (continuous-time) Kalman-Yakubovich-Popov lemma. On the other
hand, one shows that solvability of the LMIs with unknowns P, Q given in the statement of Theorems
1 and 2 (and associated to formulas (9b), (10b), (11b), (12b), (13b) above) is equivalent to the existence
of solution to the same parameter-dependent LMI, polynomial in the variables z and z*, of degree k. This
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ensues from discrete-time version of Kalman-Yakubovich-Popov lemma. These assertions are exposed in
Section 6.2 (Lemma 4).

The result permitting to link the stability and input-output properties to the LMIs, is then a result
on analyticity of solutions of LMIs with respect to their coefficients. It is stated and proved in Section 6.3
(Lemma 5). The two previous ingredients are put together to prove Theorem 1 (Section 6.4), and then
Theorem 2 (Section 6.5). Some additional notations are first given in Section 6.1.

6.1 Additional notations and technical results

We begin by some notations necessary to the proofs.

e Let
def le(k—l) 0 ) def ( 1 >
F, = = .
k ( Iy Ok—1yx1/)’ T Or—1)x1

The size of the previous matrices is f: kx 1, Fy: kX k, and the spectrum of F}, is {0}. These matrices permit
some useful manipulations of the matrices J previously defined in Section 2, which will now be exposed.
The matrix J, ; admits the following block decomposition:

Ikn Oknxn fk ®In Fk ®In)
Ik = = . 18
ok (Oknxn Iy, ) ( Oknxn Iin, ( )
Define
-1

def 1 def Fr,® I, Ognxk Znk(2)  Oknxk

— — = I _ 14 — ) P i
Zn,k(z) (Ikn Z(Fk ® In)) > Zk:(z) ( k(nt+p) — ? (Okpxkn F® Ip Okpx kn Zp,k(z)

Simple computations show recursively that

fk®In Oknxp) (Uk(z)@)-[n Oknxp )
z, I,) = I, 2 - .
K (2)(fe @ In) =vp(2) ® %(2) ( Ovpxn  f5® I Orpxn Vi) ® I,

e Define the matrix Nj, € RE+TD(n+p)x(k+1)(ntp) by

In Onxp Onxkn Onxkp
Nk dZEf Oknxn Oknxp Ikn Oknxkp
Opxn Ip Opxkn Opxkp

Okpxn Okpxp Okpxkn Ikp
N}, is a permutation matrix, so N, ' = NT. Using the properties established before, one shows easily that
p 2 k k g p

Tnyp Inyp
Jip Ny, sz(z) (fk b In Oknxp ) = Jp Ny, P (Uk(z) (2 In Oknxp )

Okpxn fk ®Ip Ok:pxn Uk(z) ®IP
v (2) ® I, Oknxp
=J (Uk+1 (Z) ® I, 0(k+1)n><p ) — 2V (z) &I, Oanp
0(k+1)pxn V41 (Z) ® Ip Okpxn Uk:(z) ® Ip ’
Okpxn zop(2) ® I
(19a)
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and similarly

= Tntp - vpt1(2) @I, 0
_ (k+1)nxp
TotNe |, 2, (2) (féckii" .;.ik%x;p) ko ( Oh+1)pxn  Uk41(2) ® Ip)
vp—1(2) ® I, O(kfl)nXp
2vp—1(2) ® I O(k—1)nxp (19b)
2o 1(2)® I, Ok—1)nxp
O(k—1)pxn vp-1(2) @ I
Ok—1)pxn 2vp-1(2) ® I,
O(kfl)pxn z%k_l(z) ® I,

6.2 Properties of LMIs and parameter-dependent LMIs

Lemma 4. e For any z € D, Ay + zA; is Hurwitz if and only if (9a) admits a hermitian positive definite
solution P(z). For any k € N and any hermitian positive definite matriz P, € CF"*kn  P(%) given by

1
W(Uk (2) ® In)* Py (v (2) ® In) (20)
is a hermitian positive definite solution of (9a) for any z € 0D, if and only if there exists a hermitian matriz
Qr € CF™Xkn such that Ry, gb)(Pi, Q) € CRHUnx(+Dn s hermitian definite negative.

o For any z € D, Ay + zA; is Hurwitz and H(s,z) is strictly positive real if and only if (10a) admits
a hermitian positive definite solution P(z). For any k € N and any hermitian positive definite matriz
P, € Cknxkn - P(z) given by (20) is a hermitian positive definite solution of (10a) for any z € D, if and only
if there ezists a hermitian matriz Qg € CE"HP>XR(+P) gych that Ry, (10b)(Pk, Qk) € CHD(ntp)x(k+1)(ntp)
is hermitian definite negative,

e For any z € D, Ao + 2zA; is Hurwitz and |H(s,2)||co < 1 if and only if (11a) admits a hermitian positive
definite solution P(z). For any k € N and any hermitian positive definite matriz P, € CF>kn  P(z)
given by (20) is a hermitian positive definite solution of (11a) for any z € 9D, if and only if there exists
a hermitian matriz Qp € CHHP)Xk(+P) gych that Ry (11)(Pe, Q) € CHHIM+P) XA (n4P) s hermitian
definite negative.

e For any z € D, Ag + zA; is Hurwitz and I, — KH(s,z) is strictly positive real if and only if (12a)
admits a hermitian positive definite solution P(z). For any k € N and any hermitian positive definite matriz
P, € Cknxkn - P(z) given by (20) is a hermitian positive definite solution of (12a) for any z € D, if and only
if there ezists a hermitian matriz Qp € CKM+P)}XK(+P) gych that Ry, (1on) (P, Qi) € CE+D(ntp)x(k+1)(ntp)
is hermitian definite negative.

e Suppose p = q, Dy = Dy = 0, and let 1 € RP*P be a diagonal matriz. For any z € D, for any k € N,
Ao + zA; is Hurwitz and I, — (I, + £-1ns)KH(s, z) is strictly positive real if and only if (13a) admits a
hermitian positive definite solution P(z), For any k € N and any positive definite matriz P, € Ck"¥kn P(2)
given by (20) is a hermitian positive definite solution of (13a) for any z € 0D, if and only if there exists a
hermitian matriz Qi € CE TP }R(4P) gych that Ry, (130) (P, Qk,n) € CHHDIP)x(k+1)(ntp) 4 hermitian
definite negative.

o When the system under study is real, one may replace everywhere “hermitian” (resp. C) by “symmetric’
(resp. R) in the previous statements. [ ]

)

Proof. e The first part of the statements, establishing an equivalence between internal stability plus strict
positive realness of ad hoc transfers with parameter z € D, and existence of positive definite solution for
(9a), (10a), (11a), (12a), (13a), is obtained by classical invocation of the continuous-time version of Kalman-
Yakubovich-Popov lemma (see Lemma A.2 and the subsequent Remark A.3).

e Let us show now the second part of the statements, e.g. for the circle criterion issue. Consider the two terms
containing Qj in formulas (12b). Using the block decomposition (18), one shows that J#T QyJ¥ — JIT Qy J!
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is equal to

T
Fe®Ln Opnxp | 0 (T4 ®Tn Oknxp ) (fk ®In  Oknxp ) O (Fk ® I, oknxkp)
Ok:pxn fk: ®Ip k Okpxn fk ®Ip Okpxn fk ®Ip Okpxkn Fk ®Ip

T T
Fk ® In Oknxkp Qk fk: by In Oknxp Fk ® In Oknxkp) Qk (Fk ® In Oknxkp) _ Qk
Okpxkn Fk ®Ip Okpxn fk ®Ip Okpxkn Fk ®Ip Okpxkn Fk ®Ip
The spectrum of
(Fk ®In Oknxkp)
Okpxkn Fk ® Ip

is {0}. One may hence apply the discrete time version of Kalman-Yakubovich-Popov lemma (see Lemma
A.1). One gets that there exists Q = Q}, such that Ry 121)(Pr,Qx) < 0 if and only if: Vz € 9D,

*
In+p

In+p
fk®-[n Oknxp Nng (12b)(Pk 0k(n+ ))Nk (fk®In Oknx )) <0.
Z ) ? P z p
(Z k(Z) ( Okpxn fk by Ip i k(z) Okpxn fk (29 Ip

Using formula (19a) and developing, the previous expression is shown to be equal to

(vk(z) ® I, Oknxp )* |:(Pk(-[k ® (Ao + ZAl)) + (Ik ® (AO + ZAl))*Pk Pk(Ik ® (BO + ZBl)))
Olcpxn Uk(z) ® Ip (Ik ® (BO + zBl))*Pk Okp

+ Okn Oknxkp Okn (Ik (29 K(CO + ZCI))*) (21)
(It ® K(Co + 2C1)) (I ® K(Dg + 2D7)) Orpxkn (I ® K(Dgo + 2D1))*
—9 ( Okn 0kn><kp>:| (Uk(z) by In Oknxp )
Okpxkn Ikp Okpxn Uk(z) 2y Ip ’
that is
||1} (Z)”Z (A0+ZA1)*P(Z) +P(z)(A0+zA1) (Co+201)*KT+P(Z)(Bo+ZBl) (22)
k K(Co+2C1) + (B + 2B1)*P(2)  —2I, + K(Do + 2D1) + (Do + 2D1)*KT )

where P(z) is defined by (20). Facts such as

(I ® (Ao + 2A1)) (vk(2) @ I)) = (vk (2) ® L) (Ao + 241), (vk(2) ® I)* (vk(2) ® L) = [|ow(2)[I° L

have been used in the derivation. This achieves the proof for the circle criterion.

To treat Popov criterion, one just needs to put Dy = D; = 0 in the preceding computations and to add
0 (21) the term

(Uk—l(z) ®In  Ok—1)nxp >* [( O(k—1)n O(k—1)nx (k—1)p )
O(k—l)pxn Vk—1 (Z) ® Ip (Ik—l ® ’I’}K(Co + 201)(A0 + ZAl)) (Ik—l ® ’I]K(Cg + ZCl)(B() + ZBl))
i O(kfl)n (Ix—1 @ nK(Cy + 2C1) (Ao + zAl))*)] (vk_l(z) I, O(kfl)nxp >

Ok—)ynx(k—1)p (k-1 @ nK(Co + 2C1)(Bo + 2B1))* Oh—1)pxn  Vk1(2)® 1)’

which amounts to add to (22) the term

B2l (2) ( On (K (Co + 2C1)(Ao + 241)* )
* nK(Co + 2C1)(Ao + 2A1) 1K (Co + 2C1)(Bo + 2B1) + (nK (Co + 2C1)(Bo + 2B1))*

To obtain the previous formula, (19b) has to be employed, together with the fact that, for any z € 9D,

llor—1 ()1 /llve (2)II* = (k = 1)/ k.
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Small adaptations of the same techniques permit to treat the other cases. For the H, performance
analysis issue, it suffices to remark that

7 * (Ik ® CO)T
n+p (Ik ® Cl)T T
22 (2) (fk @I Oknxp ) (I ® Do)* (Ir®Co) (Ir®C1) (Ir®Do)" (Ir ® D1))
Okpxn .fk®IP (Ik ®D1)T
O2kn | O2knx2kp Intp
— Ikp Okp fk ® In Ok:nxp
O2kpx2kn Okp  Okp 225(2) Okpxn [ @ Ip

@I (o 5)+ (1200 (Corsc 0o 2mi))

6.3 Analytic solutions of LMIs

We have obtained in Section 6.2, conditions on existence of solution, in the set ¥,, defined in Section 2, to
the LMIs parametrized by z. We show here that, provided that there exist solutions to these problems for
any z € D, then there indeed exist solutions with such regularity. The following result concerns complex
analyticity of the solutions of LMIs.

Lemma 5. Let A(z) € C**",B(z) € C"*P, M (2) € (C("“D)X("“’)_ be functions of z, analytic in z, z* in
every point of a neighborhood of D. Assume that, for any z € D, there exists P(z) € C**", such that
P(z) = P(2)* >0 and

P(2)A(2) + A(2)*P(2) P(2)B(z)
( ? Bz(z)*P(j) ? zo,, z>+M(z)<0. (23)

Assume moreover that, for any z € D, M(2)* = M(z) and

def

Mu(z) = (In Onxp) M(z) (OIn

pXn

) €, My(x) ' ¥ ((o,,xn 1,) M(2) (O’}:P»_l € - . (24)

Then, LMI (23) admits a solution P € ¥,,. [ |

Proof. By continuity and compactness, there exists € > 0 such that, for any z € D, the left-hand side of
(23) may be chosen (strictly) less than —el,,4,. Consider the stabilizing solution [26] P(z) = P*(z) of the
Riccati equation

A* (z)13(z) + P(z)A(z) + My (2) +el, — (P(z)B(z) + Mi2(2))(Maz(2) + EIp)_l(P(z)B(z) + Mia(2))=0.

Using Schur complement, for any z € D, the matrix P(z) is positive definite, and solution of (23).

e 15T STEP. Extending the result of Delchamps [9] as made by Kamen in Chapter 4 of [22, see Lemma p.
134], one proves that P(z) is (complex) analytic, jointly in z and z*. In other words, there exists a map
f(z1,2), analytic in a neighborhood of D x I, such that P(z) = f(z,z*). One deduces that P € &,. Also,
the coefficients of the expansion of P(z) are real matrices when the system is real.

e 2ND STEP. Now, prove that, for any M(z) € ®,, the product M(z)*M(z) is in ®;}. Indeed, matrix
manipulations show that, for any k € N, there exists a matrix M, € RZ*—1)nx@k—1)n gych that, for any
Mk c Rknxkn,

[(vi(2) ® In)* My (vi(2) ® In)]* (0 (2) ® I)* Mi(vi (2) ® I)
= (V2k-1(2) ® In)* (Tok—1 ® My)T My (Izp—1 ® My)(vog—1(2) ® Irn) -
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Taking My = Iy, and identifying, one sees that My = Dy ® Ii,, where Dy € RZF—1DX(2k=1) jg the
diagonal matrix whose i-th component is the coefficient of |z|2(*=1) in the expansion of [|vg(2)[|* = (1+ 2|+
<o+ |2|2k=D)2 In particular, My, = M7 > 0, and M(2)*M(z) € ®}.

e 3RD STEP. From the very definition, for any z € D,

P(z) = /0+°° A" ()t [Mn(z) +el, — (P(2)B(2) + My2(2))(Maa(2) + EIp)_l(f:’(z)B(z) + Mis(2)) AR gt

The previous integral converges uniformly wrt z € D. This assertion is easily proved when remarking that,
by compactness and continuity,

sup{Res : s € spectrum(A(2))} <0,

z€D
so there exists a T' > 0, independent of z, such that the matrix obtained when putting T instead of +o0 in the
upper bound of the integral, is still solution of (23) in ®;. From this and the first two steps, P(z) appears
as a sum of three elements of ®;} (for small enough & > 0, —(Maa(2) + €I,) 1 = —Mao(2) 1 +eMaa(2) 2 —
£2Mas(2)~% + ... is still in 7). The latter set being stable by addition, P(z) is itself an element of & .
The coefficients of its expansion are hermitian matrices, denoted Py, k¥ € N. Incidentally, P, = P(0) (by
convention (8)), so P, > 0.
e 4TH STEP. The matrix Fj being defined in Section 6.1, consider

Py L By + (B 0 L) By(Fr ® 1)T + -+ + (Fi ® L)V By(F, © I,,)*~DT (25)

The hermitian matrix P, is obtained as a sum of k terms: the first term is Py, the second term is the
matrix whose (k — 1)n last lines and columns are the (k — 1)n first lines and columns of P, (that is Py_; by
convention (8)), and zero otherwise. Similarly, the third is the matrix whose (k — 2)n last lines and columns
form the matrix P,_,, and so on ...

As,foranyieN, 0<i<k-—-1,

(Fy @ 1) T (0 () @ I)) = 2 ((”’”(z)) ® In) ,

0ix1

one sees in definitive that
k . ~
(0k(2) ® L))" Pi(vk(2) ® I,) = Y _ |2]*(0i(2) ® I)* Pi(vi(2) @ I,)
i=1

One then deduces that

kEI—ir-loo W(’Uk() &® In)*Pk(’l)k(.) ® In) = kEr—l{loo(Uk(') ® In)*Pk(’l)k(.) ® In) = 13() R

in the sense of the uniform convergence in D. In particular, beyond a certain rank, inequality (23) is fulfilled
for any z € D, with P(2) defined by (20) and the matrices Py by (25). From the fact that P, > 0 and that

the matrix at the intersection of the n first lines and columns of Py, is the positive matrix Py, one deduces
that P, > 0. This proves that, for small enough ¢ > 0, P € ¥,,, and achieves the proof of Lemma 5. O

6.4 Proof of Theorem 1

e First, one shows that it is sufficient to check the frequency domain properties for z € 0D only, instead of the
whole set D. Indeed, C+ — D, s, ~ (1 —s.)/(1 + s.) is a one-to-one map and s, ++ p(eAot(1=s:)/(1+s:)41)
is subharmonic and continuous, hence [4] it attains its maximum on the complex axis, whence

maxp(er—‘rzAl) = sup p(er—‘r(l—Sz)/(l—‘rsz)Al) = sup p(eA0+(1—sz)/(1+sz)A1) = maxp

(6A0+ZA1 ) .
z€D 5. €CF 5. €jR z€oD
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So Ay + zA; is Hurwitz for any z € D, provided that the property holds in OD.
Similarly, each of the input-output properties may be expressed as the strict positive realness of a certain
matrix, say G(s,z), that is ||(I — G(s,2))(I + G(s,2)) 7 }|ec < 1. For any s € C+, the map

s: 0 [|[(1 = G(s, (1= 8:) /(L +52)( + G(s, (1= 5:) /(1 +52))) |
is subharmonic and continuous on C+, and hence maximal on the complex axis. In definitive,

max [|(I = G(s,2))(I + G(5,2)) " lo = max [|(I = G(s,2))(I + G(5,2)) " [loo -
z€D z€0D

e We now get ready to apply Lemma 5 to the inequalities (9a) to (13a). In the present case, among the
hypotheses of Lemma 5, only verification of (24) necessitates special care. Using the notations as in the
statement of Lemma 5, M11(2) = 0p in (9a), (10a), (12a) and (13a), M11(2) = (Co+2C1)*(Co+2Ch) in (11a),
and both values are in ®;'. Similarly, Ma2(z) = 0, in (9a) and (13a), M22(z) = —(Do+2D1)—(Do+2D;)* in
(10a), Mzz(z) =—-I,+ (Do +ZD1)*(D0 +ZD1) in (lla), M22(Z) =20, + (Do +2:D1) + (Do +zD1)* in (123,).
For (9a) and (13a), one may replace May(z) by —el, for small enough & > 0. In this case, —Maa(2) " € &
For (11a), this is also clear, as

(I, — (Do + 2D1)*(Do + 2D1)) ' = I, + (Do + 2D1)*(Do + 2D1) + [(Do + 2D1)*(Do + 2D1)]> + ...

and every term of the sum is in <I>;f, see the 3rd step in the proof of Lemma 5. One deduces that — Mo (2)~! €
®t. Last, for the case of (10a) and (12a), loop shaping permits to transform the condition into [|(1 —
G(s,2))(I +G(s,2)) || < 1, for which the assumption may be verified as for (11a).

e The equivalence between frequency domain conditions and solvability of LMIs is then established by the
following steps, presented e.g. for Ho, performance.

Vz € D, S, is internally stable with || H (s, 2)||oo < 1

= Vz €D, (11a) admits a hermitian positive definite solution P(z) (by Lemma 4)

= (1la) admits a hermitian positive definite solution P(z) € ¥,, (by Lemma 5, whose assumptions
are verified above)

= 3k €N, 3P, € Ct"*kn P, = PF >0, P(z) defined by (20) is a hermitian positive definite solution
of (11a) for any z € D (by truncation of the expansion of the solution in ¥,,)

= 3k e N,3P, € C-"*kn P = P¢ > 0, P(z) defined by (20) is a hermitian positive definite solution
of (11a) for any z € oD

= 3dkeN 3P, € (Ck"Xk",Pk = P,: > 0,3Q € Ck("+p)Xk(n+p),Qz = Qk;Rk,(nb) (Pk,Qk) <0
(by Lemma 4) .

On the other hand,

3k € N,3P, € CH*kn Py = Py > 0,3Q4 € CHmPknte) O = Qp Ry (110) (Pr, Qi) < 0
= 3k e N,3P, € C*"*k P, = P¥ > 0, P(2) defined by (20) is a hermitian positive definite solution
of (11a) for any z € 0D (by Lemma 4)
= Vz e 9D, (11a) admits a hermitian positive definite solution P(z) (by Lemma 4)
= Vz € 0D, S, is internally stable with ||H (s, 2)|lcc <1 (by Lemma 4)
= VzeD, S, is internally stable with ||H (s, 2)|lcc < 1 (see above) .

The other results are established similarly. Remark that, if the coefficients of S, are real, then Py, Qy too
are real (see Lemma 4 and 5).

e It remains, in order to achieve the proof of Theorem 1, to show that the solvability of the LMIs for index
k implies the same property for k + 1. For this, one uses the parameter-dependent LMIs.
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Consider for example the delay-independent circle criterion. Assume there exist a positive integer k
and symmetric matrices Py, Qx with P, > 0, such that Ry (121)(Pk,@Qr) < 0. Equivalently, by Lemma 4,
inequality (12a) admits, for any z € 0D, a solution given by (20), where Py is the same matrix. Let us define

def K+1

Peyi = —5— (diag{Py;0n} + diag{0n; Pr}) -

The matrix Py € REFDnx(k+1n ig symmetric positive definite. Moreover, for any z € oD,

1 1+ |22 k+1 1
S QI,)*P 2)® I,) = vi(2) @ L) P (vi(2) ® I,
”'Uk:—i-l(z)”z ('l)k-}-l(Z) ) k+1(’l)k+1( ) ) 21 k ||vk+1(z)||2( k( ) ) k( k( ) )

= 3 (0k(2) ® In)" P (vk(2) ® I)
llve (2)11? " "
Hence, using the result in Lemma 4 in the converse sense, one concludes that there exist symmetric matrices
Pry1,Qry1 with Pryq > 0, such that Ry (196) (Pry1, Qrt1) < 0.
The same principle applies to the other cases. For the uniform delay-independent Popov criterion, n has

to be changed in kgkgln. This achieves the proof of Theorem 1.

6.5 Proof of Theorem 2
One may found in [15, Theorem 2.4] the following equivalent form for delay-independent stability of Sy:

V(s,z) € 2,5 € C+ \ {0},2€Dors=0,2 € DU {1} = det(sl, — Ag — 24;) #0 .

Hence if system S, is delay-independently stable, but there exists z € D such that Ag + zA4; is not Hurwitz,
then det(Ag + zA4;) = 0 for a certain z € D \ {1}. So, for any € > 0, s = ¢ is a root of the equation
det(sI, — (Ao +€l,,) — zA1) = 0: infinitely close from the nominal system Sj, there exist unstable systems.

As the set of strongly delay-independently stable systems is obviously open, it is hence the largest open
subset in the set of delay-independently stable systems, in other words, its interior.

The same argument shows that if an input-output property of Sy, is fulfilled for any value of h > 0, but
the corresponding property of S, is not fulfilled for any z € D, then the appropriate condition is violated
for s = 0 and a certain z € D \ {1}. In this case, small perturbations suppress the desired property. In
other words, the set of matrices (Ao, A1, Bo, B1,Co, C1, Do, D;) for which S, fulfills a certain property for
any z € D is the interior of the set of those matrices for which S} fulfills the same property for any h > 0.
It then suffices to apply Theorem 1, remarking (see the proof of this result) that realness of the coefficients
implies realness of the matrices P, and Q.

7 Conclusion

Delay-independent stability and input-output properties of linear delay systems and stability and input-
output properties of linear systems with a complex parameter have been studied. Based on the proximity
between the two classes of problems, the issues of internal stability, passivity, Ho, performance analysis,
circle criterion and Popov criterion are examinated. Adequate extensions of the class of quadratic Lyapunov-
Krasovskii functionals, a technique originated from delay systems, permitted to obtain, for each problem
under study, a family, indexed by a positive integer k, of sufficient criteria. The criteria, expressed as the
solvability of some simple LMI problem, are less and less conservative when k increases, and the results
presented are also necessary, in the sense that: if the property under study is true, then the corresponding
LMI problems are solvable from a certain & and beyond.

Numerical examples have shown that the derived algorithms are immediatly implementable in a MATLAB/
SciLAB-like environment, and that the computation times are small, at least for small dimension systems.

Further research involves the following aspects.

1. Determination of a priori (upper) estimate on the least k, if any, for which the LMIs are solvable.
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2. Extension of the results to the analysis of systems with independent delays (or with many complex
parameters).

3. Extension of the results to the analysis of systems with real parameters.

A Appendix — Kalman-Yakubovich-Popov lemma

Recall that the continuous-time version is due to Yakubovich [40] and Kalman [19], and the discrete-time
version has been derived from Szegd and Kalman [36]. We use the statement as expressed e.g. in [34]. A
proof of the result in the complex case may be found in [28, Theorem 1.11.1 and Remark 1.11.1].

Let A€ C**", B € CVP, M = M* € Cntp)x(ntp),

Lemma A.1. If det(I, — zA) # 0 for any z € 0D, then the following two statements are equivalent.
(i) There ezists Q = Q* € C"*™ such that

A*QA-Q A*QB
(B*QA B*QB>+M<O.

(i3) For any z € 0D,
A -1R\* o A1
(z(In zA) B) u (z(In zA) B) <0,

I I
[ |
Lemma A.2. If det(sI, — A) # 0 for s € jR, then the following two statements are equivalent.
1. There exists P = P* € C"*" such that
A*P+ PA PB
(254 PEY
When A, B, M are real, P is real, symmetric.
2. For any s € jR,
_A-1R\* _ AVl
((sIn A) B) u ((s[n A) B) <0.
I I,
[ |

Remark A.3. When A is Hurwitz and

(In Onxp)M (OIn ) 20,

pPXN
then P in Lemma A.2 is definite positive.

Remark A.4. When in the statements the matrices A, B, M are real, then @ (resp, P) is real, symmetric.
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Value k of | Estimate A, "/? of CPU time CPU time
the index || suppso [[H(s,67*")|loo | Q& symmetric | Q definite positive
k=1 132 0.08 s 0.09 s
k=2 64.3 0.25 s 0.31s
k=3 ” 0.81s 1.07 s
k=4 ? 2.22s 3.74 s

Table 1: EXAMPLE 1 — Estimation of supy,>q [|H(s,e™*")||oo

Value k of Estimate K of | CPU time
the index || the largest sector
k=1 0.01406 0.05 s
k=2 0.03147 0.22 s
k=3 ” 0.67 s
k=4 ” 1.87s

Table 2: EXAMPLE 2 — Circle criterion: estimation of the largest sector.

Value k of Estimate K}, of Slope 1y, of CPU time
the index || the largest sector | the Popov line
k=1 0.01406 0 0.07s
k=2 0.05233 —0.1873 0.23 s
k=3 ” ? 0.71 s
k=14 ? ? 2.18 s

Table 3: EXAMPLE 2 — Uniform Popov criterion: estimation of the largest sector.

Table 4: EXAMPLE 3 — Estimation of the largest p preserving asymptotic stability of (17).

Value k of | Estimate p | CPU time
the index
k=1 0.2906 0.08 s
k=2 0.6504 0.49 s
k=3 7 2.18 s
k=4 ” 10.01 s
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Figure 1: EXAMPLE 1 — Ho, norm ||H (s,e*")||« as a function of h.
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Figure 2: EXAMPLE 1 — ||H (jw, e™7“")|| as a function of w, for h = 3.

frequency w

INRIA



300

N Popov criterion ‘ w’ImH(jwaefjWh) Do o
T (B> 2) : Circle criterion
200 e (k>2)
100
| ' Re H(jw,e"wh)
0+ :
-100 —+
-200 —
-300 —
-400 T T T T T T ]
-30 -20 -10 0 10 20 30 40

Figure 3: EXAMPLE 2 — Popov locii for h = 0.00, h = 0.60, h = 1.18.
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Figure 4: EXAMPLE 3 — Plot of w — 1/p((jwI, — A)~'B) and the successive estimates of p.
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